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ABSTRACT

This paper describes a modification of the ESPRIT algorithm
which can be used to determine the parameters (frequency, de-
cay time, initial magnitude and initial phase) of a modal rever-
berator that best match a provided room impulse response. By
applying perceptual criteria we are able to match room impulse
responses using a variable number of modes, with an emphasis
on high quality for lower mode counts; this allows the synthesis
algorithm to scale to different computational environments. A hy-
brid FIR/modal reverb architecture is also presented which allows
for the efficient modeling of room impulse responses that con-
tain sparse early reflections and dense late reverb. MUSHRA tests
comparing the analysis/synthesis using various mode numbers for
our algorithms, and for another state of the art algorithm, are in-
cluded as well.

1. INTRODUCTION

Artificial reverberation is a now ubiquitous effect that is often used
to add a sense of space and color to a live performance or record-
ing. The acoustics of a reverberant space depend on several fac-
tors including a building’s architecture, wall materials, furniture,
and so on. These factors affect the intensity and directionality of
echoes arriving at a listener over time. Artificial reverberation al-
gorithms aim to model these echoes, either directly or indirectly,
and often with different goals in mind as explained below.

Digital signal processing algorithms for artificial reverberation
have a long history. A comprehensive examination of this history
is given by the review article of Välimäki et al. [1]. A brief taxon-
omy of reverb algorithms includes:

• purely algorithmic and parametric approaches, e.g.,
Schroeder’s allpass chains [2], feedback delay networks
[3][4], sparse FIR filters [5], and modal filter banks [6] [7]
[8],

• convolutional reverbs [9], and

• physical modelling [10].

The wide-variety of techniques for artificial reverberation is a
testament to the importance of this effect. We may also conjecture
that the development of different reverb algorithms has been led
by different design goals. To illustrate, convolutional reverbs are
capable of very accurate modelling1 but are relatively inflexible.
On the other hand, feedback delay networks are computationally

⇤ For Eventide Inc.
1For a fixed source-listener positioning.

efficient and easily modulated. The latter properties are important
considerations when designing a reverb effect meant to act as an
instrument in its own right [11].

An important concern of ours is the musicality/playability of
the reverb, especially with respect to real-time manipulation of
perceptually relevant qualities. At the same time, we desire a
model that can accurately simulate real spaces2. These require-
ments led us to eschew the traditional convolution-based reverb in
favor of a fully parametric approach. In particular, we have cho-
sen to adopt a modal reverb architecture [6] because the mapping
of modes to perceptually important parameters (room size, decay
time), is relatively straightforward, and because the parameters of
a modal filter bank can be stably modulated at audio-rate. Recent
work has also demonstrated a variety of interesting techniques that
can be used with modal filter banks for pitch processing, time-
scaling, and distortion [12].

1.1. Previous work

Although modal architectures for reverb processing are relatively
recent [6], similar techniques have been used in other contexts for
quite some time. See for example: Laroche’s model of heavily
damped percussive sounds [13]; The source-filter piano model of
Meillier et al [14]; Bank’s instrument body model [8]; Paatero et
al.’s modelling of loudspeaker responses [15]; and, Sirdey et al’s
modal analysis of impact sounds [16];

Within the realm of reverb effects several works address
the estimation of modal parameters, including: the frequency
zooming-ARMA model of Karjalainen et al. [7][17]; Abel
et al.’s modal reverberator [6]; Maestre et al.’s pole optimiza-
tion algorithm [18]; the Gabor ESPRIT model of Sirdey et
al. [19]; Schoenle et al.’s model of room responses [20]; and
Hashemgeloogerdi et al.’s work on subband Kautz-filter modelling
[21].

1.2. Contributions

A particular problem with modal modeling of reverb is the high
density of modes exemplary of real room responses. After a short
duration, and above the Schroeder frequency, both the echo and
modal density become so dense as to make estimation of explicit
modes very difficult [22]. Even if we had access to these param-
eters, running a modal filter bank with more than a few thousand
modes would unreasonably tax a typical CPU.

In order to confront the problem of modal estimation for very
dense impulse responses we have chosen to use a high-resolution,

2In the same sense as a convolutional reverb.
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parametric estimator: the ESPRIT algorithm [23] [24]. Due to its
parametric nature, ESPRIT, does not suffer from the same resolu-
tion limitations encountered with Fourier transform-based estima-
tors, e.g., [6]. Other works applying ESPRIT to estimate modal
parameters include [25] [26] [19].

