
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

EFFICIENT EMULATION OF TAPE-LIKE DELAY MODULATION BEHAVIOR

Vadim Zavalishin, Julian D. Parker

Native Instruments GmbH
Berlin, Germany

firstname.lastname@native-instruments.de

ABSTRACT

A significant part of the appeal of tape-based delay effects is the
manner in which the pitch of their output responds to changes in
delay-time. Straightforward approaches to implementation of de-
lays with tape-like modulation behavior result in algorithms with
time complexity proportional to the tape speed, leading to notice-
able increases of CPU load at smaller delay times. We propose
a method which has constant time complexity, except during tape
speedup transitions, where the complexity grows logarithmically,
or, if proper antialiasing is desired, linearly with respect to the
speedup factor.

1. INTRODUCTION

Delay and echo effects have been fundamental tools for manipu-
lating space and rhythm in music production since the 1950s, with
the first commercial units being based on loops of magnetic tape.
Over the following decades, other methods for producing such ef-
fects were developed, including the use of magnetic drums, and
bucket-brigade chips [1, 2, 3]. Starting in the 1970s, digital imple-
mentations of delay-lines became available.

A delay line can broadly be thought of as a black-box into
which a signal is passed, and which outputs it at some later (‘de-
layed’) time. Independent of the technology involved, all delay
lines work in fundamentally the same way. The signal is injected
into a medium at a particular point, it travels through that medium
for some time, and is received at another point. This medium can
be magnetic tape, a chain of capacitors, a digital ring-buffer, or
even potentially an acoustic or mechanical system. Despite the
change in sound-character imposed by the medium, the broad dif-
ference between different types of delay-line is the way in which
they allow the delay time to be varied. Some allow the distance
between the entry point and exit point to be varied (we call these
length-type delays), whilst others instead manipulate the speed at
which the sound traverses the medium (we call these speed-type
delays). This difference is exemplified by two famous tape-based
delay devices - the EchoPlex [4], and the Roland Space Echo se-
ries. The former allows the read head of the tape machine to be
moved, whereas the latter allows the speed of the motor driving
the tape to be changed. This distinction is important, because it
greatly influences the pitch-change perceived when manipulating
the delay-time, especially when the system is subjected to feed-
back as is the case in echo effects. In the case of length-type
delays, the pitch-change perceived in the output (and recirculated
when feedback is present) is dictated purely by the rate of change
of the length. In the case of speed-type delays, the change in pitch
is defined by the ratio of speeds between the instant the signal en-
tered the medium and the instant it exits. It turns out that the latter
behaviour is desirable musically, as it leads to much more consis-
tent control over pitch. For example, a repeating echoing sound

can be cleanly pitched up and down by varying the delay-time in
the latter case, whereas in the former the same manipulation will
result in erratic overlapping pitch changes.

Typical implementations of digital delays are based on a vari-
able length ringbuffer, where the delay time parameter controls
the distance of an interpolated read-point from the write-point [5].
This implementation clearly falls into the length-type category,
and exhibits the expected problems. Straightforward speed-style
digital delays can be implemented using a fixed array and a vary-
ing internal sample-rate. Thus, there must be sample rate con-
version at the write head (from the outside sampling rate to the
sampling rate implied by the speed) and at the read head (from
the implied to the outside sample rate). Moreover, the number
of processed “internal samples” per one “outside sample” is pro-
portional to the speed. Thus, the time complexity of such emula-
tion is O(v), where v is the speed. This particularly means that
at low delay times, where the tape speed is high, the CPU load
significantly increases. Another interpretation of variable-sample-
rate digital delay is given by Rocchesso [6] who frames the pro-
cess using interpolated read and write points. Holters extends this
variable-sample-rate paradigm to use the BBD circuits input and
output filters to perform the necessary interpolation [3].

Huovilainen [1] proposed a way to recompute speed variations
into length variations, which can then be used to simply control
the read position of a ringbuffer-based digital delay. However his
method of recomputation, even though reducing the overall com-
putation costs, still has an O(v) complexity.

In this paper, we propose a new method of implementing a
digital speed-style delay which in steady-speed situations and dur-
ing slowdowns has an O(1) complexity, regardless of the actual
speed. During speedup transitions the method has an O(logK)
complexity, where K is the speedup factor. If proper antialiasing
of speedups is desired, then during speedup transitions the compu-
tation complexity grows to O(K).

For the sake of a more intuitive language we will be talking
of emulation of a tape delay. However the discussion will equally
apply to other types of speed-style delays.

In Sec. 2, we introduce a continuous-time model for the rela-
tionship between tape speed and delay-time, which we call the tape
equation. We then discuss some results that can be derived directly
from the model. In Sec. 3, we describe a numerical scheme for
solving the tape equation in the case of arbitrary changes in speed,
including consideration of aliasing distortion in cases where tape
speed is increasing. In Sec. 4 we present some measurements of
the computation efficiency of the described method, in comparison
to existing methods. In Sec. 5, we conclude.

