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ABSTRACT

‘We present a new approach for audio bandwidth extension for mu-
sic signals using convolutional neural networks (CNNs). Inspired
by the concept of inpainting from the field of image processing, we
seek to reconstruct the high-frequency region (i.e., above a cutoff
frequency) of a time-frequency representation given the observa-
tion of a band-limited version. We then invert this reconstructed
time-frequency representation using the phase information from
the band-limited input to provide an enhanced musical output. We
contrast the performance of two musically adapted CNN architec-
tures which are trained separately using the STFT and the invert-
ible CQT. Through our evaluation, we demonstrate that the CQT,
with its logarithmic frequency spacing, provides better reconstruc-
tion performance as measured by the signal to distortion ratio.

1. INTRODUCTION

Audio signals are often low-passed, encoded or compressed before
transmitting them through phone lines and Internet streams. This
results in the loss of high frequency content and compromises au-
dio quality. Narrow-band audio signals which have information
up to a certain frequency cutoff can be perceptually enhanced by
reconstructing the higher frequency content. This research task,
known as audio bandwidth extension, attempts to increase the per-
ceived or real frequency spectrum of audio signals [1, 2, 3, 4, 5].

Audio bandwidth extension methods have been applied to
speech signals in an unsupervised and supervised manner. The for-
mer are typically statistical approaches which model the relation-
ship between low and high frequency spectral content by relating
lower and upper harmonics [1]. For instance, the linear predictive
coding (LPC) method in [2] analyzes the lower frequency spectra
to synthesize high frequency components. It relies on a codebook:
a dictionary of wide-band envelopes, which are matched with the
envelope of narrow-band spectral frames. Spectral band replica-
tion [6] on the other hand transposes up harmonics from lower and
midrange frequencies to higher bands.

Supervised methods learn priors from wide-band signals
which are later used to recover the high frequency content of
narrow-band signals. Matrix decomposition methods such as non-
negative matrix factorization (NMF) [3, 5] treat the magnitude
spectrogram as combinations of priors in the form of non-negative
bases. At the test stage, these bases are kept fixed and are used to
estimate the NMF parameters which best explain the narrow-band
signal.
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Methods using neural networks learn priors from features de-
rived from time-frequency representations to predict high-band
spectral envelopes [7, 8]. Bandwidth extension with deep neu-
ral networks has been shown to increase the robustness of speech
recognition [8]. In addition, the resolution of raw audio signals, re-
garded as time series, can be increased using convolutional neural
networks (CNNs) [9].

In this paper we seek to estimate high frequency components
in time-frequency representations of music signals. Compared
to speech, music signals are often complex mixtures, comprising
a variety of instruments, both percussive and harmonic, singing
voice, and non-linear audio effects. Thus, music signals have
broader, richer, and perceptually more relevant high frequency
content, which is therefore more difficult to estimate.

While the aim of bandwidth extension for speech is tightly
coupled with signal compression and band-limited communica-
tion channels, for music signals there are important distinctions
both in terms of the constraints of the problem and the potential
applications. First and foremost, our aim is to perform bandwidth
extension up to CD quality (i.e., 44.1kHz sampling rate with a
Nyquist rate of 22.05 kHz). Given the absence of harmonic infor-
mation in high frequency musical content (e.g., above 10 kHz), our
proposed musical bandwidth extension will be required to recon-
struct percussive-type content. Depending on the bandwidth of the
narrow-band input signal, it may also be required to reconstruct
the upper partials of harmonic content present in the narrow-band
signal. In this way, perceptually accurate musical bandwidth ex-
tension could be used to replace high-band information typically
lost via lossy compression in audio formats such as MP3 and AAC,
and thus reduce the bandwidth overhead when streaming music, or
allocate a higher bit rate for lower frequency information.

Our specific long term goal is to explore a more creative appli-
cation of audio bandwidth extension, namely towards the restora-
tion of old music recordings. To this end, we seek to renew old
recordings (in particular, jazz from the 1940s and 50s) and thus
allow modern-day listeners to experience this music in high audio
quality as performed by the original musicians. Towards this ambi-
tious goal, we first investigate the feasibility of full-bandwidth ex-
tension for music signals under more controlled conditions, which
can be more readily evaluated via access to both the full- and band-
limited versions.