A difficulty with ESPRIT is that it becomes computationally
intractable for very dense and very long responses, like those typi-
cally encountered for real rooms. For this reason, we have chosen
to use a subband approach, which has several critical benefits as
discussed in section 4.

In order to prune mode counts down to a realizable number for
synthesis with a modal filter bank, our work presents an approach
to reduce the model order using the K-means algorithm.

We also discuss a technique for managing early reflections,
which are not always easy to model using a small number of
modes.

1.3. Outline

The remainder of this paper is laid out as follows. Section 2 de-
scribes the synthesis model of the modal reverberator. Section 3
gives an overview and derivation of the ESPRIT algorithm. Sec-
tion 4 gives an explanation of the subband modifications we’ve
made to make ESPRIT tractable for such a large problem. Section
5 is a brief word on estimating the model order. Section 6 in-
troduces our algorithm for fitting the initial magnitude and phase
parameters of the modal reverberator. Section 7 shows how we
reduce the number of modes while maintaining perceptual accu-
racy, while Section 8 describes an extension to handle early reflec-
tions. Section 9 describes 3 experiments we ran comparing this
method to a ground truth, another algorithm, and with and with-
out the special early reflection handling. Finally Section 10 shares
conclusions and Section 11 contains references.

2. THE MODAL MODEL

A starting point for this work is the assumption that a measured
room response, h[n], can be perfectly modeled using a linear dig-
ital filter with a rational z-transform

H(z) =
B(z)
A(z)

=

PN
k=0 bkz

�k

PM
k=0 akz�k

(1)

the poles of which correspond to roots of the polynomial A(z).
Using long division, followed by partial fraction expansion, we
can re-write H(z) as [27]:

H(z) =
N�MX

k=0

Bkz
�k

| {z }
HFIR(z)

+
MX

k=1

Ak

1� zkz�1

| {z }
HModal(z)

(2)

which represents an FIR filter in parallel with a bank of 1-pole
filters that define the resonant modes of the system. In the special
case N < M , the FIR part disappears and H(z) = HModal(z).
We will assume this is the case for the time-being, and revisit the
estimation of HFIR(z) in section 8.

Taking the inverse z-transform of H(z) = HModal(z) gives

h[n] =
MX

k=1

hk[n] =
MX

k=1

Akz
n
k (3)

assuming the impulse response is stable and causal. When the
poles occur in complex conjugate pairs, the time-domain view of
the modal filter bank represents an exponentially damped sinu-
soidal (EDS) model. The complex amplitudes Ak = e↵k+j�k

define the initial magnitude and phase of each damped sinusoid
znk = e(dk+jwk)n.

Given this model two goals remain: i) estimate the model or-
der, M ; ii) estimate the model parameters: initial magnitude, ini-
tial phase, frequency, and damping. The model order should be as
small as possible, while still maintaining perceptual transparency
of the impulse response.

3. ESPRIT

The ESPRIT algorithm can be used to find the frequency and
damping parameters for the EDS model in equation (3). The sem-
inal ESPRIT reference is [23], however it focuses on direction-
of-arrival estimation for antenna arrays. A more recent reference
that focuses specifically on audio signal processing is [24]. The
ESPRIT algorithm is briefly described below.

First, we collect L samples of the impulse response h[n] into
a vector h. We can then re-write the EDS model from (3) using
vector matrix notation as follows

h = Ea (4)

where Enk and ak correspond to znk and Ak, respectively. Using
the delay property:

zn+R
k = zRk znk (5)

we can write the EDS model for the Hankel matrix
Hnk = h[n+ k] (consisting of delayed copies of h) as

H = EAE
T (6)

where Akk = Ak is a diagonal matrix containing the complex am-
plitudes. The superscripts T and H indicate the matrix transpose
and Hermitian transpose, respectively. The columns of H lie in the
M -dimensional signal space, spanned by the modal vectors, i.e.,
the columns of E. Although these are unknown, we can find an-
other set of vectors that span the signal space via a singular value
decomposition (SVD) of H

H = U⇤V
T (7)