DAFX-1

DAFx-3

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

2. THE TAPE EQUATION

In real-world tape-delays the tape is often looped, with an erasing
head placed before the recording head. Since the erasing head
removes the previous signal recorded to the tape, without loss of
generality we can consider this configuration to be equivalent to a
tape of infinite length in both directions. We will associate a one-
dimensional coordinate system with the tape, so that each point on
the tape has a coordinate.

Let xw(t) be the coordinate of the tape point positioned against
the write head at the time moment t, and let xr(t) be the coordi-
nate of the tape point positioned against the read head. Let the
tape move in the direction from the write head to the read head
and let’s orient the tape coordinate axis x so that xw(t) and xr(t)
will increase with time as the tape moves. Then, if v(t) denotes
the speed of the tape at time moment t,

ẋw(t) = ẋr(t) = v(t) > 0

Let the distance between the heads be fixed at

xw(t)� xr(t) ⌘ L > 0 (1)

and let T (t) denote the effective delay time at time moment t,
meaning that the signal value which is being picked up by the read
head at the time moment t was written by the write head at the
time moment t� T (t):

xr(t) = xw(t� T (t)) (2)

Clearly, during the time range [t�T (t), t] the tape has travelled the
distance equal to

R t

t�T (t)
v(⌧) d⌧ and this distance must be equal

to L: Z t

t�T (t)

v(⌧) d⌧ = L (3)

The above formula is the tape equation in the integral form. It re-
lates the tape speed function v(t) to the effective delay time T (t).
In case of constant speed on the range [t � T (t), t] the formula
turns into v · T (t) = L giving

T (t) ⌘ L/v (4)

We can refer to L/v as steady-state delay time.
By introducing the “total distance travelled by the tape”

V (t) =

Z
v(⌧) d⌧ (5)

(which is understood in the sense that V (t) is some arbitrary an-
tiderivative of v(t)) the tape equation can be rewritten in the dif-
ference form

V (t)� V (t� T (t)) = L (6)

It is convenient to choose the constant of integration in V (t) in
such a way that

xw(t) = V (t) (7a)
xr(t) = V (t)� L (7b)

Alternatively, if we wish to choose the constant term of V (t) from
some other considerations, (7) can be enforced by the choice of the
origin of the coordinate axis x. From this point on we will assume
that (7) always holds.

By taking the time derivative of (6):

v(t)� v(t� T (t)) ·
✓
1� d

dt
T (t)

◆
= 0

and peforming algebraic transformations, we obtain the tape equa-
tion in the differential form:

d
dt

T (t) = 1� v(t)
v(t� T (t))

(8)

By describing the relationship between tape-speed and delay-
time, the tape equation can allow us to produce tape-like behaviour
using an ordinary variable-length ringbuffer-based digital delay. In
order to achieve this, the equation must be solved either analyti-
cally or numerically.

2.1. Suitability of equation forms for numerical solution

The differential form (8) of the tape equation doesn’t contain in-
formation about the distance between the heads. Thus, there is
no “built-in error correction mechanism” in (8) and a straitforward
numerical solution could exhibit errors which accumulate into an
indefinitely large drift of T (t). Intuitively, consider the following
example. Suppose v(t) varies for a while and then the variations
stop: v(t) = const 8t � t0 � T (t0). In this case the right-hand
side of (8) will be zero 8t � t0 and thus any error accumulated in
T (t) will stay there forever.

Consequently, the differential form is not well suited for use
in practical delay implementations. However in theoretical work
it can be useful in combination with differential equation solvers,
such as the ones found in CAS (computer algebra system) soft-
ware, which often expect the equation to be supplied in the differ-
ential form.

The integral form (3) contains a different potential numeri-
cal drift source. (3) suggests an incrementally computed mov-
ing sum as a numerical implementation, where the new terms of
the form v(t)�t will be incrementally added and the old terms
v(t � T (t))�t will be subtracted. However, even if what we add
exactly equals what we subtract later, addition and subtraction of
the same value might not totally cancel each other due to limited
precision of floating point calculations. This error also can accu-
mulate.

Note that, if we instead use fixed point calculations in the mov-
ing sum, the addition and subtraction of equal values will exactly
cancel. So, if we can make sure that we add and subtract exactly
the same values, there will be no drift. However, as we shall see in
the further discussion, it will be even easier to simply use the dif-
ference form (6), where we spare the subtraction of v(t�T (t))�t
and therefore don’t need to consider the resulting error.