Similar to the concept of image inpainting or completion
[10, 11], for which CNNs have been shown to be particularly
adept, we aim to learn localized features in order to recover the
missing higher frequency regions of short-term Fourier transform
(STFT) and constant-Q transform (CQT) stereo magnitude spec-
trograms [12]. However, since the time and frequency axes in
STFT and CQT representations do not correlate in the same way
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Figure 1: lllustrative overview of our proposed approach for bandwidth extension. (a) The CQT of a short musical audio input sampled at
44.1 kHz. (b) The band-limited version resulting from a low-pass filter with a cutoff frequency of 7500 Hz. (c) The high frequency output of
the CNN'. (d) The enhanced output signal obtained by combining the band-limited and CNN reconstruction.

as the axes of an image, we explore two musically motivated CNN
architectures: bottleneck and stride [13, 14] rather than more stan-
dard square filters in image processing.

For our musical inpainting problem, we aim to reconstruct or
“complete” a strip covering the highest frequency bins of a time-
frequency, for which an illustrative example is shown in Figure 1.
While this is conceptually related to the idea of filling temporal
gaps (i.e., missing vertical strips) [15, 16] these methods exploit
temporal redundancy via repetition in the musical input, where as
in our approach, the high frequency region is never observed.

A particular novelty of our proposed approach is to leverage
implicit knowledge of musical structure by the use of the constant-
Q spectrogram. For bandwidth extension, the CQT has a poten-
tially advantageous property over the STFT, which is that, due to
the logarithmic spacing of the CQT bins, we can make a richer ob-
servation of the narrow-band (i.e., low-frequency) region in order
to reconstruct a smaller amount of higher frequency information.
Comparing the STFT and CQT in matrix form (where rows corre-
spond to frequency and the columns to time) this means that for an
identical cut-off frequency (e.g., of fs/4), and a roughly equal total
number of frequency channels, a far smaller amount of data must
be reconstructed for the CQT than for the STFT. Until recently,
such potential benefits remained theoretical due to the absence
of an inverse CQT transform. However, recent work leveraging
the non-stationary Gabor transform (NSGT) [17, 18] has demon-
strated that perfect reconstruction of the CQT is both possible and
executable in reasonable computation time.

For this initial work, our primary focus is towards the recon-
struction of magnitude spectrograms, thus we do not attempt any
automatic reconstruction of the phase spectrogram. Instead we
make use of the original phase from the band-limited version,
without any subsequent modification. Our evaluation focuses on
the measurement of the signal to distortion ratio (SDR) for the en-
hanced and band-limited versions. In this way, the extent of the
enhancement provided by our approach can be assessed by the in-
crease in SDR over the band-limited versions.

The remainder of this paper is structured as follows. In Section
2 we contrast our approach with existing work in audio bandwidth
extension. In Section 3, we detail our proposed method using con-
volutional neural networks, which we evaluate in Section 4, and
provide discussion and conclusions in Section 5.

'While the CNN outputs a full wide-band spectrogram, the region be-
low the cut-off has been attenuated for greater visual clarity.

2. RELATION WITH PREVIOUS WORK

With the exception of [5, 9, 19], most previous research in audio
bandwidth extension has been applied to speech signals. Regard-
ing the methodology, the deep learning approaches in [8, 9] are the
closest to our proposed method. In the same way as [9], which uses
a similar approach to image super-resolution [20], we are inspired
by recent advancements in image processing using CNNs [10, 11].
Unlike [7] we eliminate all accompanying heuristics and estimate
the high-frequency spectra directly with the neural networks.

In contrast to the NMF speaker-specific spectral bases used in
[3, 19] or the codebook of the LPC approach [2], we are concerned
with the generalization capabilities of our trained model and do
not seek to tailor our approach for specific individual pieces of
music. Furthermore, we do not tune any method-specific hyper-
parameters or weighting coefficients which were previously used
in [2] as a part of a chain of signal processing heuristics.