The column vectors of U are, in general, different from the signal
vectors, however, they are related by an unknown linear transform
T (a rotation and scaling)

E = UT (8)

The rotational invariance property of complex exponentials can
now be invoked to determine the modal frequencies and dampings.
Mathematically, the rotational invariance property states that

E" = E#D (9)

where E" signifies deleting the first row of E, E# signifies deleting
the last row of E, and D = diag(z0, z1, . . . , zM ). Substituting (8)
into (9) and performing some algebra gives

(UT)" = (UT)#D (10)
U"T = U#TD (11)

U" = U# TDT
�1

| {z }
�

(12)

� = (UH
# U#)

�1
U

H
# U" (13)
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The matrix � is computed using the Moore-Penrose pseudo in-
verse, since the matrix U is not typically square. The eigenvalues
of � are the complex modes (z1, z2, . . . , zM ), which can be re-
covered from an eigenvalue decomposition (EVD). Summarizing,
the steps in the ESPRIT algorithm are:

1. Compute the signal space U [equation (7)]

2. Compute � using the pseudo inverse [equation (13)]

3. Compute the complex modes from an EVD of �

4. SUBBAND PROCESSING

As alluded to previously, it is difficult to apply ESPRIT on long
signals with high model orders because its complexity scales like
O(LM(M + log(L))) [24].

One way to make ESPRIT tractable is to apply a divide and
conquer approach. This can be done by passing the input through a
filter bank to divide the input into a set of narrow subbands. There
are four main benefits to this approach:

1. Since each subband has a narrow passband, we can safely
assume that each subband contains a small number of sig-
nificant modes. This in turn reduces the ESPRIT model
order, M ;

2. Using a suitable filter bank, we can downsample each sub-
band without significant aliasing, which greatly reduces the
amount of data, L, we need to consider when computing
the SVD of the Hankel matrix;

3. Downsampling increases the distance between closely
spaced modes, making them potentially easier to identify
[7];

4. When using complex filters we can reduce the ESPRIT
model order by a factor of 2 when analyzing real signals.
During synthesis the complex conjugate modes can be re-
stored to create a real impulse response.

Taken together, these aspects make it possible to apply ESPRIT
to long IRs with potentially tens of thousands of modes. This ap-
proach was demonstrated in [19] using the Gabor transform and
a similar idea was presented earlier by Laroche (using Prony’s
method instead of ESPRIT) [13].

We have experimented with three different filter bank archi-
tectures: the Gabor transform [19], the alias-free pyramidal filter
bank described in [28], and the Audio FFT filter bank described
in [29]. We currently use the Audio FFT filter bank in our analy-
sis algorithm because it can be used to specify an arbitrary set of
non-uniformly spaced subbands.

The rth subband is produced by filtering the input with a
causal N-tap FIR filter gr[n]:

yr[n] = h[n]⇤gr[n] =
(PM

k=1 ↵k
Pn

l=0 gr[l]z
n�l
k , if n < N � 1PM

k=1 ↵̂krz
n
k , if n � N � 1

(14)
where

↵̂kr = ↵kskr (15)

skr =
N�1X

l=0

gr[l]z
�l
k (constant w.r.t. n) (16)

The first N � 1 samples of the output yr[n] represent a start-up
transient, which does not exhibit an EDS behavior. After the start-
up transient dies out, however, each subband once again follows
an EDS model, with the addition of a scaling factor skr that can be
subsumed into the magnitude and phase for the current subband.
For this reason, we ignore the first N � 1 samples from each filter
bank channel when applying ESPRIT on subbands. In our expe-
rience, this operation reduces the bias in the ESPRIT frequency
and damping estimates. On the other hand, modes that have decay
times comparable to the subband filter lengths cannot be accurately
estimated.

For modes with center frequencies lying in the stopband of the
rth channel filter skr3 should be negligibly small, allowing us to
effectively ignore these modes in the current subband.