2.2. Analytical solution for an instantaneous jump in speed

It is educative to consider the case of a single instantaneous jump
in the tape speed, the speed being constant at all other times. In
this case there is a simple analytic solution to the tape equation.
Indeed, let

v(t) =

(
v0 if t < 0

v1 if t � 0

Let V (0) = 0, giving

V (t) =

(
v0t if t < 0

v1t if t � 0
(9)

DAFX-2

DAFx-4

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

t

V (t)

t� T (t) t

x
w
(t
)

x
r
(t
)

T (t)

L

Figure 1: Graphical interpretation of (6).

and we choose the origin of coordinate x so that (7) holds.
Now we want to substitute (9) into (6), thus obtaining T (t). It

is highly instructive to use the graphical interpretation of (6) given
in Fig. 1. The figure represents the graph of V (t) defined by (9)
with highlighted points xw(t) and xr(t) corresponding to the write
and read head positions at time t. By (1) the vertical distance be-
tween these points is L, and by (2) the horizontal distance between
these points is T (t). Thus, both write and read heads move along
the curve V (t) in such a way that the vertical distance between
these points is always L, thereby defining the horizontal distance
between them, which is T (t).1

We could use Fig. 1 to construct the explicit formula for T (t).
From (7a) we have xw(t) = V (t). Then using Fig. 1 we obtain
xr(t) = xw(t) � L and t � T (t) = V �1(xr(t)). Combining all
these formulas together yields

T (t) = t� V �1(V (t)� L) (10)

where V �1(V (t) � L) is simply the time at which the signal,
which is currently being picked up, was recorded.2

Now returning to the specific form of V (t) given by (9) and
looking at Fig. 1 we are having two obvious results:

T (t) = L/v0 if t  0

T (t) = L/v1 if t � L/v1
(11)

For 0  t  L/v1 (and this is specifically the case shown in
Fig. 1) to find the total time T (t) we have to add the time dura-
tion corresponding to the right semiplane part of T (t) and the one
corresponding to the left semiplane part:

T (t) = t+
L� v1t

v0
=

L
v0

+

✓
1� v1

v0

◆
t (12)

1Note that this interpretation and Fig. 1 itself are not limited to the
specific shape of V (t) defined by (9), but apply for arbitrary V (t).

2Of course, (10) could have been directly obtained from (6). By ob-
taining it using Fig. 1 instead, we have given an intuitive interpretation to
(10).

(note that (12) gives T (0) = L/v0 and T (L/v1) = L/v1, the
same values as given by (11), corresponding to the fact that T (t)
must be continuous).

Thus T (t) varies linearly on the transition range t 2 [0, L/v1].
More specifically, T (t) changes from the old steady-state delay
time to the new one and the transition duration is equal to the new
steady-state time. This change produces the commonly known
pitch jump effect from a sudden change of the tape speed. This
jump has an obvious explanation in terms of tape speed, but now
we can also explain in in terms of delay time. The duration of the
pitch-shifting transition is exactly equal to the new steady-state de-
lay time, thus, if feedback is present, the pitch-shifted signal will
be recorded back into exactly one echo period of the “new steady-
state”, staying in the feedback loop until it decays or until a new
speed change occurs.

3. A NUMERICAL SOLUTION FOR ARBITRARY
VARIATIONS IN SPEED

If v(t) is not known in advance, we can’t compute (10) analytically
and need to develop a numerical method. We want this method to
be usable for practical delay implementations, therefore we want it
to be computationally efficient and not suffer from the drift prob-
lem explained in Sec. 2.1.

3.1. Properties of a digital ringbuffer

We intend to implement a “tape delay” by combining a numeri-
cal solution of the tape-equation with a variable-length ringbuffer-
based delay. Before we continue to discuss the solution of the tape
equation, it is helpful to address some details regarding ringbuffer-
based delays. The following discussion assumes that the sampling
period and, respectively, the sampling frequency are unity: fs = 1.

Consider the range of delay times supported by an ordinary
ringbuffer-based delay. Clearly there is maximum delay time, lim-
ited by the ringbuffer’s capacity. The minimum delay time is in
principle zero. So, we have

0  T (t)  Tmax (13)

However there are two factors further limiting that range.
The first factor is interpolation, which is necessary to support

delay times which are not an integer number of samples. Most
interpolators need to consider some samples both before and after
the interpolation point. Thus (13) (for a symmetric interpolator)
turns into

max{�� 1, 0}  T (t)  Tmax � (�� 1) (14)

where � is half-width of the interpolator’s kernel. This limitation
can be however worked around by reducing the interpolator’s order
and/or window size when the interpolation is done at the edges of
the range. This might be particularly desirable for T ⇡ 0, e.g. if
we’re looking for a comb filtering effect.

Another factor affecting (13) and (14) appears if the delay is
used inside a feedback loop. If the ringbuffer is structured so that
output and input happen synchronously in the algorithm, a unit
delay will implicitly be introduced into the loop, as the current
output of the delay is never known when calculating the input.
(Fig. 2). For an ordinary digital ringbuffer-based delay this solely
means that the delay time is off by one sample, which can be either
tolerated or compensated by adjusting the offset of the read head

DAFX-3

DAFx-5

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

+// z�T// •// //

G ooooz�1 oo

OO

k

Figure 2: Unit delay in delay’s feedback loop. k is feedback
amount. G denotes some additional processing (not necessarily
linear) which might occur in the loop.

by one sample. However if the ringbuffer delay is used as a basis
for a tape delay emulation, either of the two mentioned options
will distort the tape equation’s solution and thus might potentially
break the exact-repetition nature of the tape delay feedback in case
of modulated tape speed. Therefore we would rather avoid the
introduction of the extra unit delay altogether.

