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ABSTRACT

In this paper, we propose to reduce the relatively high-dimension
of pitch-based features for fear emotion recognition from speech.
To do so, the K-nearest neighbors algorithm has been used to clas-
sify three emotion classes: fear, neutral and ’other emotions’. Many
techniques of dimensionality reduction are explored. First of all,
optimal features ensuring better emotion classification are deter-
mined. Next, several families of dimensionality reduction, namely
PCA, LDA and LPP, are tested in order to reveal the suitable di-
mension range guaranteeing the highest overall and fear recogni-
tion rates. Results show that the optimal features group permits
93.34% and 78.7% as overall and fear accuracy rates respectively.
Using dimensionality reduction, Principal Component Analysis (PCA)
has given the best results: 92% as overall accuracy rate and 93.3%
as fear recognition percentage.

1. INTRODUCTION

Emotion is one of the main drivers of human thoughts and actions.
It manifests itself through several modalities: speech, body ges-
ture, facial expression, eyes contact,... As speech is a simple and
natural way of communication, emotion recognition from speech
is widely used (see for example [1][2]). In this paper, we deal
with fear emotion recognition through the classification of speech
into neutral, fear and other emotions. We are mainly interested in
fear emotion because it has many applications. In our considered
research, we aim to detect suspicious behavior which risks to be
a terrorism attack, as part of civil safety. Therefore, we are par-
ticularly interested in detecting fear state which may characterize
such person (before the action) in order to protect victims and limit
damage [3].

In order to design a reliable emotion recognition system, the
following questions should be answered: i) How to select ap-
propriate features to extract from speech? ii)Which classification
techniques to use? iii)How to select the most relevant and discrim-
inatory features? and iv) How to reduce a high dimension feature
set into a meaningful representation of reduced dimensionality?
With regards to the first point, the speech production system con-
sists of two principal organs: vocal folds, which are responsible
for the production of sounds used for speech, and vocal tract re-
lated to the movement of the tongue tip, the jaw and the lip during
the voice production. In our study, we are interested in studying
vocal-folds related features and more precisely the pitch. Indeed,
pitch expresses the vibration frequency of vocal folds during the
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production of voiced sounds. This choice is justified by the fact
that, on the one hand, vocal folds vibrate, in a similar way, for all
the phonemes unlike vocal tract, whose behaviour varies from one
phoneme to another. On the other hand, the voice presents many
modifications during the fear state such as oscillation, tremor, ir-
regularity and stammering [4]. These changes are due to the vibra-
tion of vocal folds.

For the second point in the context of classification techniques,
many classifiers are developped in the litterature based on machine
learning approach. We quote for example Neural Network, K-
nearest Neighbors, Random Forest, Decision Tree, Gaussian Mix-
ture Model, among others [5]. In a previous work dealing with
fear emotion detection [6], we performed the classification using
four classifiers : Support Vector Machine (SVM) [7], Decision
Tree (DT) [8], Subspace Discriminant [9] and K-nearest Neigh-
bors (KNN) [10]. The highest fear emotion detection has been
obtained using KNN. Therefore, KNN has been the classification
tool of our study in this paper.

According to the third point related to discriminatory features
selection, a large pool of techniques has been proposed for such
purpose. We relate for example Fisher discriminant ratio, scat-
ter matrices, statistical tests, the Receiver Operating Characteristic
(ROC) curve, Bhattacharyya distance, RELIEF-F algorithm (see
for example [11][12][13]). This has been the interest of our pre-
vious work for fear emotion detection [14]. In this work, four
different relevance indexes have been used to select most relevant
ones from a list of 27 features: Fisher Discriminant Ratio, proba-
bility divergence, scatter measure and ANOVA statistical test. Fea-
tures with highest classification accuracy appearing in all relevance
indexes are retained. Thanks to this approach, the fear emotion
recognition results reached 86.7%.

