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ABSTRACT
This paper addresses a phase-related feature that is time-shift in-
variant, and that expresses the relative phases of all harmonics
with respect to that of the fundamental frequency. We identify the
feature as Normalized Relative Delay (NRD) and we show that
it is particularly useful to describe the holistic phase properties
of voiced sounds produced by a human speaker, notably vowel
sounds. We illustrate the NRD feature with real data that is ob-
tained from five sustained vowels uttered by 20 female speakers
and 17 male speakers. It is shown that not only NRD coefficients
carry idiosyncratic information, but also their estimation is quite
stable and robust for all harmonics encompassing, for most vow-
els, at least the first four formant frequencies. The average NRD
model that is estimated using data pertaining to all speakers in our
database is compared to that of the idealized Liljencrants-Fant (L-
F) and Rosenberg glottal models. We also present results on the
phase effects of linear-phase FIR and IIR vocal tract filter models
when a plausible source excitation is used that corresponds to the
derivative of the L-F glottal flow model. These results suggest that
the shape of NRD feature vectors is mainly determined by the glot-
tal pulse and only marginally affected by either the group delay of
the vocal tract filter model, or by the acoustic coupling between
glottis and vocal tract structures.

1. INTRODUCTION

DFT-based phase processing of speech and musical sounds has
been addressed since the birth of signal processing, early in the 60s
of the 20th century. As a strong motivation, the theory of Fourier
analysis of continuous and discrete signals was already well estab-
lished, in particular concerning periodic signals, whose spectrum
consists of a harmonic structure of sinusoidal components. How-
ever, owing to i) the discrete nature of the DFT and its underlying
circular properties, ii) the specificity of popular and practical opti-
mization metrics which emphasize quadratic measures, and iii) to
a belief that to a considerable extent the ‘human ear is insensitive
to phase’, phase processing in DFT analysis has not received as
much attention as magnitude-based processing. A clear evidence
of this reality is given by the simple fact that most front-ends for
speech recognition and even speaker identification rely on the ex-
traction of acoustic features that are based on spectral magnitude
information only. Another reason explaining this reality involves
the meaning of phase, especially the meaning in a psychoacoustic
sense. Here again, the psychoacoustic meaning that is associated
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with the spectral magnitude is quite obvious and appealing: for ex-
ample, it helps to explain pitch (i.e. the fundamental frequency),
timbre, dark sounds (low-pass signals) and bright sounds (high-
pass signals). On the contrary, phase was never associated with
such a clear psychoacoustic interpretation and, in a large number
of signal processing applications, such as spectral subtraction in
noise reduction, phase is either ignored or simply discarded.

In this paper, we provide an illustrated motivation to the im-
portance of phase as a relevant holistic feature for locally periodic
signals, and we focus on its importance to characterize the peri-
odic component of the glottal excitation. Although an in-depth
treatment will be addressed in a forthcoming paper, here we use
both synthetic and natural voice signals, notably vowel sounds, in
order to illustrate holistic phase patterns that reflect idiosyncratic
traits due mainly to the periodic glottal source, to illustrate the hu-
man diversity in vocal fold operation, and to evaluate how close
popular models of the glottal pulse are to practical results.

In this section, we will briefly mention how phase has been
looked at and acted upon notably in such areas as speech coding
[1, 2] and time-scale modification of speech [3, 4].

Work in speech coding, during the 60e and 70s of the 20th cen-
tury, especially in the area of frequency-domain coding of speech,
has regarded phase as a frequency-domain parameter that could be
quantized and coded or replaced by a synthetic phase, on a DFT
coefficient basis. With the help of real transforms, such as the Dis-
crete Cosine Transform (DCT), phase was even avoided -at least
explicitly- and the focus was rather concentrated on adaptive quan-
tization schemes defining how coarsely or finely the DCT coeffi-
cients should be quantized such as to minimize an objective dis-
tortion, or such as to minimize the perceptual impact of the quan-
tization and coding noise. Later on, in the 70s, 80s, and 90s, these
same principles were applied to wideband speech and high-quality
audio coding. In this context, explicit phase-based processing was
also avoided by using the Modified DCT [5].

