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ABSTRACT

In this paper, a method for separating stereophonic mixtures into
their harmonic constituents is proposed. The method is based on
a harmonic signal model. An observed mixture is decomposed by
first estimating the panning parameters of the sources, and then
estimating the fundamental frequencies and the amplitudes of the
harmonic components. The number of sources and their panning
parameters are estimated using an approach based on clustering
of narrowband interaural level and time differences. The panning
parameter distribution is modelled as a Gaussian mixture and the
generalized variance is used for selecting the number of sources.
The fundamental frequencies of the sources are estimated using an
iterative approach. To enforce spectral smoothness when estimat-
ing the fundamental frequencies, a codebook of magnitude ampli-
tudes is used to limit the amount of energy assigned to each har-
monic. The source models are used to form Wiener filters which
are used to reconstruct the sources. The proposed method can be
used for source re-panning (demonstration given), remixing, and
multi-channel upmixing, e.g. for hi-fi systems with multiple loud-
speakers.

1. INTRODUCTION

Music signals often contain a mixture of multiple instrument record-
ings. To process such a mixture, e.g., with the goal of modifying
the sources independently, it may be beneficial to extract the indi-
vidual sources in the mixture. This task is known as source sepa-
ration, and it has applications in areas such as music information
retrieval [1], sound scene modification [2], and enhancement [3].

The problem of separating sources in a music mixture is in
general very difficult, because of the presence of overlap in both
time and frequency. In such cases, the source separation prob-
lem is in many cases ill-posed, and the single-channel source sep-
aration problem is very difficult to solve, and would rely heavily
on prior information about the sources. When multiple channels
of data are available, it is possible to exploit information about
the mixing process. A method for separating two sources from
a single-channel mixture was proposed in [4], based on a sparse
non-negative decomposition algorithm, whereas in [5] a method
based on single-channel non-negative matrix factorization (NMF)
was proposed for polyphony music transcription. In [6], a method
based on non-negative matrix factorization (NMF) for stereophonic
source separation is presented, while in [7] a framework for incor-
porating prior knowledge in source separation is presented. Sepa-
ration of moving sources is considered in [8] using a method based
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on multi-channel NMF. Time-variation is allowed through the use
of spatial covariance matrices (SCMs) which are generated based
on estimated directions of arrival (DOAs). Separation of sources
from multi-channel reverberant mixtures, although in a semi-blind
fashion, with known mixing filters, was considered in [9]. Re-
panning of stereophonic sources was proposed in [10] for a known
number of sources without delay panning.

Parametric signal models, where the sinusoidal components
of a signal are modelled as a sum of sinusoids, can also be used
for source separation. A method for source separation and audi-
tory scene analysis based on a multi-pitch and periodicity analysis
method is presented in [11], while sinusoidal modelling was used
for separating harmonic sources using a classification method to
group extracted sinusoids in [12]. Spectral overlap often occur in
music signals, and this should be taken into account when esti-
mating the parameters of the sources. A source separation method
based on pitch, amplitude modulation and spatial cues for separa-
tion of harmonic instruments from stereo music recordings is pro-
posed in [13]. In [14], a method for reconstruction of completely
overlapped notes is presented, where the spectral envelope of each
source is learnt in segments without overlap, and then used to ex-
tract the sources. A separation approach based on optimal filtering
is presented in [15], where a linearly constrainted minimum vari-
ance (LCMV) filter is constructed based on a priori knowledge in
the form of score information. Furthermore, the balance between
overlapping harmonics is adjusted using a priori knowledge about
the magnitude of each harmonic.

In this paper, we present a method for extracting harmonic
sources from stereophonic mixtures of music recordings, such as
those made artificially in a studio. First, the panning parameters
and activations of the sources are estimated using a method based
on clustering of narrowband interaural level and time differences
(ILDs and ITDs) (see [16] for further details). Usually, in source
separation algorithms, the number of sources is assumed known a
priori (see, e.g., [6]), however, here the number of sources does
not need to be known. Equipped with the estimated panning pa-
rameters, the fundamental frequencies of the harmonic sources
are estimated, along with the number of harmonics, and the har-
monic amplitudes, using an iterative approach. To enforce spec-
tral smoothness, a codebook of magnitude amplitudes trained on
recordings of harmonic sources is used (see [17] for further de-
tails). The source models are used to form a Wiener filter for ex-
traction of each source from the mixture. It should be noted that
the proposed method is also capable of separating sources from
monophonic, i.e., single-channel mixtures. After the sources have
been extracted, they are combined with new panning parameters,
and the residual, i.e., the parts of the mixture not captured by the
harmonic model of the sources.
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2. SIGNAL MODEL