Similar to the convolutional NMF approach in [3], the hidden
Markov models (HMM) in [21], and the time-series CNN in [9],
we consider cross-frame contextual dependencies. These short-
term dependencies are learned by CNNs using horizontal filters
for a given time-context, while timbre features are learned using
vertical filters [13, 14].

The CNN approaches used in image restoration, completion,
or inpainting [22, 10, 11] are exposed to the entire image and not
just to the missing patches in order to perform the reconstruction.
In a similar fashion, we use the observation of the lower frequen-
cies to better reconstruct the higher frequencies.

3. METHOD

3.1. Overview

An overview of our proposed method, which comprises two
stages: training and enhancement, can be seen in Figure 2. For
training we require a dataset comprising full-bandwidth music
recordings and narrow-band versions which lack high frequency
content above a specific cutoff frequency. We obtain narrow-band
versions by applying a low-pass filter to the original recordings.
Then, we compute the desired time-frequency representation, us-
ing the STFT or CQT, and extract the respective magnitude spec-
trogram for each channel of the stereo recordings. Additionally,
we apply the data processing heuristics described in [23] and train
the CNNs with the architectures described in Section 3.3 and the
training procedure in Section 3.4.

The enhancement stage is detailed in the Section 3.5, where
the high-frequency content is obtained by feeding the magnitude
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Figure 2: Overview of our bandwidth extension system. (a) The
training stage has access to full-band and band-limited music sig-
nals. (b) The enhancement stage only observes the band-limited
signals. Boxes shaded in grey indicated processes, where as those
in white correspond to data. The term data processing is used to
encapsulate the partitioning of the data into overlapping chunks.
The dashed arrow and box indicate optional processing which is
not undertaken in this work.

spectrograms forward through the previously trained CNN. The
phase spectrogram of the band-limited version is retained to com-
pute the inverse STFT or CQT.

3.2. Feature computation

We calculate the STFT or the CQT [18] of the stereo audio mixture
as X;(t, f) where 7 = 1,2 are the stereo channels, ¢ is the time
axis and f is the frequency axis. In order to focus on the recon-
struction of the magnitude spectrum, we discard the phase when
computing the training features for the neural network.

The CNN architectures used in this paper require a fixed input
size (T, F'), where T is the temporal context in time frames and F'
is the total number of frequency bins corresponding to the STFT
or CQT magnitude spectrograms. To obtain magnitude spectro-
grams of fixed duration, the variable-size magnitude spectrograms
of each music piece are split into overlapping chunks of fixed size
T time frames with an overlap of O frames. In addition, splitting
the input signal into chunks leads to a smaller network, with fewer
parameters to train, and thus a lower computational burden. These
data processing heuristics adopted prior to training are described
in detail in [23] and were used previously for the task of audio
source separation for full length musical recordings [14, 23, 24].

3.3. Convolutional autoencoders

We present two musically motivated CNN autoencoder architec-
tures, the CNN bottleneck in Section 3.3.1 and the CNN stride-2
in Section 3.3.2. Since time and frequency in magnitude spec-
trograms have different meanings than the horizontal and vertical
axes in images, we should not adopt image-processing square fil-
ters. Instead, we follow [13, 14] by using vertical filters to model
frequency components and horizontal filters to model their tem-
poral evolution. A further distinction is that the magnitude spec-
trograms of audio signals are sparse [25]. Thus, we use a sparse
activation function between the layers, specifically, rectified lin-
ear units (ReLU) [26]. In addition, the CNN bottleneck architec-
ture has a dense bottleneck layer with a low number of units to
compress, or reduce, the learned features. On a related note, the
CNN stride-2 architecture comprises successive convolutions with
a stride? of two which is the equivalent of learning features by suc-
cessively downsampling the inputs by a factor of two.

The inputs to both the CNN architectures are multiple mag-
nitude spectrograms of size (7', F'), across the channel dimension
7. In our case, the learned feature maps are shared between the
two input channels [26]. We argue that the CNN can learn more
diverse filters from music mixtures with a wide stereo image and
therefore we provide magnitude spectrograms for both channels as
input. In a further parallel with image processing, this can be con-
sidered similar to using the RGB layers of colour images rather a
single greyscale image.