The Audio FFT filter bank’s channel filters have been designed
using the window method. It was demonstrated by [30] how the
window method can be used to design perfect non-uniform recon-
struction filter banks. We first choose R brickwall filters such that
the sum of channel responses is unity

RX

r=1

Gr(e
j!) = 1 (17)

where Gr is the frequency response of the rth subband. This re-
quirement is easily met by partitioning the frequency domain into
a set of non-overlapping bands. Taking the inverse DTFT shows
that

RX

r=1

Gr(e
j!) = 1 ()

RX

r=1

gr[n] = �[n] (18)

This set of filters is perfect reconstruction since we can recover the
input signal x[n] by adding together the subband responses, i.e.,

RX

r=1

yr[n] =
RX

r=1

x[n] ⇤ gr[n] (19)

= x[n] ⇤
 

RX

r=1

gr[n]

!
= x[n] ⇤ �[n] = x[n]. (20)

However, due to the brickwall response of the channel filters each
impulse response, gr , is an IIR filter. Using the window method
each channel IR is truncated via multiplication with a short win-
dow, creating an FIR filter. Using an N-tap window, w[n], the rth

channel IR becomes ĝr[n] = w[n]gr[n]. This set of filters is still
a perfect reconstruction, if w[0] is normalized to 1 since

RX

r=1

w[n]gr[n] = w[n]
RX

r=1

gr[n] = w[n]�[n] = w[0]�[n] (21)

Time-domain multiplication by w[n] results in a convolution be-
tween the ideal channel filter and the window in the frequency-
domain: Gr(e

j!) ⇤ W (ej!). This results in a frequency-domain
spreading of the filters, causing the filter responses to overlap in
frequency. Figure 1 illustrates an example of this type of filter
bank. The region marked as partition indicates the original bound-
aries of the ideal brickwall filter, and the region marked as pass-
band shows the widened filter response due to the windowing.
This particular filter bank was designed using a Chebychev win-
dow as suggested in [29].

3We recognize skr as the z-transform of the rth subband filter evalu-
ated at the kth pole location.
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Partition Width

Passband Width

Figure 1: Filter bank design

When performing ESPRIT on subbands we can leverage the
design of our filter bank in order to automatically prune out ir-
relevant modes. We first estimate how many modes are in each
subband’s passband as described in section 5 below. We then run
ESPRIT using this model order. After ESPRIT returns we can
safely discard any modes with center frequencies outside of the
partition. We can do this because the partition perfectly divides
the frequency spectrum into non-overlapping bands. Modes that
do not lie in the current partition must belong to a neighboring
partition (and therefore they should be estimated in the subband
they lie closest to).

5. ORDER ESTIMATION

An inherent difficulty with parametric estimators lies in the spec-
ification of the model order—in our case the number of modes
to estimate in each subband. There exist a few techniques that at-
tempt to automatically estimate the model order based on informa-
tion theoretic criteria, namely [31] and [32]. We have implemented
these techniques, but found they did not perform particularly well
for high model orders, e.g., more than 20 or so modes. Therefore,
we have resorted to a simple model order selection algorithm based
on peak picking from the discrete Fourier spectrum. We multiply
the number of peaks detected by a relaxation factor greater than or
equal to 1, recognizing the fact that some modes may not lead to a
distinct peak in the sampled spectrum, or may be replicated (e.g.,
in the cases of two-stage and non-exponential decay). In practice,
overestimating the model order does not usually pose a problem,
because modes selected from the noise subspace generally have
very small magnitudes.

6. MAGNITUDE AND PHASE ESTIMATION

After the modes znk in each subband have been estimated using
ESPRIT we must estimate the the complex amplitudes Ak. This
can be done by minimizing the approximation error

argmin
a

||h�Ea||22 (22)

A closed form solution to equation (22) is

a = (EH
E)�1

E
H
h (23)

However, this requires the inversion of a matrix with M2 entries,
which becomes very slow once the number of modes M exceeds a

few thousand or so. We have experimented with conjugate gradient
decent (which does not require a matrix inversion) to iteratively
solve equation (22). This works well, but is still fairly slow once
the number of modes exceeds several thousand.

Owing to Parseval’s theorem, equation (22) can also be tackled
in the frequency domain:

argmin
a

||h�Ea||22 = argmin
a

||ȟ� Ěa||22 (24)

where ȟ and Ě are the discrete Fourier transforms of h and the
columns of E, respectively. Note that each column of Ě can be
computed analytically using the geometric series

Ěk[l] =
N�1X

n=0

znk e
�j2⇡nl/N (25)

=
1� zNk

1� zke�j2⇡nl/N
(26)

In order to speed up the magnitude and phase estimation we
once again resort to a divide and conquer approach. In particular,
given a spectral filter Fk we can estimate the complex amplitudes
of a subset of modes

arg min
ai,i2Ik

||Fkȟ� FkĚa||22 (27)

Modes that have minimal overlap with the filter Fk can be effec-
tively ignored by removing columns from Ě. Furthermore, we
only need to minimize the norm in equation (27) over frequencies
that fall in the passband of Fk.