An important class of speech algorithms dealing directly with
the DFT phase representation involve time-scale and pitch modi-
fication of voiced regions in speech [6, 7]. Although first meth-
ods were oriented to phase processing on a DFT coefficient by
coefficient basis, the associated subjective quality was considered
poor as it was characterized by signal smearing, reverberation and
‘phasiness’ [8]. Techniques addressing this problem implemented
phase modification while preserving certain phase relationships
among neighboring DFT channels (or bins) in the region of a lo-
cal maximum in the magnitude spectrum, a technique known as
‘phase locking’ [8, 9]. Another category of phase modification
involved the harmonics of a periodic waveform. The goal was
to preserve the local shape of the waveform even when its dura-
tion is artificially modified while preserving the fundamental fre-
quency, or when its fundamental frequency is modified while pre-
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serving the duration. To a significant extent, shape-invariance was
implemented in order to avoid the typical poor subjective quality
of vocoders and other frequency-domain methods that focused on
magnitude modification in the Fourier domain. Phase processing
tried as much as possible to preserve the local phase relationships
among harmonic frequencies, especially near pitch pulse onset
times, because these instants were believed to represent the time
‘at which sine waves add coherently’ [7, 497], i.e. when they are
presumed to be in phase. To our knowledge, this assumption was
never really demonstrated and in fact chances are that at pitch pulse
onset times the different harmonic frequencies are combined with
the same phase relationship, but not necessarily in phase. Further-
more, these methods also depended on robust phase-unwrapping
algorithms [10], not only to estimate pitch, but also to create ex-
tended phase models allowing to modify the time and frequency
scales of a periodic waveform.

With exception of a few works including Di Federico [11] and
Saratxaga [12] that we will address in the next section, those phase
locking rules, as well as the shape-invariant harmonic phase modi-
fication criteria, were not framed as an interpretable holistic phase-
related feature, or model, that is amenable to statistical analysis,
modification and re-synthesis.

The same remark can also be made regarding the use of phase-
related information in speaker recognition. Attempts have been
made to include phase directly extracted from a DFT analysis of
the speech signal [13], or by first processing it such as to compute
a Group Delay Function (GDF) [14]. However, even in this case,
phase has been looked at as an additional signal feature convey-
ing information that complements that already provided by classic
Mel-Frequency Cepstral Coefficients (MFCCs) [15], and that au-
thors believed to be linked to the glottal source excitation. Yet, a
psychophysical meaning was not attached to those phase-related
features. In addition, it is quite intriguing that phonetic-oriented
segmentation is typically not used to govern phase estimation in
this context, which would be particularly meaningful in voiced re-
gions of the speech.

In this paper, we briefly describe and illustrate, with the help
of practical examples, a holistic phase-related feature, or model,
that is linked to the harmonic phases of a periodic waveform, and
that is (time) shift-invariant and independent on the pitch.

The reminder of this paper is organized as follows. In Sec. 2
we explain the nature of NRD and we illustrate it with a simple
practical example. In Sec. 3 we illustrate NRD estimation with
real vowel sounds. In Sec. 4 we use synthetic and natural signals
to characterize the influence of the vocal tract filter on the phase
characteristics of the glottal excitation. Section 5 discusses NRD
models that may be used to describe the periodic part of the glottal
excitation of humans. Finally, Sec. 6 summarizes the main results
of this paper and discusses future work.

2. A SHIFT-INVARIANT PHASE-RELATED FEATURE

The holistic phase feature we focus on in this paper emerges di-
rectly from the Fourier analysis of the harmonics of a periodic
wave. A meaningful way to introduce it is by means of a simple
practical example [16]. We use the well known sawtooth wave-
form which is synthesized using the Fourier series comprising L
terms:
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2⇡
T

`t , (1)

where A represents amplitude and T represents the reciprocal of
the pitch. Although the NRD coefficients can be found directly
form any periodic wave, for illustration purposes we use the deriva-
tive of the sawtooth waveform which can be easily obtained as
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This form is very convenient because it highlights the phase at the
sinusoidal onset of each harmonic. Let us now split this result in
a part consisting of the fundamental frequency, and another part
grouping all harmonics:
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where t0 = T�0/(2⇡) and t` = T�`/(2⇡`) represent the ab-
solute time-shifts of the different terms of the Fourier series. If
we concentrate on the second part of this development, we may
conveniently introduce a relative time-shift:

LX

`=2

2A
T

sin
2⇡
T

` (t+ t0 + (t` � t0))