The CNN autoencoders comprise an encoding and a decod-
ing stage. The encoding stage contains convolutional and feed-
forward layers, while the decoding stage performs the inverse op-
erations of the convolutions in the reverse order such that the out-
put of the CNN has the same dimensions as its input, (2,7, F).
Note, we do not use a soft-mask as in music source separation,
but instead we directly estimate the magnitude spectrogram with
enhanced high-frequency content, X. In addition, we assume that
the frequency content to be recovered does not have higher energy
than the low frequency content. To this end, we limit all the values
of Xi(t, f) to the maximum value in channel 7 at time frame ¢ of
the input X; (¢, f).

3.3.1. CNN bottleneck
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Figure 3: CNN bottleneck autoencoder architecture [14]. For each
layer we give the shape of the filters, strides and feature maps.

We test a version of the CNN bottleneck successfully used in
music source separation [14, 24, 23]. A diagram of the architec-
ture is depicted in Figure 3, and comprises a horizontal convolu-
tion, convl, a vertical convolution conv2, a bottleneck dense layer

2The stride controls how much a filter is shifted on the input.
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Figure 4: CNN stride-2 autoencoder architecture. For each layer we give the shape of the filters, strides and feature maps.

densel, and another dense layer dense2 to recover the dimension-

3.5. Enhancement

ality needed to perform the inverse operations of conv2 and convi.
We have N filters for convl and conv2.

3.3.2. CNN stride-2

Small successive convolutional layers with a stride of two have
been shown to reduce the number of parameters in a network
[27]. Therefore, in contrast to the CNN bottleneck, we target a
deep architecture comprising small convolutions. Moreover, time-
frequency representations of musical signals often exhibit evenly
spaced harmonic components. By modeling frequency content in
strides of two we aim to capture high frequency harmonics learned
from their low frequency counterparts.

An overview of the stride-2 architecture is shown in Figure
4. For each layer k, the feature maps reduce their frequency size:
F, = (Fr—1 — 5)/2 + 1, as explained in [24]. We have four
successive (1, 5) convolutions in frequency, followed by two, two-
dimensional (3, 3) convolutions to capture the time-frequency de-
pendencies, each considering the reduction performed by the pre-
vious layers.

3.4. Training procedure

Although the output of the CNN, X, contains a reconstruction
of the magnitude spectrogram across all frequency bins, the pa-
rameters of the autoencoder are trained according to a loss func-
tion which only considers the reconstruction in higher frequencies.
Thus, the loss function L. depends on the cutoff frequency in bins
c and is defined in equation (1) as the mean-squared error (MSE)
between the target magnitude spectrogram X, and the estimated
magnitude spectrograms, X:

Le=)_fu(f - (X

t,fsi

i, ) = Xa(t, I, M

where u(f — ¢) is the unit step function which is 0 for the bins
lower than c and 1 for the bins greater than or equal to c.

The parameters of the CNN are updated according to the loss
function L. using mini-batch Stochastic Gradient Descent with the
Adamax algorithm [28].

When computing the STFT or CQT for enhancement, we retain
the phase and we split the magnitude spectrogram into overlap-
ping chunks of size T" time frames with an overlap of O frames as
in the training stage. For each chunk X we obtain an estimation
X. We then use the estimated chunks to reconstruct the enhanced
magnitude spectrogram through the overlap-add procedure as de-
scribed in [23] and as used in [14, 23, 24].

In contrast to deep learning source separation methods, the
estimated spectrogram is not the result of Wiener filtering [29]
which ensures that the spectrograms of the sources sum to the
input spectrogram. Instead, we need to ensure that the original
low-bandwidth content is preserved. To this end, we blend the
high-frequency part of the estimations yielded by the network, X,
with the low-frequency part of the input, X:

Xi(t, /) = A =re(MXi(t, ) +re(HXilt, /) @

where r.(f) = max(0, min(1, f —¢)) is a ramp function depend-
ing on the the cutoff frequency in bins c.