This can be achieved by splitting the processing of the delay’s
sample tick into two separate parts: the reading and the writing
part. The read is processed first, then the feedback path, then the
writing part. This eliminates the extra unit delay. In this case, how-
ever, the current input sample of the delay is not being written into
the delay buffer until the end of processing and thus is not avail-
able for the read interpolation. This increases the lower boundary
of supported T (t) by one sample compared to (14):

max{�, 1}  T (t)  Tmax � (�� 1) (15)

unless we would be willing to solve the implicit equation arising
out of the instantaneous dependency of delay’s output signal on
delay’s input.

In this paper we will assume that the tape delay is to be used
in a feedback loop and will develop the algorithm details under the
assumption of split read/write processing.

3.2. Tape equation variables in discrete time

Let n be the discrete time-index. Since we assumed that the sam-
pling period is unity, we have: t = n. Let’s also choose the length
scale so that the distance L between the heads is also unity: L = 1.
The tape speed v expressed in these units means the fraction of the
distance between the heads travelled over one sample period.

In order to be able to numerically apply the tape equation we
need to keep the information about the tape speed values in the
past, where the time range of interest is [t, t�T (t)], where t is the
current time. In Sec. 2.1 we gave reasons to choose the difference
form (6) of the tape equation as the basis of the numerical solution,
therefore, rather than storing the past values of v(t), we will store
the past values of its integral V (t).

We want to use T (t) obtained via the tape equation to control
the delay time of a ringbuffer-based digital delay. It is a natural
choice therefore to extend the ringbuffer elements to also contain
the values V [n] along with the stored audio signal samples. The
value V [n] will be contained in the same element as the audio
signal recorded by the delay at time n. Intuitively, the write head
simultaneously records the audio signal and the signal V (t) onto
the tape. Assuming that V is defined by

V (t) =

Z t

0

v(⌧) d⌧

or, in discrete time

V [n] =
nX

i=0

v[i] (16)

we can compute V [n] incrementally

V [n] = V [n� 1] + v[n] (17)

Note that (16) and (17) imply that v(t) = v[n] is assumed to be
constant over a duration of one sample period, which is a com-
mon simplification when dealing with changing control values in
discrete time. We will work further under this assumption, unless
otherwise noted.

3.3. Representation of tape coordinates

V [n] is an infinitely growing sequence, and thus there are dangers
of increasing precision losses and/or overflow in (17), if floating
point representation is used. Instead of trying to estimate whether
this could be an issue with practical sampling rates and running
times, we are going to use fixed point representation which will
provide an elegant way to avoid such concerns altogether. We will
be using this fixed point representation for V [n] and any other val-
ues expressing the tape coordinate or derived values such as tape
speed.

(15) effectively provides the upper and the lower bound to
v[n]:

max{�, 1}  1/v[n]  Tmax � (�� 1)

that is

0 <
1

Tmax � (�� 1)
 v[n]  1

max{�, 1}  1 (18)

Under the restriction (18) our fixed point numbers will need to
have a sign bit and two integer bits,3 the remaining bits are to be
used for the fractional part. Thus from a 64 bit integer we’ll make a
2.61 signed fixed point number. So we’ll have better precision than
if we used 64-bit IEEE 754 floats, which have only 52 fractional
bits of mantissa. The fixed point representation also gives constant
precision across the entire value range, which is more appropriate
for our purposes.

At any particular time the integral (3) and respectively the dif-
ference (6) are dependent only on the history within time range
[t � T (t), t]. Thus, the tape coordinate values, which we are in-
terested in are contained within the range [V (t) � L, V (t)] (or
marginally outside). Since L = 1 and t = n, this range can be
written as [V [n] � 1, V [n]]. This suggests that we should be fine
using fixed point arithmetic modulo 8 for the computations involv-
ing tape coordinates.

Under the assumption of two’s complement binary represen-
tation of 64-bit integers, arithmetic computations modulo 8 will
occur automatically for 64-bit integer-based 2.61 fixed point num-
bers. More precisely, the addition, subtraction and multiplication
will be automatically done modulo 8, while comparisons will re-
quire special care.

Instead of simply comparing two numbers for >, �, < or ,
we will need to compare their signed difference to zero, e.g.

(a > b)(mod 8)
def() a� b > 0 (19)

3We will use the fixed point representation not only for speed, but for
anything which includes length into its dimension. That is the reason to
have the extra bits in the integer part, which should become more clear
through the discussion that follows.

DAFX-4

DAFx-6

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

This way the comparison is made “on the shortest path” between
a and b (or, more precisely, between elements of the respective
congruence classes).

3.4. Ringbuffer index arithmetic

Ringbuffer indexing also uses modulo arithmetic. A standard ring-
buffer implementation generally needs only index increments, in
which case modulo arithmetic technically means doing a trivial
wraparound. Usually such wraparound is implemented either by a
conditional check, or, if ringbuffer size N is a power of 2, by bit-
masking with N � 1. For the purposes of this algorithm the index
arithmetic will need more of the modulo techniques.