Finally, the feature dimensionality reduction would be the ob-
jective of this paper. Indeed, when dealing with a high dimension
data, classification problems become significantly harder and may
lead to lower classification accuracy and poor quality of clusters.
In the literature, this phenomenon is referred to as the curse of di-
mensionality [15]. This aspect has been a fertile field of research
and development for over a century. In this context, many tech-
niques have been proposed for this task. They are organized into
two groups: linear methods such as principal component analysis
[16], linear discriminant analysis [17], locality preserving projec-
tion [18], factor analysis [19], classical scaling [20] and non-linear
ones including Kernel PCA [21], kernel discriminant analysis [22],
Isomap [23] and multilayer autoencoders [24] among others.

The aim of this paper is the investigation of the effect of fea-
ture dimensionality reduction on classification performance. To
this end, two approches have been adopted. The first one consists
on performing the classification for all possible combinations of
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the whole pitch-based set of features using K-nearest neighbors
algorithm. The approach is called ’N to N’. The goal here is to
obtain the best combination of features and the suitable dimen-
sion range giving the best accuracy rate. The second one is to test
many techniques for feature space reduction. They are i) Principal
Component Analysis (PCA) and its variants (Kernel PCA denoted
KPCA and probabilistic PCA denoted PPCA); ii) Linear Discrim-
inant Analysis (LDA) and its kernelized version (Kernel DA de-
noted KDA); iii) Locality Preserving Projection (LPP) and its ker-
nelized version (Projection denoted KLPP) and iv) many others
which will be listed latter. The classification is carried out sep-
arately in the reduced space for each technique and the effect of
dimension variation is analyzed. Finally, the best tradeoff between
dimension reduction and classification performance is revealed.

The paper is organized as follows. Section 2 will give a brief
description of the extracted pitch-based feature set, the consid-
ered emotional corpus and the emotion grouping adopted in this
study. Section 3 will present a description of the ’N to N’ ap-
proach as well as the classification results obtained using this pro-
cess. Section 4 and 5 will provide an investigation about the use of
correlation-based (resp. non-correlation based) techniques for di-
mensionality reduction and will display their classification results.

2. PRELIMINARIES

2.1. Features Set

The pitch is related to the vocal folds vibration, determining the pe-
riodicity of voiced sounds. More precisely, it translates the opening-
closing frequency of vocal folds during the production of voiced
sounds. Note that pitch is calculated only for voiced frames as vo-
cal folds do not vibrate during the production of unvoiced sounds.
In order to extract the set of pitch-based features, speech utter-
ances are first decomposed into frames whose duration is 10ms.
Next, voiced and unvoiced frames are identified and pitch values
are calculated using the rapt algorithm [25]. Based on these pitch
values, a whole set of global features are calculated. They are clas-
sified into four groups: usual measures, features related to pitch’s
derivative and second derivative as they are linked to the vibration
speed and acceleration of vocal folds, features related to speech
voicing since voicing rate varies from one emotion to another. The
whole set of features has a 27 dimensionality. It is summarized in
Table 1:

2.2. Emotional Database and Selected Emotion Classes

EMO database, which is a German emotional database publicly
accessible, has been used during this study [26]. It includes 800
utterances simulated by 10 professional actors (5 males and fe-
males). It consists of seven emotion states namely: neutral, fear,
anger, joy, sadness, disgust and boredom. Recordings were taken
in an anechoic chamber, under supervised conditions with a sam-
pling frequency of 48 kHz and later downsampled to 16 kHz. A
human perception test to recognize various emotions with 20 par-
ticipants resulted in a mean accuracy of 84.3%.
The adopted emotion grouping considers 3 groups: fear, neutral
and other emotions. The ’Other emotions’ class includes the five
remaining states (joy, anger, disgust, sadness and boredom). The
classes repartition through the corpus is the following: 14% for
fear, 14% for the neutral class and 72% for other emotions.

Table 1: Feature set.