As specified in Section 1, we only attempt to reconstruct the
magnitude spectrum — without access to phase information when
training. However, in order to invert either the reconstructed STFT
or CQT we must provide phase information. To this end, we use
the phase spectrogram from the band-limited version, as shown
in Figure 1(b). Finally, the bandwidth extended audio signals are
obtained using with an inverse overlap-add STFT or inverse CQT
[18].

4. EVALUATION

The basis of our evaluation is to compare the reconstruction from
the STFT and CQT, with the two different CNN autoencoder mod-
els: bottleneck and stride-2, and across two cutoff frequencies of
3500 Hz and 7500 Hz. In total, this creates eight reconstruction
conditions for comparison.

4.1. Experimental setup

We test our approach on the publicly available Medleydb dataset
[30] comprising 121 multi-tracks from which we use the stereo
mixes (in uncompressed .wav format sampled at 44.1kHz and
with 16-bit resolution). The dataset covers the following gen-
res: Singer/Songwriter, Classical, Rock, World/Folk, Fusion, Jazz,

DAFx-176



Proceedings of the 21" International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4-8, 2018

Pop, Musical Theatre, Rap. There are 52 instrumental tracks and
70 tracks containing vocals. We randomly split the dataset in train-
ing and testing subsets with a ratio of 0.8 (i.e., 80% for training and
20% for testing).

4.1.1. Evaluation metrics

As the basis for the evaluation, we use the BSS_Eval framework
[31], a widely used tool to objectively evaluate the quality au-
dio source separation. Within BSS_Eval, the Source to Distor-
tion Ratio (SDR) measures the distortion between a target and
the estimated multi-channel audio sources. With respect to high-
frequency reconstruction, BSS_Eval gives more weight to lower
frequency bands and penalizes more frequency content which is
not in the target audio, even though this content might be percep-
tually relevant. In this sense, we recognise that a subjective listen-
ing experiment would be a critical important component of future
work, but for this initial research, we adopt the SDR as our pri-
mary objective measure for this context. It is important to note
that we exclude other metrics related to the artifacts, interference,
and spatial distortion from BSS_Eval as these are designed partic-
ularly for source separation. The SDR is reported for each of the
overlapping chunks of 30 seconds with a 15 second overlap.

4.1.2. Time-frequency transform parameterisation

The STFT is computed using a Hann window of length 1024 sam-
ples, which at a sampling rate of 44.1kHz corresponds to 23.2
milliseconds (ms), and a hop size of 512 samples (11.6 ms).

The CQT is computed with the MATLAB toolbox in [18] us-
ing the default parameterization, with a minimum frequency of
27.5Hz, and a frequency resolution of 48 bins per octave. Up
to the Nyquist rate of 22.05kHz this gives 463 logarithmically-
spaced frequency bins. Perfect reconstruction via the inverse CQT
comes at the expense of high redundancy in time and results in
647 time frames per second, i.e., a temporal resolution of 1.5 ms
which is much finer than that of the STFT, while retaining a similar
number of frequency bins (463 compared to 513).

Since our goal is to reconstruct the higher frequency end of
the magnitude spectrograms, we must contend with the fact that
signal energy typically is much lower at higher frequencies than at
the lower end. In the context of our convolutional neural network
approach this creates a difficulty, since the high frequency magni-
tude spectrum we seek to predict may have very small values. To
partially circumvent this issue, we can apply a logarithmic scaling
to both the STFT and CQT magnitude spectrograms prior to train-
ing (and subsequently revert back to linear magnitude scaling prior
to the eventual output signal reconstruction). However, before ap-
plying such a logarithmic scaling we must ensure all magnitude
spectrum values (for both the STFT and CQT) are greater than 1,
since any values below 1 will be negative after taking the loga-
rithm, and thus ignored by the ReLU. To this end we apply the
logarithmic scaling as follows: Xz = log;,(a + 5X), where X
refers to either the STFT or CQT. For the CQT we set o = 1 and
B = 4, where as for the STFT no scaling is required thus we set
o = 1l and 8 = 1. The final stage of the pre-processing relates
to deep learning methods usually requiring data to be normalized
to an interval or include a batch-normalization step. Thus, we nor-
malize all the training data to be between 0 and 1 by multiplying
with a scale factor, which we set as the maximum of the training
data.