Assuming ringbuffer indices n always take values within the
range [0, N � 1], let’s introduce the concept of a modular range of
ringbuffer indices:

[n1, n2)(mod N) =

(
[n1, n2) if n2 � n1

[n1, N) [[0, n2) if n2 < n1

The length of the range is thus

��[n1, n2)(mod N)

�� =
(
n2 � n1 if n2 � n1

n2 � n1 +N if n2 < n1

If N is a power of 2, then, under the assumption of two’s comple-
ment binary integer representation, modular range length can be
computed without evaluating a conditional:

��[n1, n2](mod N)

�� = (n2 � n1) & (N � 1)

where & denotes bitwise “and”.
Notably, we can’t use a comparison definition similar to (19)

for ringbuffer indices, because we cannot assume that the compar-
ison needs to be done “on the shortest path”.4 Therefore instead
of index comparisons, we will be comparing the lengths of index
ranges, which is a well-defined operation.

In binary search within the ringbuffer contents we will need to
be able to find the middle of a modular range. Clearly, we can’t
simply take the average of the range’s bounds, as the result could
be off by N/2. Instead, we’ll need to divide the range’s length by
2 and use this new length to obtain the middle position and the new
bounds.5

3.5. Tracking of the read position

In a ringbuffer-based delay implementation, the “write head” pro-
gressively cycles through the underlying array of the ringbuffer,
advancing by one array index per sample. The position of the “read
head” is computed each time anew, by subtracting the delay time
(in samples) from the write head’s position. In the proposed imple-
mentation of the “tape delay” we update the ringbuffer’s read po-
sition incrementally instead. The read position must be fractional
in order to support T (t) which are not integer sample counts. We
will therefore need to incrementally track the following values:

4With tape coordinate representation we have introduced additional
headroom into the modulus to make sure that the distance between the val-
ues which we would want to compare or to subtract doesn’t exceed half of
the modulus. We could have introduced similar headroom into ringbuffer
indices, but that would raise efficiency concerns.

5It could be useful to incrementally store the range’s length in a separate
variable during binary search.

• the write position in the ringbuffer’s array nw

• the write head’s tape coordinate xw

• the read position in the ringbuffer’s array nr + ⌫r , where
nr is the integer part and ⌫r 2 [0, 1) is the fractional part6

• if ringbuffer size N is not a power of two, we might want to
explicitly store the size of the ringbuffer contents (which is
equal to |[nr, nw)(mod N)|) and update it with changes to
nw and nr , thereby saving one evaluation of a conditional,
when ringbuffer content size is needed.

We will further assume that the formal indexing of V [n] is iden-
tical to the ringbuffer element indexing modulo N . We will also
notate and understand the fractional indexing of V [n] as

V (nr + ⌫r) = V [nr] + (V [nr + 1]� V [nr]) · ⌫r (20)

Note that the linear interpolation in (20) is chosen because it is
exactly correct given the previously stated assumption that v(t) is
constant over the duration of one sample.

As discussed in Subsec. 3.1, we wish to implement a delay us-
able in a feedback context, meaning that the reading of the audio
output signal from the ringbuffer should occur prior to and sepa-
rately from the writing of the audio input signal. Using (10) and
Fig. 1 we can construct the following algorithm for processing a
single sample step of such delay.

0. In the beginning of the step the variables are set like follows:

• nw is pointing to the ringbuffer element which is about
to be written to

• xw contains the previous coordinate of the write head

• nr + ⌫r is pointing to the ring buffer element which was
read from in the previous step.

1. Compute the new value of xw using (17) and (in agreement
with (7a)) write it into V [nw]. This doesn’t depend on the de-
lay’s input signal value and therefore can be done in the begin-
ning.7

2. Compute xr = xw �L = xw � 1 (according to (7b)) and then
search for the new nr + ⌫r such that

V (nr + ⌫r) = xr (21)

The details of the search will be explained in Sec. 3.6.

3. Read the delay’s output from the ringbuffer at position nr+⌫r .

4. Send the delay’s output sample through the feedback loop all
the way to the delay’s input.

5. Write the delay’s input into the ringbuffer at position nw and
advance nw by one array index.

6Actually, only nr needs to be incrementally tracked, while ⌫r will be
computed each time.

7The fact that we compute the new value of xw in the beginning and
advance nw in the end is matched in the later proposed approach to the
algorithm initialization. If cache line aliasing between the read and write
positions becomes a concern, we could perform the writing of xw into
V [nw] in step 5 instead (note that such change doesn’t affect the mentioned
initialization). However this excludes V [nw] from the allowed range of the
search in step 2, effectively decreasing the upper bound of the tape speed in
(18) and respectively increasing the minimum attainable delay time, unless
the need to access V [nw] is handled “manually” during the search.