FAMILY DESCRIPTION ABREVIATION

Usual
measures

Mean, Maximum, Minimum,
Variance, Median,

Normalised standard deviation

--
Norm_STD

Speech
voicing

Ratio of voiced frames on the total frames
Ratio of unvoiced frames on the total frames
Ratio of voiced frames on unvoiced frames

First voiced frame
Second voiced frame

Voiced frame in the middle frame
Before last voiced frame

Last voiced frame

Rat_Voic_tot
Rat_UnVoic_tot

Rat_Voic_UnVoic
1st frm
2nd frm

Middle frm
Bef_lst_frm

Lst_frm

Pitch
contour

derivative

Mean of pitch’s derivative
Mean of the absolute value of pitch’s derivative

Variance of pitch’s derivative
Variance of the absolute value of pitch’s derivative

Maximum of pitch’s derivative
Maximum of the absolute value of pitch’s derivative

Mean of pitch’s second derivative
Maximum of pitch’s second derivative

Mean_DRV
Mean_ABS_DRV

Var_DRV
Var_ABS_DRV

Max_DRV
Max_ABS_DRV
Mean_Sec_DRV
Max_Sec_DRV

Others

Ratio of pitch’s mean on its maximum
Ratio of pitch’s mean on its minimum

Ratio of peaks’s number on total frames
Minimum position
Maximum position

flatness
Vehemence
Num_Peaks

Min_Pos
Max_Pos

2.3. Adopted Criteria for Evaluating the classification quality

In this study, we performed the classification using K-nearest neigh-
bors (KNN) algorithm. KNN has been chosen according to our
previous study dealing with a comparison between many classi-
fiers [6]. This study has revealed that KNN is the best trade-
off between classification performance and computational cost.
The database was trained and tested using the holdout validation
method where 70% of the data were used for training while 30%
were used for testing. The classification was judged by two criteria
in order to have a clear idea of classification model performance:

XThe overall accuracy rate : it translates the percentage of
well predicted emotion sequences among the total number of emo-
tion speech sequences. It is calculated by dividing the number of
well predicted samples on the total number of samples.

XThe fear accuracy rate : This rate indicates the proportion
of fear recognition among others. It is calculated by dividing the
number of well predicted fear samples on the total number of sam-
ples in fear class.

3. DIMENSIONALITY REDUCTION BASED ON ’N TO N’
COMBINATION

3.1. Approach

The aim of this section is to extract the optimal feature list ensur-
ing maximal overall emotion detection rate from the whole set of
selected features. To this end, the adopted approach was to test
all the possible combinations of the 27 features already extracted
and to identify, as a result, the group giving the best classification
accuracy. In the first iteration, we looked for the best accuracy
reached by one feature. Then, we looked for the best combination
of two features (2 by 2 among the 27 possible ones) giving the best
accuracy. The process is re-iterated for all possible values of N (N
= 1,..,27) until reaching the whole set of 27 features. This process
for each value of N is called ’N to N’ combination of features.

The ’N to N’ dimensionality reduction technique requires la-
borious and complex calculation that has lasted many weeks. In-
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deed, for each iteration of ’N to N’ combinations among the 27
features, the classification algorithm is applied CN

27 times (where C
is the combinatory operator). In order to make aware of the heav-
iness of computational cost, the number of combinations varies
between 27 and 20 millions. The second line in Table 2 displays
the total number of combinations for each ’N to N’ combination
of features. The run time of each ’N to N’ combination is given
in line 3 of Table 2 using a machine with an intel core CPU i3, 64
bits and having 1.70 GHz as a clock speed and 4 Go of RAM.