To create the band-limited, i.e., low-pass filtered versions of
the music pieces for training (and subsequent reconstruction), we
use an 8™ order Butterworth filter. In order to explore two different
conditions, we create one low-pass filtered version with a cutoff of
3500 Hz and another at 7500 Hz (approximately f5/12 and fs/6).
For both, we seek to reconstruct the full remaining frequency range
of the original recordings up to the Nyquist rate of 22.05 kHz).

We split the STFT or CQT into overlapping chunks of 7' = 30
time frames with an overlap of O = 10. Chunks are randomly
grouped each epoch into batches of 32. For a fair comparison
between bottleneck and stride-2 we use N = 175 of filters for
bottleneck and N = 40 filters for stride-2, such that the number
of parameters is equal for both of the architectures (1.8 million).
The STFT is trained for 100 epochs. Since CQT has a higher time
resolution, we generate more training data and we only train the
network for 32 epochs. The initial learning rate is 0.001 for STFT
and 0.0001 for CQT.

4.1.3. Implementation details

The code used in this paper is built on top of Pytorch, a frame-
work for neural networks . We ran the experiments on an Ubuntu
16.04 PC with GeForce GTX TITAN X GPU, Intel Core 17-5820K
3.3GHz 6-Core Processor, X99 gaming 5 x99 ATX DDR44 moth-
erboard. Training a condition took 16 hours for the STFT and 44
hours for the CQT; by contrast, the enhancement stage runs faster
than real-time on the same hardware. To ensure reproducibility,
a fixed seed controls the pseudo-random number generation in
Python. This is used when initialize the parameters of the CNN
and to randomly split the dataset into training and testing. The
results presented in Section 4.2 are for seed 0.

4.2. Results

The results for the bottleneck and stride-2 are shown in terms of
SDR in Figure 5a and 5b for the CQT and STFT respectively.
In each figure we present the SDR across the cutoff frequencies
of 3500 Hz and 7500 Hz and show the difference in performance
for examples in the training set versus those withheld for testing.
Since we want to measure how much the quality of the reconstruc-
tion improves with respect to the low-pass input, we include the
SDR for all the low-pass versions of the pieces in the dataset.

On inspection of the figures we can see that the best overall
performance for the test set is obtained using the stride-2 architec-
ture for the cutoff of 3500 Hz and the bottleneck architecture for
the cutoff of 7500 Hz. In both of these conditions there is a negligi-
ble difference between the SDR on those musical recordings used
for training, compared to those withheld for testing. In addition to
the highest overall mean SDR values, we can additionally observe
the greatest relative difference over the mean SDR of the low-pass
filtered versions. For both approaches there is a relative increase
in SDR of over 4 dB. Since the SDR calculation is made directly
on the waveforms, this suggests that relevant high frequency infor-
mation from the original recordings is being reconstructed based
soley on observing the band-limited versions.

When looking across the two architectures for the CQT re-
sults, we can observe that the stride-2 approach is less effective for
the higher cutoff of 7500 Hz. This may be due to the lower propor-
tion of harmonic content above this cutoff, and hence the reduced
impact of the stride’s ability to model harmonic relationships.

3http://pytorch.org
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Figure 5: SDR for (a) CQT and (b) STFT representations. The results compare the difference in SDR for training and testing sets, and the
low-pass filtered condition (without enhancement), for the bottleneck and stride-2 CNN architectures and the cutoff frequencies of 3500 Hz
and 7500 Hz. The black vertical lines represent the 95% confidence intervals.