DAFX-5

DAFx-7

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

3.6. Updating of the read position

In step 2 of the “tape delay” processing algorithm introduced in
Sec. 3.5 we need to perform a search for the solution of (21). We
will split the search in two parts. First (the search itself) we search
for nr such that xr 2 [V [nr], V [nr + 1]]. Having found nr , we
can solve (20) in respect to ⌫r , obtaining:8

⌫r =
xr � V [nr]

V [nr + 1]� V [nr]
(22)

According to (18) the sequence V [n] is monotonic and we
need to search only in the forward direction from the previous
value of nr . The simplest possible implementation of the search
therefore is: repeatedly advance nr by one array index, comparing
V [nr] to xr . This is actually not as bad as it may seem. Because
in the most commonly occuring case, when v(t) doesn’t change
much during [t � T (t), t], or at least doesn’t speedup noticeably,
we will need to advance nr only one or two times, until we found
the new value of nr . In case of a speedup by a factor of K we
will however need to perform ca. K steps before we find the new
position nr . Thus, during speedup transitions, the operation count
will increase by a factor of K.

This can be improved to an increase only by a factor of log2 K.
Since V (t) is monotone, it can be inverted by bisection [7], which
in discrete time case effectively takes the form of binary search
followed by the subsample position refinement at the end. Thus,
we intend to do binary search within V [n] between the old value
of nr and the new value of nw.9 In isolation, this is not such
a good idea. Because now the binary search range contains the
entire region of the tape between the read and write heads, and we
are going to binary-search this entire range (performing ca. 10-20
search steps) each time, even in case of small speed variations.
This results in not O(logK) computation complexity but rather
O(log T (t)).

We can, however, improve the selection of the search range.
Starting from the old read position nr we check the value V [nr +
2]. If V [nr + 2] � xr , then we take nr + 2 as the upper bound
of the range and nr as the lower bound. Otherwise we know that
the new read position doesn’t lie between nr and nr + 2 anyway,
so we update nr to take the value nr +2 and now take a step of 4,
probing the value V [nr + 4] (formerly V [nr + 6]) and taking the
range from nr to nr + 4, if successful. Otherwise we update nr

to nr + 4 and take a step of 8 etc, until we finally find the range
containing xr .

Notably, during this process of searching for the initial range
we have to be careful not to cross the write position nw. As men-
tioned before, we can’t use a comparison approach like the one of
(19) for ringbuffer indices. Therefore, instead of comparing nr to
nw we need to compare the step size to the length of the modular
range [nr, nw)(mod N).

It’s not difficult to see that the described way of searching for
the initial range has computation complexity of O(logK) and so

8We should remember that we are using arithmetic modulo 8 when
dealing with tape coordinates, and, strictly speaking, the division of two
values both having the tape coordinate units in (22) hasn’t been defined.
This division doesn’t require any special treatment though, since the dis-
tances from xr to V [nr] and from V [nr] to V [nr + 1] on the tape coor-
dinate axis cannot exceed max{v[n]}, which according to (18) is 1.

9Remembering to use the previously discussed modular arithmetic
rules, for both tape coordinate and index.

does the binary searching on the range found in this way, thus our
entire implementation has O(logK) complexity.10

3.7. Initialization

The previous discussion of the tape delay algorithm was assum-
ing that we are somewhere in the middle of the running time and
all incremental variables are properly set by the previous sample’s
processing. However, how do we set these variables initially?

Let’s assume that we are using linear interpolation for reading
the audio signal at non-integer positions nr + ⌫r . In this case we
propose to initially let

V [0] = �L = �1

V [1] = 0

nr = 0

nw = 2

xw = 0

where V [0] and V [1] are stored in the ringbuffer’s array elements
0 and 1, and the audio signal part of these elements is initialized to
zero. Then, as long as 0  xw < 1, the read head will interpolate
between elements 0 and 1 of the array, thereby producing zero
output, as if we were reading from a clean tape.11

If instead of linear interpolation we use e.g. cubic interpola-
tion, then the same initialization idea will look like:

V [0] = V [1] = �L = �1

V [2] = V [3] = 0

nr = 1

nw = 4

xw = 0

Other interpolation schemes can be treated similarly.

3.8. Sparse storage of V [n]

The need to store V [n] in addition to the audio in the ringbuffer
significantly increases the memory usage by the delay. E.g. if the
audio consists of two 32-bit float stereo channels, by adding a 64-
bit fixed point V [n] to each sample we double the amount of used
memory.

The memory requirements can be reduced if the tape speed
doesn’t change on every sample, but at a lower “control rate”. This
could however introduce audible artifacts due to “steppy” pitch
changes corresponding to the steppy nature of the tape speed. In
such case, instead of considering the tape speed constant on the

10Obviously, if logK < 1 and especially if logK < 0, the complexity
bound O(logK) looks highly questionable. It’s not difficult to realize that
dropping K below 1 (tape slowdown) doesn’t further reduce the number
of computations. This suggests that the computation complexity estimation
for arbitrary speed changes is, strictly speaking, O(max{1, logK}). For
the simplicity of notation, however, we can agree to understand O(logK)

as a somewhat informal way of writing O(max{1, logK}).
11Thus, we have a very quick initialization procedure, not requiring to

fill the entire ringbuffer, neither with the values of V [n] nor with the zero
audio samples. This is quite useful if the implementation is used in a plugin
in a DAW, where plugin reset times may become an issue.