3.2. Classification Results

Figure 1 represents the evolution of the classification results for
each feature vector size in terms of overall and fear accuracy rates.
The solid line indicates the variation of overall accuracy rate while
dashed line is reserved for fear accuracy. The first value indicates
the best overall accuracy rate obtained using only one feature. The
second provides the best accuracy rate obtained for the combina-
tion of 2 features among the 27 ones, and so on. Note that the best
feature group has been extracted according to the overall accuracy
rate optimization and not fear accuracy rate.
One can notice that the range of overall accuracy varies between

Figure 1: Classification results according to ’N to N’ approach.

62% and 93,34%. The best value is obtained using 20 features for
which the accuracy rate is equal to 93.34%. Also, we can note a
stabilization at classification quality for a dimensionality between
10 and 22. On the other hand, fear recognition rate varies between
13.3% and 78.7%. The best one is obtained with a 3-features com-
bination. Note that the quality varies enormously in the ascending
and descending order for a dimension range between 3 and 19 fea-
tures. Moreover, choosing a dimensionality range between 19 and
22 would be the best tradeoff between overall accuracy and fear
accuracy rates. Indeed, the classification quality is among the best
ones in that interval according to the two criteria.

3.3. Optimal features with reduced dimensionality

Table 3 indicates the list of relevant features giving the best accu-
racy rate obtained for each ’N to N’ combination. The 20 fea-
tures giving the best overall performance (93.34%) are: mean,
median ,variance, normalised standard deviation, flatness, number
of peaks, minimum, maximum, the ratio of voiced on unvoiced
frames, the ratio of unvoiced frames on the total frames, mean of
the absolute value of pitch’s derivative, maximum position, vari-
ance of derivative, variance of the absolute value of derivative,
maximum of the absolute value of derivative, mean of the second
derivative, first, second, before last and last voiced frames.

However, one can notice that median, mean of second deriva-
tive, mean, last voiced frame and number of peaks are classed on
the top-5 according to their presence as optimal features for the
other combinations (ticked in bold in Table 3). This fact confirms
their usefulness and relevance in discriminating between fear, neu-
tral and other emotion states. If we deal with dimensionality reduc-
tion, the reduced vector size of dimensionalities varying from 19
to 22 is considered. Thus, eleven features are revealed as relevant
common ones between these ranges. They are the mean, max-
imum, variance, Rat_Voic_UnVoic, Lst_frm, Mean_ABS_DRV,
Var_ABS_DRV, Max_ABS_DRV, Mean_Sec_DRV, flatness and
Num_Peaks. Thus, these features seem to be the most relevant
ones.

4. CORRELATION-BASED DIMENSIONALITY
REDUCTION

Whereas ’N to N’ combination approach leads to very significant
classification results reaching 93.3%, it remains difficult to apply
them in practice because of their complexity and computational
cost. Hence, the use of automatic dimension reduction techniques
guaranteeing speed and performance are preferred. This section
is devoted to investigate dimension reduction methods considering
the correlation between features.

4.1. Correlation between features

Referring to the curse of dimensionality, dealing with a redun-
dant and correlated features may lead to poor classification per-
formance. In order to take an idea about the linear dependency be-
tween features, the correlation between them has been calculated
pairwise and the results are displayed in Table 4. The features’
names have been replaced by their corresponding number (1,2, ...
27) due to lack of space. The retained order is the same as the
one adopted in Table 3. It means that 1 indicates mean, 2 indicates
median and so on.

From Table 4, one can deduce that some pairs of features
present strong correlation (|⇢| > 0.7). We relate for example the
correlation between variance of derivative and mean of absolute
value of derivative (0.92). Others are moderately correlated (0.3<|⇢|
<0.7) such as variance and mean of absolute value of derivative. A
good part of the features are weakly correlated. It means that they
are quasi independent or totally independent (|⇢|<0.2). Thus, we
decided to use a dimension reduction technique garanteeing fea-
tures decorrelation and eliminating dependencies between them in
order to obtain better classification results. The most used tech-
nique in the literature is Principal Component Analysis (PCA).