An observed multichannel mixture is modelled as a sum of M
harmonic sources sm, m = 1, . . . ,M , plus a noise term e. The
signal in the kth channel at time n is

xk(n) =
MX

m=1

gk,msm(n� ⌧k,m) + ek(n), (1)

where gk,m and ⌧k,m are the amplitude and delay panning pa-
rameters, respectively. An example of an amplitude panning law,
which could used to calculate the gains applied to each channel of
a stereophonic mixture is [18]

gk,m =

(
cos �m, for k = 1

sin �m, for k = 2
, (2)

where �m 2 [0, pi/2]. The mth source sm is modelled as a sum
of Lm harmonic components, i.e,

sm(n) =
LmX

l=1

↵m,le
j!0,mln, (3)

where !0,m is the fundamental frequency of the mth source, Lm

is the model order, and ↵m,l = Am,le
j�m,l is the complex am-

plitude of the lth harmonic, where Am,l is the real amplitude and
�m,l its phase. A complex signal model is used because it may
result in simplified expressions, and a lower computational com-
plexity. The signal model may be used with real signals by ap-
plying the Hilbert transform. It should be noted that although we
focus on the stereophonic case (k = 2), we here present a general
multi-channel signal model, which can be used in scenarios where
k > 2 using a different panning law. Furthermore, according to the
source model (3), an instrument recording may contain multiple
sources, e.g., when a chord is played on a guitar, where the signal
generated by each string is considered to be a source. Furthermore,
we define a submixture as a sum of sources that share panning pa-
rameters. The kth channel of an observed mixture is processed in
segments each containing N consecutive samples, i.e,

xk = [xk(0) xk(1) · · · xk(N � 1)]T , (4)

which can be used to write the signal model in vector form as

xk =
MX

m=1

ZmGk,m↵m + ek, (5)

where Zm is a Vandermonde matrix, with the harmonic compo-
nents of source m with fundamental frequency!0,m in the columns,
i.e.,

Zm =

2

6664

1 · · · 1
ej!0,m · · · ej!0,mLm

...
. . .

...
ej!0,m(N�1) · · · ej!0,mLm(N�1)

3

7775
,

and Gk,m is a diagonal matrix containing the panning parameters
in (2) and ⌧k,m for channel k of source m, i.e.,

Gk,m =

2

64
gk,me�j!0,mfs⌧k,m · · · 0

...
. . .

...
0 · · · gk,me�jLm!0,mfs⌧k,m

3

75 .

Figure 1: Overview of the proposed method.

When only amplitude panning is applied, ⌧k,m = 0 8 {k,m},
and when only delay panning is used, gk,m = 1 8 {k,m}. Also,
we assume that the panning parameters are constant throughout
a segment of the signal. The vector of complex amplitudes for
source m is given by

↵m = [↵m,1 · · · ↵m,Lm ]T , (6)

and the noise vector is

ek = [ek(0) ek(1) · · · ek(N � 1)]T . (7)

Since we model the sinusoidal source components, the noise term
contains the non-periodicities that are not captured by the har-
monic model. In the next section, we present the proposed method
for estimating the panning parameters gk,m and ⌧k,m, along with
the number of unique panning parameters, which corresponds to
the number of submixtures.

3. PROPOSED METHOD

The proposed method consist of several sub-systems, as shown
in Figure 1. In the initial step of the proposed method, the pan-
ning parameters of the sources in the mixture are estimated, along
with an active source indication (ASI) of when the corresponding
sources are active. This knowledge is exploited in the harmonic
source analysis, where the parameters of each source sm in the
mixture are estimated, i.e., its fundamental frequency !0,m, the
number of harmonics Lm, and the amplitude vector ↵m. The
harmonic models of the sources are used to form Wiener filters,
which are used to extract the sources from the mixture. The result-
ing frames are combined using overlap-add, and a graphical user
interface (GUI) is used to re-pan the sources.