DAFX-6

DAFx-8

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

range from V [n] to V [n+1] we could consider it linearly increas-
ing.12 The linear function (20) is thereby replaced by a quadratic
one and (22) turns into a quadratic equation solution formula.

Of course, other than linear segments of v[n] could be used,
as long as they can be inverted (in reasonable computation time)
to find the fractional position.

3.9. Antialiasing of speedups

The interpolated readout of the ringbuffer works well if the delay
speed is almost constant or is slowing down. However a speedup
effectively shifts the pitch of delay’s signal up, thereby creating
frequencies above Nyquist threshold, which ordinary interpolation
doesn’t try to suppress. It is, however, possible to reformulate the
polynomial interpolation in a way allowing arbitrary cutoffs below
Nyquist.

Any polynomial interpolation of a sequence yn can be alter-
natively expressed as a convolution with a kernel:

L[yn](t) =
X

n

yn�(t� n)

where �(t) is the kernel and L[yn] denotes a continuous time func-
tion which is the result of the interpolation of yn. The interpola-
tion’s kernel � is obtained by interpolating the Kronecker delta
sequence with the interpolator in question:

�(t) = L[�n](t)

and thus consists of polynomial segments. The kernel normally
corresponds to a continuous-time lowpass filter with a cutoff close
to Nyquist. We can lower the kernel’s cutoff by a factor of K 2 R
by stretching the kernel K times along the time axis and simulta-
neously reducing its amplitude K times:

L[yn](t) =
X

n

yn
�((t� n)/K)

K
(23)

Thus, by expressing the interpolation as convolution we can ar-
bitrarily change the interpolation filter’s cutoff, which allows us
to use the interpolator to suppress unwanted frequencies below
Nyquist.13

The speedup situation can be detected by comparing the read-
ing speed (which is simply the current tape speed) to the speed at
which the signal was recorded. According to (17) the recording
speed is simply equal to V [nr]�V [nr �1].14 Note, however, that
the computation complexity of such antialiasing is O(K), where
K is the speedup factor. We could put an upper bound on the
complexity by artificially clamping the factor K used in (23) at
the obvious cost of some unfiltered aliasing in case K exceeds the
clamping value.

12This might require storing v[n] alongside V [n], unless we want to
guess v[n] from neighboring values of V [n].

13One has to take care to make sure that the interpolator, which is
stretched along the time axis by the factor K, does not attempt to read
ahead of nw or too far behind nr , where the samples either haven’t been
written into the buffer yet or have been overwritten with newer values. The
issue can be addressed e.g. by reducing the cutoff factor K, if we get too
close to the boundaries of the valid index range.

14The forward difference V [nr + 1] � V [nr] also can be in principle
taken, since (23) is only an approximation of a proper resampling process
anyway.

The equation (23) is only a somewhat rough approximation,
done under the assumption that the tape speed doesn’t change very
quickly, because it assumes that the samples yn are equally spaced
in time. In reality the samples are not traversed by the read head at
equal time intervals, this happens at different times and at different
speeds. A more correct version of (23) therefore might be

L[yn](t) =
X

n

yn
�((t� ⌧n)/max{Kn, 1})

max{Kn, 1}
(24)

where ⌧n is the time at which the sample yn is traversed and Kn is
the respective upsampling factor. Note that some of the times ⌧n
in (24) occur in the future. They still may be known in advance, if
we can know the variations of the tape speed in advance, in which
case (24) is still perfectly implementable.15

3.10. Extending the bounds of tape speed

The tape speed bounds imposed by (15) can be significantly ex-
tended.

If we are having no feedback or if we are willing to solve the
implicit feedback equation, then (14) applies instead of (15) and
we might want to support arbitrarily large speeds. Notably, we
still have quite a lot of headroom which we could add into the
proposed fixed point format. E.g. we could use 11.52 signed fixed
point numbers, thereby increasing the upper boundary of the tape
speed headroom (18) by a factor of 512 giving v  512.

Conversely, as 1/v reaches the maximum capacity of the ring
buffer (more precisely defined by (14) and (15)) we attain the max-
imum delay time possible with our proposed approach based on
(10). At this point, however, we could add the ideas of the straight-
forward implementation of tape delay, which would correspond to
slowing down the medium below the natural speed of the 1:1 ra-
tio (the medium moves by 1 sample during one sample tick). In
our setup this would correspond to advancing nw by a fractional
amount less than 1. The writing to the ringbuffer will be occur-
ring “in between” the sample ticks with proper interpolation, or, if
antialiasing is desired, with proper “downsampling filtering”.

In this way we can achieve arbitrarily small and even zero tape
speeds, corresponding to arbitrarily large to infinite delay times.
In principle one could even go in negative speed direction.16 A
limitation of this approach is that in this case the bandwidth of the
signal transmitted through the medium will be reduced, since the
“tape’s sampling rate” is lower than the outside sampling rate.