4.2. Traditional PCA and variants

PCA stills the most used technique for dimensionality reduction. It
consists on using an orthogonal transformation to convert a set of
possibly correlated features into uncorrelated ones called principal
components. The new components of the embedded basis meet the
following criteria: (i) they are linear combinations of the original
features, (ii) they form an orthogonal basis that can be viewed as a
rotation of the original one, and (iii) components are uncorrelated
but preserve the maximum amount of variation in the data. In ad-
dition to traditional PCA [16], probabilistic PCA (PPCA) [27] and

DAFX-3

DAFx-251



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Table 2: Calculation complexity of ’N to N’ combination approach.

Features
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations
number 27 351 2925 17550 80730 296010 888030 2220075 4686825 8436285 13037895 17383860 20058300 20058300
Overage

calculation
time 5.3s 223s 17.4 min 47min 23hours 18hours 3days 7days 15days 28 days 43days 43days 57days 66days

Features
number 15 16 17 18 19 20 21 22 23 24 25 26 27

Combinations
number 17383860 13037895 8436285 4686825 2220075 888030 296010 80730 17550 2925 351 27 1
Overage

calculation
time 43days 43days 28 days 15days 7days 3days 19hours 1day 56min 18min 250s 7s 12s

Table 3: Best feature combinations.

hhhhhhhhhhhhhFeature name
Feature number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Mean X X X X X X X X X X X X X X X X X X X X X
Median X X X X X X X X X X X X X X X X X X X X X X

Maximum X X X X X X X X X X
Minimum X X X X X X X X X
Variance X X X X X X X X X X X X X X X

Norm_STD X X X X X X X X X X X
Rat_Voic_tot X X X X X X X X X X X X X X X X X

Rat_UnVoic_tot X X X X X X X X X X X X
Rat_Voic_UnVoic X X X X X X X X X X X X X X X X X

1st frm X X X X X X X X X X X X
2nd frm X X X X X X X X X X

middle frm X X X X X X X X X X X X X X
Bef_lst_frm X X X X X X X X X X X X X X X

Lst_frm X X X X X X X X X X X X X X X X X X X
Mean_DRV X X X X X X X X

Mean_ABS_DRV X X X X X X X X X X X X X
Var_DRV X X X X X X X X X X X X X

Var_ABS_DRV X X X X X X X X X X X X X
Max_DRV X X X X X X X X X

Max_ABS_DRV X X X X X X X X X X X X X X X
Mean_Sec_DRV X X X X X X X X X X X X X X X X X X X X X X
Max_Sec_DRV X X X X X X X X

flatness X X X X X X X X X X X X X X X X
vehemence X X X X X X X X X X X X X X X X
Num_Peaks X X X X X X X X X X X X X X X X X X

Min_Pos X X X X X X X X X X X X X X
Max_Pos X X X X X X X X X X

kernel PCA (KPCA) [21] have been used for dimension reduction.
KPCA is a non-linear reformulation of standard PCA. Indeed it
uses a kernel trick to find principal components in a different space.
In other words, it performs standard PCA in a new non-linear
space. It is applicable for features presenting non-linear correla-
tion between each other [21].

The PPCA is another formulation of standard PCA based upon
a probability model [27]. The principal components are deter-
mined through maximum-likelihood estimation of parameters from
the data principal components.

4.3. Classification Results

First, the embedded subspace is extracted for each technique. Then,
the classification is performed with a different number of com-
ponents each time. That is to say that first, the classification is
performed using only the first component. Then the 2 first compo-
nents are used and so on until using the whole set of componants.
Hence, the suitable dimension range is the one giving the best clas-
sification performance. As for ’N to N’ approach, it is judged using
the overall and fear accuracy rates.

Classification results are provided in Figure 2 (resp. Figure 3)
for each used technique from the PCA family in terms of overall
accuracy rate (resp. fear accuracy rate). The two figures lead to
the following interpretations:
XUsing traditional PCA, the best overall accuracy and fear accu-
racy rates reach 92% and 93.3% respectively with 19 components.