3.1. Panning Parameter Estimation and Activity Detection

As shown in Figure 1, the panning parameters of the sources in the
observed multi-channel mixture are required as input for the pro-
posed harmonic signal analysis sub-system. The source panning
parameters are estimated along with the number of unique pan-
ning parameters using the method presented in [16]. The method
is a blind source panning estimation algorithm based on clustering
of narrowband interaural level and time differences (ILDs, ITDs).
For an unknown number of sources, the parameter distribution
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across all segments of the mixture is modelled as a Gaussian mix-
ture. The generalized variance and degree of membership of the
Gaussian components across segments are used as a basis for the
selection of clusters amongst candidates. In the time-frequency
domain we define a vector y for each frame containing the relative
amplitude panning parameters and relative channel delays, i.e.,

y=
h
ĝ(!), ⌧̂(!)

iT
=


arctan

✓ ����
X1(!)
X2(!)

����

◆
,
1
!
\X2(!)
X1(!)

�T
, (8)

where ⌧̂(!) = ⌧̂1(!)� ⌧̂2(!), Xk(!) is the discrete Fourier trans-
form of the kth channel of a segment of the mixture, and \ denotes
phase. Eq. (8) is constrained on the assumption of W-disjoint or-
thogonality [19] and on the so-called narrowband assumption that
requires the maximum frequency !max and maximum delay ⌧max to
be strictly within the range |!max⌧max| < ⇡. From (8) we collect P
observations Y = {y(1), . . . ,y(P )} with identical probability dis-
tributions, each being mutually independent. The log-likelihood
function of the P observations is

ln p(Y|✓) =
PX

p=1

ln
MX

m=1

�mp(y(p)|✓m), (9)

where ✓m is the unknown and deterministic parameter vector of
the mth source. For the purpose of estimating panning parame-
ters, the distribution of y from Eq. (8) is modelled as a Gaussian
mixture of M sources, with diagonal covariance matrices, i.e.,

p(y|✓)=
MX

m=1

�m
exp

�
� 1

2 (y � µm)TC�1
m (y � µm)

 
p

(2⇡)d det (Cm)
, (10)

where ✓ 4
= {�1, . . . , �M , µ̂1, . . . , µ̂M ,C1, . . . ,CM} is the com-

plete set of parameters, where the set {�m, µ̂m,Cm} denotes the
mixing probability, mean and covariance of the mth Gaussian. In
general, �m � 0,

PM
m=1 �m = 1, for m = 1, . . . ,M . The

maximum likelihood (ML) estimate of the parameter vector is

✓̂ML = arg max
✓

ln p(Y|✓) (11)

for a value of M such that the GMM is overfitted, see [16]. The
ML GMM parameter estimates in ✓̂ML are obtained using an EM-
algorithm. Several GMM EM-methods have been proposed for
estimating the number of sources, using a penalty term such as
the Bayesian information criterion (BIC) or the minimum descrip-
tion length (MDL) [20]. However, the problem is complicated for
audio recordings for two reasons: no unique definition of a "true
cluster" necessarily exists, and the assumption of normality does
not exactly hold, see, e.g., [21]. Therefore, each of the underly-
ing GMM components does not necessarily correspond to a source
cluster.

In the present method clusters are selected among Gaussian
component candidates by fitting a GMM to the observed data with
a large number of components. From the overfitted GMM clusters
are defined as having lowest generalized variance � and as being
well separated from other candidates as described in the following.
The cluster indices are columns of ⇣!s which have low generalized
variance �, and are well separated from all GMM components, and
✓̂s is arranged such that �1 < �2 < · · · < �S , where � = det (Ĉ)
and s = {1, 2, · · · , S}. The a posteriori probability ⇣!s that y!

belongs to mixture component s is

⇣!s =
�̂sN (y!|µ̂s, Ĉs)PS
j=1 �̂jN (y!|µ̂j , Ĉj)

. (12)

The sth column does not represent a cluster if 0<⇣!✏<1 ^ 0<
⇣!s<1, where ✏ = {1, 2, · · · , s � 1} 8!. After ranking, the M̂
clusters are in the first columns of ⇣!s, as observed in [16]. This
leads to an estimate of the M unique panning parameters and the
statistics ✓̂M̂ from which the vector µ̂m is the panning parameters
of the mth source, across all segments.

We compute an active source indication (ASI) for each frame
of the observed mixture. Specifically, the input signal is processed
in frames of length 60 ms, with a hop size of 15 ms. In each
frame all possible combinations of the obtained ✓̂M̂ statistics are
fitted to the observed data y resulting in a new GMM likelihood.
The maximum likelihood combination is chosen for each frame.
The obtained ASI is a binary indication of activity of each panning
parameter in each frame of the mixture, and is used as input to the
harmonic analysis sub system.