4. RESULTS

In order to get an idea of the performance of our method, we have
made a comparison between an ordinary ringbuffer-based digi-
tal variable-length delay (VL), variable sample-rate delay (VS),
Huovilainen’s method (H) and the proposed method (P), all meth-
ods using SIMD-ified Catmull–Rom interpolation of two stereo

15We only need to know the future tape speed but not the future values of
the audio signal. This means that (24) is implementable even for a feedback
delay without introducing any additional latency into the feedback. The
latency will be introduced only into how the delay responds to the speed
control signal.

16As the speed goes to zero and negative values, V (t) stops being
strictly monotonic, and one needs to take additional decisions during the
search for the solution of (21).

DAFX-7

DAFx-9

Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Method x1 x2 x10 x100
(VL) 21 21 21 21
(VS) 46 58 163 1320
(H) 37 47 97 725
(P) 39 39 39 39
(P’) 39 38 54 110

Table 1: Performance cost (in TSC clocks per processed sample)
of different algorithms at different tape speeds.

Method x1 x2 x10 x100
(VL) 23 75 277 2531
(VS) 48 112 419 3810
(H) 39 101 353 3235
(P’) 41 92 310 2620

Table 2: Performance cost of different algorithms during speedups,
with enabled antialiasing.

channels of audio17. The comparison is presented in Table 1 where
(P’) is the performance of the proposed method in the case of a
speedup from 1x to the specified speed. The measurements were
taken by letting the algorithm run for a large number of samples
at different equivalent tape speeds, each time taking the average
number of TSC18 clocks per processed sample. The relative mea-
surement error is ca. 5%. The 1x tape speed corresponds to 1 tape
‘sample’ processed per 1 outside sample. The identical perfor-
mance costs of the proposed method at x1 and x2 speeds are due
to the fact that the bisection method is searching over the same
initial range of two entries in both cases.

We also measured the performance of the proposed method
with enabled antialiasing of speedups. Whilst not measured di-
rectly, we have assumed that the antialiasing overhead would be
identical between different methods and added the same overhead
to other measured results.19 The respective performance compari-
son is presented in Table 2, where the tape speed of the delay line
is being switched from x1 to the specified speed.

5. CONCLUSION

In this paper, we introduced the tape equation, which allows the
translation of variations of the medium speed into variations of
delay time, thus allowing to implement tape-like modulation be-
havior using ordinary digital delays. In certain cases, when the
speed variation pattern is known in advance, this translation can
be done analytically. We have also introduced a numerical method
to be used in cases where analytical solution is not possible. Com-
pared to previous methods, which have O(v) time complexity, the
presented method has mostly O(1) time complexity, except dur-
ing speedup transitions, where the complexity is O(logK). If an-

17Audio samples of each of these methods are available at the ac-
companying website: https://github.com/julian-parker/
DAFX-Tape

18Time Stamp Counter, a processor’s internal high-precision timer.
19In (VS) the antialiasing will need to be done constantly unless we take

additional effort to store the information about the recording speed. In
other methods this information is already available, thus the antialiasing
may be done just during the speedups.

tialiasing of speedups is desired, the time complexity of speedup
transitions grows to O(K), however, the complexity can be bound-
ed by artificially clamping the antialiasing filter’s cutoff.

The proposed numerical method is also exact in the sense that
the error from time discretization manifests solely as the tape speed
being assumed constant over the duration of each sample, whereas
precision losses occur only in the quantization of the speed val-
ues and in the final computation of the subsample read position for
the ringbuffer (where it’s totally negligible). Thus, all error is ef-
fectively contained in the time- and level-quantization of the tape
speed, the solution of the tape equation itself being exact. Fur-
thermore, the time-quantization error can be further improved by
assuming linearly changing speed during each sample.

The proposed method can be used in implementations of de-
lays where tape-like modulation behavior is desired. Compared to
previously used approaches, our method has comparable or better
CPU load at all delay times.

6. REFERENCES

[1] A. Huovilainen, “Enhanced digital models for analog modula-
tion effects,” in Proc. Int. Conf. Digital Audio Effects (DAFx-
05), Madrid, Spain, 2005, pp. 155–160.

[2] C. Raffel and J. O. Smith, “Practical modeling of bucket-
brigade device circuits,” in Proc. Int. Conf. Digital Audio Ef-
fects (DAFx-10), Graz, Austria, Sep. 2010, pp. 50–56.

[3] M. Holters and J. D. Parker, “A combined model for a bucket
brigade device and its input and output filters,” in Proc.
Int. Conf. Digital Audio Effects (DAFx-18), Aveiro, Portugal,
2018.

[4] S. Arnardottir, J. S. Abel, and J. O. Smith III, “A digital
model of the Echoplex tape delay,” in Proc. of the 25th Audio
Engineering Society Convention. Audio Engineering Society,
2008.

[5] J. Dattorro, “Effect design, part 2: Delay line modulation and
chorus,” Journal of the Audio Engineering Society, vol. 45,
no. 10, pp. 764–788, 1997.

[6] D. Rocchesso, “Fractionally addressed delay lines,” IEEE
Transactions on Speech and Audio Processing, vol. 8, no. 6,
pp. 717–727, 2000.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical recipes in C, vol. 2, Cambridge University
Press, 1996.

DAFX-8

DAFx-10