XUsing KPCA, the best overall accuracy reaches 82.7% with
6 components and the best fear accuracy reaches 86.7% with 6
components.

XUsing PPCA, the best overall accuracy and fear accuracy
rates are worst. They are equal to 65.3% with 4 components and
33.3% with only one component. This approach should be dis-
carded.

When dealing with tradeoff between accuracy and dimension-
ality reduction, KPCA seems to be better than PCA. In fact, the
dimensionality is reduced to 6 (versus 19) with a loss of 10% for
overall accuracy and 7% for fear rate. Moreover, KPCA has the
advantage of presenting a stable variation of quality when dimen-
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Table 4: Correlation between features.

Correlation Feature pairs
0.9<|⇢|<1 (7,8);(7,9);(16,18);(17,18);(19,20)

0.8<|⇢|<=0.9 (8,9);(16,17)
0.7<|⇢|<=0.8 (1,12);(2,24);(3,22)
0.6<|⇢|<=0.7 (2,23);(3,17);(3,18);(5,6);(5,12);(5,16);(10,11);(10,15);(17,22);(18,22)
0.5<|⇢|<=0.6 (3,6);(3,16);(5,17);(5,18);(5,21);(6,16);(6,17); (6,18);(6,22);(14,15);(18,22);(23,24)
0.4<|⇢|<=0.5 (1,2);(1,5);(1,16);(1,23);(2,25);(3,5);(4,6);(16,22);(22,23);(23,25)

0.3<|⇢|<=0.4
(1,4);(1,11);(1,21);(2,5);(2,12);(2,13);(2,21);(3,23);(4,12);(5,24);(11,12);(11,16);(12,16);(12,21);(12,23);

(12,24);(13,14);(13,17);(13,18);(13,24);(24,25)

0.2<|⇢|<=0.3

(1,3);(1,6);(1,7);(1,8);(1,9);(1,10);(1,13);(1,14);(1,17);(1,18);(2,4);(2,7);(2,8);(2,9);(2,10);
(2,11);(2,14);(3,12);(3,21);(4,9);(4,22);(4,23);(4,25);(5,7);(5,8);(5,9);(5,11);(5,22);(6,12);(6,21);

(6,23);(6,24);(8,12);(8,23);(8,24);(8,25);(9,12);(9,23);(10,12);(11,15);(11,23);(12,14);(12,21);(13,16);(13,23);
(14,24);(14,27);(16,21);(16,24); (17,21);(17,23);(17,24);(17,27); (18,23);(18,27);(21,24);(22,27)

0.1<|⇢|<=0.2

(1,25);(2,16);(3,10);(3,11);(3,13);(3,14);(3,24);(3,25);(3,27);(4,5);(4,7);(4,8);(4,10);(4,11);(4,17);
(4,18);(4,24);(5,10);(5,13);(5,14);(5,20);(6,7);(6,8);(6,13);(6,20);(6,25);(7,12);(7,16);(7,17);(7,18);

(7,21);(7,23);(7,24);(7,25);(8,16);(8,17); (8,18);(8,21);(9,16);(9,17);(9,21);(9,24);(9,25);(10,13);(10,16);
(10,17);(10,23);(10,24);(10,25);(10,26);(11,13);(11,14);(11,21);(11,24);(11,25);(11,26);(11,27);(12,13);(12,17);(12,18);
(12,22);(12,25);(13,15);(13,22);(13,27);(14,16);(14,17);(14,18);(14,23);(14,25);(15,27); (16,19);(16,20);(16,23);(16,25);