Using the DTFT we can calculate the 3dB bandwidth of the
mth mode to be

bm = arccos(2� 0.5 ⇤ (edm + e�dm))N/(2⇡) (28)

where dm is the damping factor and N is the DFT length. For the
kth subband we estimate the magnitude and phase of any modes
for which the range [!m � bm/2,!m + bm/2] intersects with the
passband of the kth spectral filter.

This procedure is applied repeatedly using a set of spectral
filters {Fk} designed to completely cover the audible spectrum.
This algorithm is much faster than any of the above techniques,
and can be performed in parallel on architectures with multiple
cores.

7. MODEL COMPRESSION

As mentioned in the introduction, in order to limit the CPU usage
of a real-time modal reverberator we must restrict the total number
of modes to no more than a few thousand. Subband ESPRIT rou-
tinely estimates upwards of 5000-10000 modes for real and dense
IRs, meaning we require a strategy to reduce the overall number
of modes used, ideally without sacrificing sound quality.

Luckily, it is possible to heavily compress our model by tak-
ing advantage of limitations in the human auditory perception sys-
tem. In particular, it has been found that dramatically lower modal
densities (compared to physically reality) can be used to generate
perceptually accurate late reverberation. Therefore, we have de-
veloped a number of ad-hoc strategies to reduce the size of our
modal filter bank

Following [18] we first partition the frequency spectrum into
uniform bands on a Bark scale. We then divide our fixed modal
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budget evenly across these bands. If some bands have fewer modes
than they were allocated, the extra modes are reallocated among
the remaining bands until no modes remain.

After the allocation step we have 2 numbers for each band
i) Ma: the actual number of modes in each band (estimated us-
ing ESPRIT); and ii) Md the desired number of modes in each
band. While we could simply prune the extra modes Ma � Md,
this would change the distribution of modal frequencies in each
band. Instead, we use the K-means algorithm to find a new set
of Md modes whose average distance from the estimated modes
is minimized. An advantage of K-means is that is has the abil-
ity to ‘average’ the contributions of several modes by picking a
new modal location that represents the center-of-gravity in a local
neighborhood.

Empirically, we have found that the decay time estimates from
ESPRIT exhibit a high degree of variance for real impulse re-
sponses. This in turn has a negative affect on the results of the
K-means algorithm for small values of K (i.e., heavy model com-
pression). In order to counteract this effect we smooth the decay
time estimates from ESPRIT prior to running K-means. First, we
apply a median filter to the decay times (after sorting them by fre-
quency), which helps to eliminate outliers. Our median filter win-
dow starts with a length of 1 (at the boundaries) and grows until it
reaches its maximum length (which is an algorithmic parameter in
the range of 10 to several 100 modes). We have also experimented
with weighted median filtering but no real benefit was noted. The
median filtered decay times are then smoothed using a FIR low-
pass filter to reduce the variance between nearby frequencies. It
has been found that these three aspects: i) median filtering; ii) de-
cay time smoothing; and, iii) K-means clustering are crucial for
synthesizing perceptually good sounding IRs using a very small
number of modes.

Once the model size is reduced the magnitude and phase of
each mode (as discussed in section 6) must be re-estimated. In
actuality, we always run the magnitude and phase estimation last,
and hence only once.

We have applied a few additional ad-hoc strategies that should
be noted. Immediately after running ESPRIT on each subband:

1. we discard any modes with a very low amplitude (estimated
using least squares)

2. we discard any underdamped modes (which occur very
rarely, and are unstable)

8. HANDLING EARLY REFLECTIONS

Recall that our factorization of the rational transfer function in
equation (2) included a parallel FIR path, HFIR(z). We can think
HFIR(z) as modelling the early reflection portion of the reverb re-
sponse. Fixing HModal(z), the least squares solution for the FIR
filter is hFIR[n] = h[n] � hModal[n] for n 2 [0, N). It is also
possible to estimate the modal response from a delayed copy of the
measured IR, i.e., h[n�Nd]. In this case

hFIR[n] =

(
h[n] for n 2 [0, Nd � 1]

h[n]� hModal[n] for n 2 [Nd, N)
(29)

This later approach allows us to control the overlap between the
responses which can lead to improved numerical performance as
discussed in [33].