=
LX

`=2

2A
T

sin

✓
2⇡
T

`(t+ t0) + 2⇡
(t` � t0)

T/`

◆

=
LX

`=2

2A
T

sin

✓
2⇡
T

`(t+ t0) + 2⇡
(�` � `�0)

2⇡

◆

=
LX

`=2

2A
T

sin

✓
2⇡
T

`(t+ t0) + 2⇡NRD`

◆
. (3)

In Eq. (3), NRD` denotes Normalized Relative Delay (NRD) and
expresses a relative delay between harmonic ` and the fundamen-
tal, which is further normalized by the period of the harmonic [17].
Although the acronym is reminiscent of the way each NRD coef-
ficient is computed in practice, NRDs reflect simply a normalized
value in the range [0.0, 1.0[ which depends on a difference involv-
ing the phase of the harmonic and the phase of the fundamental.
Thus, the number of NRD coefficients equals the number of har-
monics. Other important properties of the NRD coefficients are as
follows:

• as a relative phase-related feature, the NRD of the funda-
mental is zero by definition,

• because NRDs express phase differences, the concepts of
phase wrapping and phase unwrapping also apply, in this
paper unwrapped NRDs are used since this facilities mod-
eling and understanding,

• NRDs are intrinsically time-shift invariant, and are also in-
dependent on the fundamental frequency.

Hence, NRDs express phase relationships that, in addition to the
magnitude of the harmonics, explain the shape of a specific peri-
odic waveform, and thus completely define its shape invariance.

The NRD concept has been independently introduced in [17],
and has found practical application in singing voice analysis [18],
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glottal source modelling [19], speaker identification [16], paramet-
ric audio coding [20] and dyspohonic voice reconstruction [21]. It
was recently brought to our attention that a similar concept (Rela-
tive Phase Delay) had been presented in 1998 by Di Federico [11].
Other smooth phase descriptors for harmonic signals that are sim-
ilar to NRD were also proposed by Stylianou in 1996 (phase en-
velope [22, page 44]) and Saratxaga in 2009 (Relative Phase Shift
-RPS [12]). Our NRD estimation is closer to the method proposed
by Di Federico [11] (that estimates (t`� t0)/(T/`)) than that pro-
posed by Saratxaga [12] (that estimates �` � `�0).

To complete the illustration using our example, we use the
phase values in Eq. (2) to obtain NRD` =

⇡/2�`⇡/2
2⇡ = 1�`

4 , ` =
2, . . . , L. We have synthesized Eq. (2) using L = 20 harmon-
ics and 22050 Hz sampling frequency (FS). We obtained the NRD
numerical results using the algorithm described in [17] and they
are represented in Fig. 1. This algorithm uses phase unwrapping
and it can be seen that results are as expected. In particular, for
` = 20, the NRD becomes �4.75. This figure also represents the

Figure 1: Unwrapped NRD estimation results for the sawtooth
wave, its derivative and its negative derivative. Ideal (analytical)
and experimental results are overlapped.

experimental results regarding the waveform described by Eq. (1),
in which case all NRDs are clearly zero. We conclude the illustra-
tion of the NRD concept using another synthetic signal alternative.
Taking the negative of Eq. (2), we obtain
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which highlights that the phases at the sinusoidal onset of all har-
monics, are all equal to �⇡/2. It follows that NRD` =

�⇡/2+`⇡/2
2⇡ ,

or NRD` = `�1
4 , ` = 2, . . . , L. In particular, for ` = 20, the

NRD becomes 4.75. This result is also illustrated in Fig. 1. The
experimental results are also shown and it can be seen that the
agreement is clear.

Although the NRD concept is a simple one to grasp, the actual
computation, or estimation, is less trivial. The major difficulty is
that the phases at sinusoidal onsets are not readily available from
the DFT or similar transform. What is available is phase infor-
mation that is referred to a time instant (or sample) corresponding

to the delay of the DFT filter bank, and which also depends on
the influence of the time analysis window prior to DFT transfor-
mation. Thus, this influence must first be compensated for, then
phase information (�`) is converted into time delays (n`) which
are made relative to the time delay of the fundamental (n0), and
further wrapped using the period of each harmonic (P`). Finally, a
normalization by each harmonic period is applied [17]. Fig. 2 il-
lustrates the NRD estimation algorithm. We use the Odd-DFT [23]

Figure 2: NRD estimation algorithm [17].

instead of the plain DFT due to a number of interesting proper-
ties which facilitate accurate estimation of the frequencies, phases
and magnitudes of the sinusoidal components that exist in a signal.
Thus, accurate frequency and phase estimation of each individual
sinusoidal component [24] is very important to the reliability, ac-
curacy and robustness of the NRD estimation algorithm.