(16,27);(17,19);(17,20);(17,25);(18,20);(18,21);(18,24);(18,25);(20,25);(21,22);(21,23);(21,25);(22,25);(24,27)

|⇢|<=0.1

(1,15);(1,19);(1,20);(1,22);(1,24);(1,26);(1,27); (2,3);(2,6);(2,15);(2,17);(2,18);(2,19);(2,20);(2,22);
(2,26);(2,27); (3,4);(3,7);(3,8);(3,9);(3,15);(3,19);(3,20);(3,26);(4,13);(4,14);(4,15);(4,16);(4,19);

(4,20);(4,21);(4,26);(4,27);(5,15);(5,19);(5,23);(5,25);(5,26);(5,27);(6,9);(6,10);(6,11);(6,14);(6,15);
(6,19);(6,26);(6,27);(7,10);(7,11);(7,13);(7,14);(7,15);(7,16);(7,17);(7,18);(7,19);(7,20);(7,22);(7,26);

(7,27); (8,10);(8,11);(8,13);(8,14);(8,15);(8,19);(8,20);(8,22);(8,26);(8,27); (9,10);(9,11);(9,13);(9,14);(9,15);
(9,18);(9,19);(9,20);(9,22);(9,26);(9,27); (10,14);(10,18);(10,19);(10,20);(10,21);(10,22);(10,27); (11,17);(11,18);

(11,20);(11,19);(11,22);(11,25);(11,26);(11,27); (12,15);(12,19);(12,20);(12,26);(12,27);(13,19);(13,20);(13,21);(13,25);
(13,26);(14,19);(14,20);(14,21);(14,22);(14,23);(14,25);(14,26);(15,16);(15,17);(15,18);(15,19);(15,20);(15,21);(15,22);
(15,23);(15,24);(15,25);(15,26);(16,26);(17,26);(18,19);(18,26); (19,21);(19,22);(19,23);(19,24);(19,25);(19,26);(19,27);

(20,21);(20,22);(20,23);(20,24);(20,26);(20,27);(22,24);(22,26);(23,26);(23,27);(24,26);(25,26);(25,27);(26,27)

sionality changes. Indeed, it appears as a horizontal line of accu-
racy rate for a feature number varying between 7 and 19.

Figure 2: Overall classification results according to PCA family
techniques.

Figure 3: Fear accuracy rates according to PCA family techniques.

5. NON-CORRELATION BASED DIMENSIONALITY
REDUCTION

5.1. Linear Discriminant Analysis Family

In contrast to most other dimensionality reduction methods, LDA
is a supervised technique as it takes into consideration the class
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labels when constructing the embedded feature space [17]. It at-
tempts to find a new feature space to project the data in order to
maximize classes separability. It is based on the concept of max-
imizing the Fisher ratio. This latter is calculated by dividing the
between-class variability on the within-class variability.

Standard LDA and kernel LDA have been tested in this study
in order to reduce feature space. Standard LDA attempts to maxi-
mize the linear separability between classes. It reduces dimension-
ality from original number of feature to C-1 features, where C is
the number of classes. In our study, the new feature space will be
only a 2-dimensional space as we have 3 emotion classes.

KDA is a kernelized version of LDA using the kernel trick
[22]. Standard LDA is performed in a new feature space which
allows non-linear mapping. Contrary to LDA, it has the advan-
tage of allowing the variation of dimensionality from 1 to the total
number of features (27 here).

Classification results are provided in Figures 4 and 5 for each
used technique from the LDA family in terms of overall accuracy
rate and fear accuracy rate respectively. It leads to the following
results:

XUsing standard LDA, the best overall accuracy and fear ac-
curacy rates reach 77.3% and 60% with 2 components.

XUsing KDA, the best overall accuracy reaches 80% with 9
components and the best fear accuracy rates reaches and 60% with
5 components.

Moreover, one can conclude that the LDA family seems to
be not stable as the accuracy rate presents important variations
when increasing the dimensionality. When dealing with trade-
off between accuracy and dimensionality reduction, standard LDA
seems to be better than KDA. In fact, the dimensionality is reduced
to 2 (versus 9) with a loss of 3% for overall accuracy. For fear
accuracy rate, they present the same accuracy rate with different
dimensionality (2 for LDA versus 5 for KDA).