Before we can estimate the FIR part, however, we require
some way to determine the tap-length of the FIR filter, N . In some

(a) Zoomed-in view of found modes.

(b) Synthesized and Estimated Irs.

Figure 2: Generated and found modes of a modally generated IR
with 1000 modes.

cases, we have found that excluding the FIR part completely is
a viable option, in which case we take N = 0. However, when
an impulse response has prominent early reflections the modal
synthesis algorithm may require an unreasonably large number
of modes, M , to produce a good reconstruction on its own. We
believe these unreasonably high mode counts originate from the
EDS model’s inability to efficiently model time sparsity4. A sig-
nificant number of modes is required to build up the construc-
tive/destructive interference pattern needed to model the sparsity
between distinct echoes. In these situations we have implemented
the early reflections using an FIR filter whose length, N , is esti-
mated using Abel and Huang’s echo density estimator [34].

4Indeed, the density of a Dirac comb in the time-domain is inversely
proportional to its density in the frequency-domain.
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9. EXPERIMENTS AND RESULTS

To validate the methods presented in this paper we conducted ex-
periments with synthetic impulse responses having known modes,
and performed several MUSHRA style listening tests. The record-
ings used in all of the listening tests are available online5.

9.1. Synthetic Modal Impulse Response

In order to verify that the subband ESPIRIT analysis algorithm
correctly identifies the true modes of an impulse response, we ran
it on synthetically generated modal impulse responses with known
sets of modes. The synthetic impulse responses were generated by
adjusting the distribution of modes over frequency, the number of
modes, and the decay times and magnitudes of the modes.

Figure 2 shows a plot of the known mode frequencies, ob-
tained by spacing 1000 modes with a decay time of 0.5 seconds
and magnitude of 1.0 linearly across the frequency spectrum up
to 20kHz, as well as the modal frequencies detected by our sub-
band ESPRIT analysis. Figure 2 aslo shows a plot of the original
impulse response, and the one generated with modes found by sub-
band ESPRIT. We can make the following observations: subband
ESPRIT does indeed find the true modes of the impulse response,
and it also finds a variety of spurious, or non-existent, modes. Note
that even though the algorithm has added an extra mode at mode
number 26, the subsequent mode frequencies are still correct. The
addition of these spurious modes is, in part, due to the purpose-
ful over-estimation of mode counts in the algorithm as previously
discussed.

We can calculate the error between the known and estimated
modal parameters by pairing the known and detected modes that
are closest in frequency.

lk = argmin
j

(||f [k]� fest[j]||2) (30)

ef [k] = f [k]� fest[lk] (31)
ed[k] = d[k]� dest[lk] (32)

Where lk is the index of the detected mode that is closest to
the kth known mode in frequency. The mean and standard devi-
ation of the error in the decay time estimates, ed, are 0.000858
and 0.008301 seconds respectively. Similarly, we can calculate
the mean and standard deviation of the errors between the known
and found mode frequencies, ef . These are 0.002329Hz and
0.015249Hz, respectively. As a result of the close match between
the modal parameters, the impulse response synthesized using the
found modes is nearly identical to the one synthesized using the
known modes. Comparing the two IRs, we find that the Mean
Squared Error (MSE) between the two is �120.8147dB.

9.2. Monophonic Real Room Impulse Response

In order to compare our system with another state-of-the-art
method, we chose to process the same impulse response presented
in Maestre et al. [18] using mode counts of 400, 800, and 1800.
In an effort to make the comparison fair, we did not include an
FIR model of the early reflections in our model. We used the web-
MUSHRA software [35] to administer a standard listening test in
which users were asked to rate the quality of the modeled IRs with

5http://dgillespie.github.io/Corey/

respect to a reference. A total of 12 users participated and there
was no time-limit for the task. Figure 3 shows a box plot of the col-
lected data, from which we may draw several conclusions. Firstly,
the two algorithms perform quite similarly to one another. At low
mode counts, our model was ranked slightly higher on average,
whereas at high mode counts, Maestre et al.’s model was ranked
higher. In our view, both models seem to impart very subtle arti-
facts to the impulse responses, however, test participants seemed
to judge these artifacts differently depending on the model order.