3.2. Harmonic Signal Analysis

In this section the method used to analyse the harmonic sources
in a stereophonic mixture is presented. The goal is to estimate
the fundamental frequencies of the harmonic components in the
mixture, along with the number of harmonics for each source,
and the complex amplitudes, provided with information about the
source panning parameters, and source activity indication, as de-
scribed in the previous section. The proposed method is based
on the maximum likelihood principle, and the log-likelihood of
the kth channel of an observed signal is parametrized by  k =
[ k,1 · · ·  k,M ]T , where  k,m = [!0,m gk,m ⌧k,m ↵

T
m]T ,

for m = 1, . . . ,M . We assume that the deterministic part of the
signal is stationary, and that the noise is independent and identi-
cally distributed over n and k. Furthermore, we assume that the
noise is white Gaussian with different variance in each channel,
�2
k. Defining the error as ek = xk �

PM
m=1 ZmGk,m↵m, the

likelihood of the kth channel of the observed signal is defined as

p (xk; k) =
1

(⇡�2
k)

N e
� 1

�2
k
kekk22

, (13)

which across channels becomes

p ({xk}; { k}) =
KY

k=1

1

(⇡�2
k)

N e
� 1

�2
k
kekk22

. (14)

The log-likelihood of a single channel of the observed signal is

ln p (xk; k) = �N ln⇡ �N ln�2
k �

kekk22
�2
k

(15)

while the log-likelihood for all channels of the observed signal is

ln p ({xk}; { k})=�KN ln⇡�N
KX

k=1

ln�2
k�

KX

k=1

kekk22
�2
k

. (16)

The fundamental frequencies, complex amplitudes, and noise vari-
ance for each channel are estimated by maximizing (16). Since the
problem of estimating the parameters of all the sources at once is
impractical in terms of computational complexity, the parameters
are estimated iteratively using an EM algorithm. For each iteration
of the method, the log-likelihood of the observed segment of the
mixture is increased. The observed signal is modelled as a sum of
M sources, where the kth channel of source m is modelled as

xk,m = ZmGk,m↵m + ek,m, (17)
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where Gk,m is now formed using the estimates {ĝk,m, ⌧̂k,m} for
each source, and where the noise term ek is decomposed into M
sources, i.e.,

ek,m = �mek, (18)

where �m � 0 is chosen such that
PM

m=1 �m = 1. Here, �m
is chosen such that the entire error term is assigned to a single
component in each iteration, i.e., �p=m = 1 and �p 6=m = 0, and
p = mod (i � 1,M) + 1, with i being the EM iteration index
[22, 23]. Assuming white Gaussian noise (see [24, 25]), in the E-
step, the kth channel of the mth source in iteration i is modelled
according to (17) based on parameters estimated in the previous
iteration, i.e.,

x̂
(i)
k,m = Z

(i)
m Gk,m↵̂

(i)
m +�m

 
xk�

MX

m=1

Z
(i)
m Gk,m↵̃

(i)
m

!
, (19)

where e↵m = [ eA1,mej\b↵1,m · · · eALm,mej\b↵Lm,m ]T is formed
using a scaled codebook entry Ãm from a codebook C of magni-
tude amplitude vectors trained on individual notes played on a va-
riety of instruments, and combined with the phases resulting from
the least squares estimate of the complex amplitude vector, given
!̂(i+1)
m as [26] (see [17] for more information)

↵̂
(i+1)
m =

"
KX

k=1

G
H
k,mZ

H
mZmGk,m

�̂2(i+1)
k

#�1 KX

k=1

G
H
k,mZ

H
mx̂

(i)
k,m

�̂2(i+1)
k

. (20)

In the M-step, the fundamental frequency of the mth source is
estimated using the NLS method, based on the estimate of each
source from the previous iteration, i.e.,

!̂(i+1)
m = argmin

!m

KX

k=1

ln
���x̂(i)

k,m � ZmGk,m↵̃
(i+1)
m

���
2

2
, (21)

The estimate of the variance �2
k in iteration i+ 1 is

�̂2(i+1)
k =

1
N

���x̂(i)
k,m � ZmGk,m↵̃

(i+1)
m

���
2

2
. (22)

The complex amplitude vector and the noise variance are estimated
in an iterative fashion, because they depend on each other. It is not
necessary to iterate between (20) and (22) if the noise variance for
both channels are equal. The E- and M-steps are repeated until
a convergence criterion is met. The method is guaranteed to con-
verge to a local minimum in each step, and increases the likelihood
of the observed data at each step. Initialization of the EM algo-
rithm is not simple, and can result in poor performance, if it is not
done carefully. We here use the harmonic matching pursuit (HMP)
[27, 24], which is based on a residual for channel k in iteration m
at time n, defined as

r(m)
k (n) = r(m�1)

k (n)�
LmX

l=1

gk,m↵m,le
j!0,ml(n�⌧k,m). (23)