3. A HOLISTIC PHASE DESCRIBING VOICED SOUNDS

In this section, we present first results for a holistic phase-related
feature that consists of unwrapped NRD coefficients. These coef-
ficients are obtained from the accurate frequency analysis, as de-
scribed in Sec. 2, of the spectrum of voiced vowel signals. The
signals correspond to sustained vowel utterances produced by 37
subjects of which 20 are female, and 17 are male. The record-
ings that are included in the data base were obtained for forensic
purposes, focusing on speaker identification, and are described in
[25]. Figure 3 represents the magnitude spectrum of an /a/ vowel
segment uttered by a female speaker (upper panel), and an overlay
of all NRD vectors that are estimated in a sustained vowel region
(lower panel) lasting about 1 second. The harmonic structure is
signaled in the magnitude spectrum by means of vertical triangles.
The dashed line in this figure represents the LPC model (order 22)
of the spectral envelope defined by the peaks of all harmonics.

The overlay of NRD vectors suggest a few interesting conclu-
sions. First, a region of consistent and stable NRD coefficients
is apparent that involves the first 20 harmonics. These harmon-
ics happen to be the strongest before the spectral valley located at
around 4500 Hz. When harmonics have a very small magnitude
or are close to the noise floor, then accurate frequency, phase and
magnitude estimation is adversely affected in a significant way.
Higher order harmonics are also more prone to estimation inaccu-
racies because their period is quite short, in the order of 3 speech
samples or less. Since the period of each harmonic is individu-
ally estimated, accounting for some degree of inharmonicity, then
shorter periods are more likely to be affected by noise or inter-
ferences and, thus, the phase estimation also becomes more un-
reliable. The impact in terms of unwrapped NRD estimation is a
spreading of the NRD values as illustrated in Fig. 3 which may
generate visually appealing patterns. However, this spreading is
not problematic mainly for two reasons. First, the most impor-
tant voice formant frequencies are typically accommodated by the
NRD region that is stable. Secondly, and this is especially impor-
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Figure 3: Magnitude spectrum of a voiced /a/ vowel segment ut-
tered by a female speaker (upper figure). The vertical triangles
signal the harmonic structure. The lower figure represents all (un-
wrapped) NRD vectors found in a sustained /a/ vowel region and
that includes the represented magnitude spectrum. The thick ma-
genta line represents the average NRD vector up to harmonic 19.

tant for synthesis purposes -which is not discussed in this paper-,
the NRDs in the ‘wild’ region, i.e. the region where an exuber-
ant NRD spreading can be observed, can be replaced by the new
NRDs that are extrapolated from the stable NRD region.

Figure 4 represents a magnitude spectrum and a peculiar over-
lay of NRD vectors pertaining to a /u/ vowel uttered by a female.
Since this is a back vowel whose two relevant formants have a very
low frequency, then the NRD vector is stable only for the first few
harmonics, five in this case. Although for other speakers, the sta-
ble NRD region may be wider even for this difficult vowel, that has
no real relevance as just the first few harmonics define the vowel,
both linguistically and in terms of quality.

Figure 5 illustrates the magnitude spectrum and a overlay of
NRD vectors pertaining to a /o/ vowel uttered by a male. Since the
pitch is about one octave lower than in the case of a female voice,
the harmonic density is higher and NRD vectors may have as many
as 100 coefficients within the Nyquist range. It can be confirmed
in Fig. 5 that the first 4 formant frequencies are represented by the
first 42 harmonics, which corresponds to the stable NRD region.

Figure 4: Magnitude spectrum of a voiced /u/ vowel segment ut-
tered by a female speaker (top). The vertical triangles signal the
harmonic structure. The lower figure represents an overlay of all
(unwrapped) NRD vectors found in the /u/ vowel region. The thick
magenta line represents the average NRD vector up to partial 19.