Figure 3: Listening test results I

Because the artifacts present in the synthesized impulse re-
sponses might manifest themselves differently when convolved
with a source, we chose to perform a second test comparing our
results with the results of Maestre et al. Using the same mode
counts as before, listeners were asked to compare impulse re-
sponses which had been convolved with a source. The results of
Maestre et al., and the dry source material, were obtained from
their supplemental website6. Figure 4 shows the results of this test
based on 9 users. Comparing Figures 3 and 4, two important ob-
servations stand out. Firstly, the scores of each individual response
are, on average, higher than in the previous test and second, while
our model was rated higher for a mode count of 800 in the previous
test, the models of Maestre et al. were rated higher in this test.

9.3. Early Reflection Improvement with Parallel Synthesis
Model

Figure 5 shows MUSHRA listening test results where 12 expert
listeners rated the quality of differing subband ESPIRIT syntheses
(and a hidden reference) with respect to a reference IR. The syn-
theses vary by model type, either pure modal or the FIR+modal
model from Section 8, and the number of modes. In this experi-
ment the reference is an IR from the Hall algorithm on a Lexicon
PCM 90 digital reverb unit. This particular IR has a rather long
early reflection field measuring 482 ms, measured using the Abel
and Huang echo density estimator from [34]. The RT60 of this IR
was also comparably long, measuring around 3 secs.

Listeners overwhelmingly favored the parallel FIR+modal
model over the pure modal model. This trend held at very high

6https://ccrma.stanford.edu/ esteban/modrev/dafx2017/
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Figure 4: Listening test results II

mode counts for the pure modal model (12000). Even in this case,
the parallel FIR+modal model using only 1500 modes rates sig-
nificantly more similar to the reference. 12000 modes is taxing
even on modern CPUs, while 1500 modes plus a fast convolution
remains reasonably attainable.

We conclude that our hypothesis from Section 8 holds: it’s
difficult to guarantee accurate synthesis of significant early reflec-
tions in any efficient manner using a pure modal approach. Given
that the early field is important in the perception and accurate syn-
thesis of any given IR, the parallel model described in Section 8
can alleviate this particular issue. However, the parallel model is
not without its drawbacks. The parallel model presents its own
challenges for realtime audio effects like morphing, decay scaling,
and size scaling because now the two parallel synthesis models
must be parameterized in two differing domains and modulated in
tandem to achieve perceptually pleasing and relevant results.

Figure 5: Listening test results III

10. CONCLUSION AND FUTURE WORK

In this paper we presented an end-to-end system for the modal
analysis of real room impulse responses. Using the high-resolution
ESPRIT estimator, we were are able to very accurately identify
the frequency and damping parameters of impulse responses. Fur-
thermore, we presented a number of strategies to i) make ESPRIT
tractable on real-recordings; and, ii) yield models that can operate
with fixed modal budgets. While our use of a subbband approach
is not new, we have described several important considerations for
practitioners of this method. This includes: trimming of the start-
up transient, our approach to filter bank design, and our strategy
for handling out-of-band modes. In order to reduce mode counts
in the final model we presented a novel model compression algo-
rithm based around K-means.

As mentioned previously, one interesting result of our listen-
ing tests was that, when convolved with a source, the results of
Maestre et al. performed better than the method presented here.
We have shown that the subband ESPRIT analysis method will
find the correct modes of a system, given the correct model or-
der, so it is likely that this error is introduced in our method of
pruning excess modes. Because K-means is a clustering algortihm
based on averages, the resulting set of modes after pruning may no
longer be modes that were present in the original signal, but rather
a new set of modes representing the average of several modes. Fu-
ture work will surely focus on finding the best possible pruning
method for reducing mode counts. This could include exploration
of psychoacoustic-based methods, such as in [6]. In addition, it
is worth noting that the rating of the generated impulse responses
increased when they were convolved with a source. Presumably
this is because some of the artifacts are masked. It would be of
great value to know what artifacts are masked more heavily and
vice versa. One could see the advantage in tuning the algorithm to
be more accepting of artifacts that are more easily masked when
used with source material.
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