The model parameters are estimated iteratively for each modelled
harmonic source m. The method is initialized using the observed
signal, i.e., r(0)k (n) = xk(n). As previously mentioned, the funda-
mental frequencies of the M sources are estimated jointly with the
model order. The maximum a posteriori (MAP) model selection
criterion [28, 24] is used as a model selection rule, i.e.,

M̂m = argmin
Mm

KX

k=1

�ln p
⇣
xk;  ̂m,Mm

⌘
+

1
2

ln |Ĥm|,

where M̂m is the model of the mth source, and | · | denotes the
determinant of a matrix. The determinant of the Hessian, Ĥm,
can be approximated using the Fisher information matrix, and a
normalization matrix is introduced (see [28]) such that

ln |Ĥm| = ln |K�2|+ ln |KĤmK|, (24)

where the last term, which is of order O(1), is ignored, and the
first term is used as a penalty term (see [17] for more details). We
can now state the joint pitch and model order estimator used to
compute initial estimates for sources m = 1, . . . ,M , i.e.,

n
!̂0,m, L̂m

o
= argmin
↵m,{!0,m,Lm}

ln |K�2|
2

+N
KX

k=1

ln
���k,m

��2
2
, (25)

where
�k,m = r

(m�1)
k � ZmGk,m↵̃m, (26)

and r
(m)
k = [rmk (0) rmk (1) · · · rmk (N � 1)]T . Since the cost

function is multi-modal, it is minimized with respect to !0,m using
a grid search (grid size selection is discussed in [29]). The funda-
mental frequencies and amplitudes of the M sources are obtained
by iterating between the expectation and maximization steps, i.e.,
(19), and (20)-(22), respectively, until convergence.

3.3. Source Reconstruction and Re-Panning

The harmonic sources in an observed stereophonic mixture are im-
plicitly modelled in the iterative parameter estimation process, i.e.,
the estimate of the mth source is

ŝm(n) = Zm(n)↵̂m, (27)

for n = 1, . . . , N . Since the number of entries in the amplitude
codebook C is relatively small, the signals ŝm, for m = 1, . . . ,M ,
may sound a bit rough when listened to directly. Instead, we pro-
pose to use the estimated parameters to form a frequency-domain
Wiener filter to extract each source from a segment of the observed
mixture, i.e.,

S̄m(!) =
kŜm(!)k2

kŜm(!)k2 + kV̂ (!)k
X(!), (28)

where S̄m(!) is the frequency-domain filter output at a certain fre-
quency bin corresponding to !, Ŝm(!) is the DFT of the source
estimate ŝm, V̂ (!) is the DFT of the estimates of the interfering
sources and the noise, i.e., v = x � ŝm, X(!) is the DFT of
a single-channel version of the mixture. Each time-domain seg-
ment of each the M sources is generated as the inverse DFT of the
filtered output above. The segments are combined using overlap-
add.

4. EXPERIMENTS

The experimental evaluation of the proposed method for panning
parameter estimation, source separation and re-panning consists
of multiple experiments. To evaluate the performance of the pro-
posed method for source separation, a multitrack recording from
the MedleyDB database of music recordings [30] is used, i.e.,
Aimee Norwich - Flying. A segment containing 24 seconds (start:
105.5 s, end: 129.5 s) of audio from three instrument recordings
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Table 1: Description of the data used in the experiments.

File name (.wav) Instrument � (degrees) ⌧ (samples)

Flying_RAW_14_01 Trombone 30 0
Flying_RAW_03_02 Bass 5 0
Flying_RAW_15_02 Clarinet -30 0

Table 2: Pannning parameter estimates.

Track �̂ (degrees) ⌧̂ (samples)

Trombone 29.99 0.00
Bass 4.99 0.01
Clarinet -29.97 0.00

are amplitude panned to synthetically generate a stereophonic mix-
ture. Descriptions of the tracks used in the mixture and their pan-
ning parameters are presented in Table 1.