Figure 4: Overall classification results according to LDA family.

5.2. Locality Preserving Projection Family

LPP is an unsupervised family based on mapping the data in a low
dimensional space preserving the neighborhood structure of the

Figure 5: Fear accuracy rates according to LDA family.

dataset [18]. This mapping is obtained by constructing first the ad-
jacency graph, then attempting to minimize an objective function.
This latter ensures that if two data points are close in the original
space, then their transformation in the embedded space are also
close.
The linear property of classical LPP may lead to modeling failure
when the data structure is non-linear. The basic idea of kernel LPP
is to non-linearly map the data into a reduced feature space by us-
ing the non-linear structure of the features. To this end, the kernel
trick is applied to extract nonlinear kernel model.
Classification results for LPP and KLPP are provided in Figures 6
and 7 and lead to the following results:

XUsing standard LPP, the best overall accuracy rate reaches
90.7% using 20 components. As for the fear accuracy, the best
rate is obtained using 14 components reaching 86.7%.

XUsing KLPP, the best overall accuracy reaches 73.3% with
20 components and the best fear accuracy rate reaches 53.3% with
19 components.

One can deduce that the classification quality presents an in-
creasing variation according to LPP as well as KLPP. Also, they
both stabilize in the high dimensionality for which they reach their
highest quality accuracies. Moreover, LPP seems to be better than
KLPP in terms of classification performance for a fixed value of
dimensionality greater than 9.

5.3. Other Techniques for dimension Reduction

In addition to the mentioned families, many other different tech-
niques have been tested in this study namely Isomap, Landmark
Isomap, Factor Analysis, Sammon Mapping, Locally Linear Em-
bedding, Laplacian Eigenmaps, Local Tangent Space Alignment,
Diffusion Maps, Stochastic Neighbor Embedding, Manifold Chart-
ing, Gaussian Process Latent Variable Model, Deep Autoencoders
and Neighborhood Components Analysis. Their best classification
results in terms of the overall accuracy rate and fear accuracy rate
and their corresponding dimensions are summarized in Table 5.
One can notice that they lead to worst results compared to previ-
ous ones.
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Figure 6: Overall classification results according to LPP family
techniques.

Figure 7: Fear accuracy rates according to LPP family techniques.

6. CONCLUSION

In this paper, we tested different techniques to reduce the relatively
high dimensional feature set in order to guarantee a high overall
classification rate and a high fear recognition rate. The first tested
approach is manual and based on ’N to N’ combinations. It leads
to good results reaching 93.34% as an overall accuracy rate and
78.7% as a fear recognition rate. The other approaches are auto-
matic. A comparative study between them was presented. It shows
that the best fear recognition rate is obtained using principal com-
ponents analysis reaching 93,3% using 19 components, which is
practically the same result obtained for ’N to N’ approach. If we
aim to reduce more the dimensionality, we can use KPCA but we
loose in terms of classification performance.

Table 5: Best classification results using other dimensionality re-
duction techniques.

Reduction Techniques Overall detection Fear detection
Overall Accuracy Dimension Fear Accuracy Dimension

Isomap 45 2 40 3
Landmark Isomap 50 3 55 10

Factor Analysis 52 10 40 12
Sammon Mapping 54.7 22 53.3 20

Locally Linear
Embedding 54.3 25 47.3 24
Laplacian
Eigenmaps 49.3 25 46.3 22

Local Tangent
Space Alignment 44.3 12 33.3 20
Diffusion Maps 40.3 6 33.3 8

Stochastic Neighbor
Embedding 52.4 24 33.3 23

Deep
Autoencoders 44.3 12 39.7 16
Neighborhood
Components

Analysis 53.3 22 55.7 24

Figure 8: Classification results according to all dimensionality re-
duction families and ’N to N’ approach.
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