The above results suggest that, in most cases, it is safe to
assume that the first 19 coefficients represent stable NRD vec-
tors. Figure 6 illustrates the average NRD vectors for sustained
vowel regions pertaining to five different vowels uttered by a male
speaker. Results are presented for two repetitions of the same
vowel exercise. It can be seen that the profile of the different aver-
age NRD vectors are in good agreement, which suggests that there
is a trend that is common even for different vowels uttered by the
same speaker. Rather than the vocal tract filter, which varies from
vowel to vowel realization, what is really common in these situa-
tion is the glottal excitation which is mainly characterized by a pe-
riodic part due to the vibration of the vocal folds. Thus, the NRDs
appear to be mainly determined by the shape of the glottal pulse. It
should be noted however that for some speakers, the NRD vectors
estimated from /i/ or /u/ vowel regions may deviate from the NRD
trend defined by the remaining vowels. As explained above, this
may be due to the fact that certain harmonics are very weak, such
as in the case of the /i/ vowel which has the largest F1-F2 formant
separation, or in the case of the /u/ vowel whose harmonics decay
quite strongly just after the F1 and F2 formants.
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Figure 5: Magnitude spectrum of a voiced /o/ vowel segment ut-
tered by a male speaker (top). The vertical triangles signal the
harmonic structure. The lower figure represents an overlay of all
(unwrapped) NRD vectors found in the /o/ vowel region. The thick
magenta line represents the average NRD vector up to partial 19.

4. VOCAL TRACT FILTER PHASE EFFECTS USING
SYNTHETIC AND NATURAL VOICED SOUNDS

According to the ideal source-filter model of voice production [26,
27], the signal generated at the glottis is the source signal and in-
cludes a stochastic and a periodic part. The supralaryngeal struc-
tures, including the oral and nasal cavities, shape the source signal
in time and frequency such as to convey a desired linguistic mes-
sage. This time and frequency shaping, which is mainly influenced
to the vocal tract resonant frequencies -also commonly referred to
as formants-, is modeled as a filter which may be considered as
stationary for sustained sounds, or locally stationary in running
speech considering the average syllabic duration, in the order of
10 to 20 ms. Most frequently, the filter is modeled as an all-pole
filter; in our experiments, as indicated in Sec. 3, we use a 22nd-
order LPC model. The filter may also include the radiation effect
due mainly to the lips and nostrils. The radiation effect is usually
modeled as a time differentiation operation that converts the air
flow into sound pressure.

A very interesting issue that to our knowledge has never been
clarified in the literature, deals with the phase contribution due

Figure 6: Average NRD vectors (19-dimensional) obtained from
sustained vowels uttered by a male speaker. Results are presented
for 5 vowels produced during two different conversations.

to the source excitation, and that due to the filter. The combined
effects are known to be additive in terms of phase or, equivalently,
in terms of group delay. However, the clarification of how much
the phase contribution -or group delay- due to the filter modifies
the phase of the source signal is an open issue.

Using the NRD concept and using the results that were illus-
trated in the previous section, we may shed some light on the issue.
In that regard, we will assume as a plausible periodic glottal source
excitation, the derivative of the Liljencrants-Fant model (L-F) of
glottal flow [28]. A 210 Hz fundamental frequency glottal exci-
tation using the L-F model has been conveniently generated using
the freely available Voicebox Matlab toolbox (FS=22050 Hz).

Figure 7 illustrates a few periods of the L-F glottal flow deriva-
tive (upper panel), the corresponding magnitude spectrum with all
harmonics signaled by means of vertical triangles (middle panel),
and the unwrapped NRD coefficients up to harmonic 50. This fig-

Figure 7: Analysis of the derivative of the L-F glottal flow model.
The top panel represents the time waveform and its magnitude
spectrum is represented in the middle panel. The harmonics are
signaled by red triangles and the unwrapped NRD coefficients per-
taining to the first 50 harmonics are represented in the lower panel.
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ure suggest that the NRD feature vector may be faithfully approx-
imated by means of a simple first order model that is given by

NRD` = �0.207431 + 0.335465`, ` = 2, . . . , L. (5)