Looking at the comparison between the CQT and STFT, we
can identify two main differences. First, the absolute SDR for
the STFT enhanced versions are lower than for the CQT across all
conditions, and in turn, the relative improvement over the low-pass
filtered versions is also reduced. This behaviour is in line with our
original hypothesis concerning the advantage of using the CQT,
where, although the frequency range to reconstruct is the same for
both time frequency representations, the number of missing rows
of the CQT is far smaller than that of the STFT. This is also con-
sistent with results from image completion, in which larger image
patches are more difficult to recover than smaller ones [10]. An-
other important factor may be the difference in temporal resolu-
tion for the two time-frequency representations, which is greater
by a factor of approximately 8 to 1 for the CQT compared to the
STFT; that while both process overlapping chunks of 7' = 30 time
frames, the reconstruction of the CQT is much more localised in
time than the STFT. We intend to explore this effect in future work
by increasing the frame overlap in the STFT to a comparable level
to that of the CQT. However, any significant increase in the fre-
quency resolution of the STFT, e.g., by using a larger window size
would drastically increase the size of the model to be trained, and
thus negate the approximately equal number of frequency channels
in the STFT and CQT in our current setup.

To complement these objective results, we provide a set of
short sound examples covering the eight reconstruction conditions,
together with the original and two low-pass filtered versions. Fur-
thermore, for the two best performing conditions: CQT stride-
2 3500Hz and CQT bottleneck 7500 Hz we provide an infor-
mal comparison of different approaches for phase reconstruction.
To this end, we include phase reconstruction using: i) the low-
pass filtered version (our proposed method); and ii) using low-
pass filtered version below the cutoff and random phase above it.
All of the sound examples are available at the following website:
http://telecom.inesctec.pt/~mdavies/dafx18/

5. DISCUSSION AND CONCLUSIONS

We presented a new deep learning method to reconstruct the high
frequency content of music recordings. Our evaluation demon-
strates that due to to the logarithmic spacing of frequencies, the
CQT offers a better time-frequency representation for this prob-
lem than STFT in terms of SDR. It is important to stress that these
are initial experiments are performed under highly controlled con-
ditions. Due to the high computational cost of training (which took
several days using powerful GPUs), we only explored two cutoff
frequencies, and used the same type of low-pass filter throughout.
On this basis, we do not have sufficient evidence about the gener-
alisation capacities of our trained networks to function under more
arbitrary filtering conditions. This is especially important when
considering our long term goal of the restoration of old record-
ings, for which we cannot assume any specific filtering conditions.
Furthermore, in this scenario no stereo version of the recording
may exist, which would require additional modifications to our
approach.

Another important constraint within this study was the treat-
ment of the phase in the reconstruction. While we do not provide
unobservable information (e.g., the phase of the original, full-band
signal), our approach for using the low-pass filtered version phase
could almost certainly be improved via the use of phase recon-
struction techniques [32]. Since these are typically applied for
an STFT-like representation, we intend to explore the means for
doing this directly for in the invertible CQT representation in fu-
ture work. Furthermore, we recognise the potential of using other
time-frequency representations — provided that there is a method to
invert them, e.g., using Wavenet as a vocoder [33]. Furthermore,
generative adversarial networks have recently became popular in
image recovery and super-resolution [10] and can synthesize more
realistic time-frequency content, which may yield further improve-
ments to the quality of the signal reconstruction.

With respect to the evaluation, we acknowledge that BSS_Eval
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has been primarily designed for audio source separation, and fur-
ther perceptual experiments are needed to better understand the
subjective performance of our proposed method. Furthermore,
BSS_Eval metrics do not always correlate with the perceived qual-
ity of separation [34]. In contrast to magnitude spectrograms, re-
constructed images can be evaluated more directly because the in-
herent structure in the pixels can be understood in terms of the
geometric and textural properties of scenes and objects. However
in our approach the images correspond to time-frequency repre-
sentations which are non-trivial for non-experts to visually inter-
pret, and require an additional transformation stage to be audible.
Within our training stage, the loss function relates to the mean
squared error between the original magnitude spectrogram and
the reconstruction, however our objective evaluation measures the
SDR of the reconstructed audio signals, which explicitly includes
phase information. Thus, we also intend to explore alternative loss
functions (perhaps by using phase information directly) and sub-
sequently investigate their correlation with perceptual ratings of
audio quality from trained listeners. As part of this comparison we
we intend to incorporate existing approaches for bandwidth ex-
tension which have been shown to be effective for music signals
sampled at 44.1 kHz.
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