As indicated previously, by definition NRD` = 0, ` = 1.
Concerning the filter model, we took advantage of all the LPC

models (order 22) that were obtained for all vowels from all speak-
ers. Figures 3, 4 and 5 represent examples of the magnitude fre-
quency responses of the IIR filters corresponding to those models.
We took the average of all models separately for vowels /a/, /e/ and
/i/. We considered female models only as the formant frequen-
cies characterizing a given vowel, are typically higher in female
voices than in male voices (due to anatomical differences between
male and female speakers). Then, using the average power spec-
tral density (PSD) of those models, we designed a linear-phase FIR
filter (500 taps) and an IIR filter (order 22) having a magnitude fre-
quency response approximating that PSD. The FIR filter has been
obtained using a single band Parks-MccClellan optimal equiripple
design. The IIR has been obtained using the Levinson-Durbin re-
cursion and after the autocorrelation coefficients are obtained from
the PSD using the Wiener-Khintchine theorem. Figure 8 repre-
sents the PSD of the average /e/ vowel, as well as the magnitude
frequency responses of the FIR and IIR filters. It can be seen that

Figure 8: Average model of the PSD of vowel /e/ uttered by female
speakers, and magnitude frequency responses of a linear-phase
FIR filter (order 500), and an IIR filter (order 22) approximating
that PSD.

both filters approximate well the PSD. An obvious (and intented)
difference lies however in the phase response of both filters. In
fact, the linear-phase FIR has a constant group delay response
(249.5 samples) while the IIR exhibits a non linear group-delay
response that is represented in Fig. 9. Assuming the L-F model
as a plausible excitation to the filter, we want to assess how much
the NRD coefficients at the output of the filter are affected by the
group delay of the filter, according to the two alternatives: linear-
phase FIR and IIR filter modeling. In other words, how much are
the phase properties of the source excitation affected by the phase
properties of the filter ?

To answer this question we filtered the source excitation illus-
trated in Fig. 7 using the two alternative filters and then, in each
case, we extracted the NRD feature vector of the output signals.

Figure 9: Group delay of the 22nd-order IIR filter approximating
the average PSD of the /e/ vowel uttered by female speakers.

As indicated above, we repeated the experiment for vowels /a/, /e/
and /i/. In rigour, prior to this operation, we should have compen-
sated the spectral magnitude of the excitation by its spectral tilt
such that the signal at the output of the filter exhibits a PSD which
corresponds to that of the original vowel PSD. Ignoring this step
has however no consequences regarding phase, is just produces an
output PSD which has a stronger spectral tilt than the original.

Figure 10 illustrates the NRD feature vector at the output of
both filters and taking as a reference the original NRD feature of
the excitation. It can be seen that, as expected, in the case of the
linear-phase FIR filter, because the group delay is constant, then
no modification takes place. However, in the case of the IIR filter,
then visible modifications take place, although these do not rep-
resent a dramatic modification of the trend defined by the source
excitation, exception for vowel /i/. In this case, a plausible expla-
nation is that the group delay of the corresponding filter is such
that it modifies significantly the NRD trend of the source exci-
tation. Further research is required to clarify this. Considering
however that this vowel represents an exception, it is interesting
to compare these results that presume a synthetic excitation sig-
nal, and the results displayed in Fig. 6 that were obtained for real
natural voices. In both situations, results suggest the vocal/nasal
tract filter modifies the phase properties of the glottal excitation
although not too strongly as the overall trend in the NRD feature
vector of the source excitation is essentially preserved. We be-
lieve this is an innovative result that emerges from experimental
data with NRDs. It can also be argued that the deviations to the
excitation NRD feature vector, after the filter, may be due to the
acoustic coupling between the glottis and the vocal/nasal tracts for
different configurations of the latter and which modify slightly the
shape of the glottal pulse. Clarifying this hypothesis would how-
ever imply complex and invasive experiments capturing the signal
near the vocal folds.

5. A MODEL OF THE HUMAN GLOTTAL PHASE

In this section, we discuss NRD models that may be used to de-
scribe the holistic phase structure of the periodic part of the human
glottal excitation.
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Figure 10: Illustration of NRD modification of the source excita-
tion due to the phase properties of the filter modeling the PSD of
three vowels: /a/, /e/ and /i/. When the filter is a linear-phase FIR
filter, no modification exists. When the filter is a 22nd-order IIR
filter, its group delay modifies slightly the original NRD feature
vector. A strong deviation is observed in the case of vowel /i/.

Figure 11 represents an overlay of all the average NRD feature
vectors that were obtained from the 5 vowel realizations by each
speaker. As our data base includes 37 speakers and each speaker
has produced two independent realizations for each vowel, Fig.
11 represents 74 true human average NRD data. This figure also

Figure 11: Overlay of all the average NRD feature vectors for
the 5 vowels uttered by each one of the 37 speakers in our data
base. The experimental NRD vector of the derivative of both ideal
Rosenberg and L-F glottal flow models are also represented.

represents the NRD feature vectors that have been obtained exper-
imentally from synthetic signals consisting of the derivative of the
ideal L-F glottal flow model, and the derivative of the Rosenberg
glottal flow model. Both models were generated using the Voice-
box toolbox. The L-F NRD model is well approximated by Eq.
(5) and has already been illustrated in Figs. 7 and 10. Figure 11
also represents the average NRD model of all human vowel real-

izations, its first order best approximation is given by

NRD` = �0.1522222 + 0.2025505`, ` = 2, . . . , L . (6)

For the sake of completeness, the first order best approximation to
the Rosenberg NRD model is given by

NRD` = �0.014001 + 0.259785`, ` = 2, . . . , L . (7)

It can be seen that the L-F NRD model deviates more from the ex-
perimental average human NRD model than the Rosenberg model.

To conclude this section, we present a verifiable example of
the capability of NRDs in representing the holistic phase proper-
ties of any periodic wave. We prepared two .mat Matlab files,
one of them (LFmag.mat) contains the first 20 harmonic magni-
tudes of the derivative of the L-F glottal flow model, and another
one (LFNRD.mat) contains the first 20 NRD values pertaining to
the corresponding harmonics, including the fundamental. These
experimental-based magnitude and NRD values are used to syn-
thesize the derivative of the L-F glottal flow model using

dgf(t) =
LX

`=1

LFmag` · sin
✓
2⇡
T

`t+ 2⇡ · LFNRD`

◆
. (8)

In this synthesis we use a fundamental frequency of 210 Hz and
FS=22050 Hz. The resulting signal is represented in Fig. 12. We

Figure 12: L-F idealized glottal flow wave and its derivative using
experimental data concerning the first 20 harmonic magnitudes
and NRD coefficients. Versions of these signals are also shown that
use a first-order NRD approximation. The Matlab code allowing
to generate this figure is available.

may then replace the accurate NRD coefficients LFNRD` by the
approximate first-order model given by Eq. (5). The result of this
approximation is also represented in Fig. 12. It can be concluded
that the resulting wave is a faithful approximation to the original.

On the other hand, it is known from basic Fourier theory that
if X(j⌦) is the Fourier transform of x(t), then the Fourier trans-
form of the integration of x(t) is given by X(j⌦)/(j⌦). This
means that the magnitude of the Fourier transform is divided by
the frequency, and ⇡/2 is subtracted to the phase. Thus, the glottal
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flow model, by integrating Eq. (8) and except for a scaling factor,
is simply given by

gf(t) =
LX

`=1

LFmag`

`
· sin

✓
2⇡
T

`t+ 2⇡ · LFNRD` �
⇡
2

◆
. (9)

This result, as well as its version when LFNRD` is approximated
by its first-order model are also represented in Fig. 12. In order
to facilitate the reproducibility of these results, the Matlab code
generating Fig. 12 is available 1.

We have shown that we know how the holistic phase of the
periodic part of the human glottal excitation looks like, future re-
search will leverage on this result to more accurately estimate the
spectral magnitude of the human glottal excitation.

6. CONCLUSION

We described in this paper how the NRD phase-related feature and
that is extracted from the harmonics of a periodic waveform, ef-
fectively acts as an important holistic glottal feature that carries id-
iosyncratic information. NRD coefficients were shown to be mod-
erately affected by the group delay of the vocal/nasal tract filters,
or by the acoustic coupling between glottis and supra-laryngeal
structures. We also identified several relevant first-order NRD ap-
proximation models, one of which represents the average NRD
feature of the glottal excitation of a human speaker. Future work
will include further research on phase effects of the vocal tract fil-
ter, the modeling of the glottal excitation spectral magnitude, and
the application of the NRD features in such areas as speaker iden-
tification, high-quality parametric speech coding and dysphonic
voice reconstruction.
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