The estimation of the number submixtures and their panning
parameters are evaluated on the observed stereo mixture with fs =
44.1 kHz. The input signal is processed in samples of length
N = 2640 samples (60 ms), with a hop size of H = 662 sam-
ples (15 ms). The GMM is overfitted with M = 10 and from the
overfitted GMM components, an estimate of the source clusters are
obtained. To lower the computational complexity and remove part
of the noise floor from the spectrum, we select the frequency bins
in the measurement vector (8) according to an indicator function
b(!) defined for all !, i.e.,

b(!) =

(
1, |X1(!)||X2(!)| > |X1|T |X2|/N
0, otherwise

. (29)

The estimated source clusters are shown in Figure 3. The source
panning clusters are visualized, as overlayed on the data and y,
and the contours of the initial overfitted GMM components. Both
amplitude panning angle and delay were estimated correctly and
the results are shown in table 2. We observe that the panning pa-
rameters are almost equal to the true parameters. The number of
sources has been estimated to the true value of M = 3. Next, we
can evaluate the ASI estimation shown in Figure 2. The Figure
shows the ASI overlayed on the unmixed sources. A black vertical
line indicates activity in the given frame at the estimated panning
angle, while no line means no activity. We observe that the overall
trend is that the binary ASI resembles the activity of the sources,
both in silent periods and when the sources contain significant en-
ergy.

The fundamental frequency estimates of the harmonic sources
are obtained using the estimated panning parameters and the ASI.
The mixture is downsampled to fs = 8 kHz, and processed in
segments of length N = 480 samples (60 ms), with a hop size
of H = 120 samples (15 ms). The fundamental frequencies are
estimated using a grid with 1 Hz spacing, from f0,min = 50 Hz
to f0,min = 1000 Hz. As explained in Section 3.2, a codebook of
magnitude amplitudes is used when estimating the complex am-
plitudes of the sources. The codebook is trained using anechoic
instrument recordings from the IOWA database1, and the signals

1Available at http://theremin.music.uiowa.edu.
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Figure 2: Active source indication (ASI) shown as black lines. For
each frame of 15 ms there is an indicator. The ASI is overlayed on
the original source signals which do not relate to the panning axis.
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Figure 3: Proposed GMM estimation of source panning clusters.

used for training are listed in Table 3. See [17] for further details.
The fundamental frequency estimates of the sources are shown in
Figure 4, along with the ground truth which was obtained using the
joint_anls() function from the Multi-Pitch Estimation Tool-
box [24] on the individual instrument recordings from the dataset
resulting in single-pitch estimates. No smoothing has been applied
to the parameter estimates. The separation of the sources from
the mixture is done using Wiener filtering, as described in Sec-
tion 3.3. A spectrogram of a monophonic version of the observed
mixture, obtained as an average of the stereo channels, is shown
in Figure 6 along with the residual, which is obtained by subtract-
ing the estimated sources from the mixture. We observe that most
of the harmonic components in the mixture have been removed.
The spectrograms of the unmixed and reconstructed bass tracks are
shown in Figure 7. The reconstructed bass track contains most of
the harmonic content in the unmixed source, however, some of the
higher harmonics are missing. In Figure 8 the spectrograms of the
unmixed and reconstructed trombone tracks are presented. The re-
constructed trombone signal again contains most of the harmonic
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Table 3: Data used for generating the amplitude codebook (v:
played with vibrato).

Instrument Instr. type Note ranges Duration (s)

Alto flute Woodwind G3-B3, C4-B4 68.3
Alto sax Woodwind Db3-B3, C4-B4 118.9
Alto sax (v) Woodwind Db3-B3, C4-B4 129.2
Bass flute Woodwind C3-B3, C4-B4 113.3
Bassoon Woodwind C3-B3, C4-B4 55.7
Bb clarinet Woodwind D3-B3, C4-B4 111.4
Eb clarinet Woodwind G3-B3,C4-B4 47.5
French horn Brass C2-B2, C4-B4 68.0
Oboe Woodwind Bb3-B3, C4-B4 46.6
Soprano sax Woodwind Ab3-B3, C4-B4 64.3
Soprano sax (v) Woodwind Ab3-B3, C4-B4 69.2
Tenor trombone Brass C3-B3, C4-B4 106.2
Trumpet Brass E3-B3, C4-B4 170.3
Trumpet (v) Brass E3-B3, C4-B4 182.9

0 500 1000 1500
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200

400

600

800

1000
Ground truth Proposed method

Figure 4: Fundamental frequency estimates of the sources in the
mixture.

content, however, some segments in the beginning of the signal
contain energy which was not present in the unmixed source; this
is due to errors in the ASI. The spectrograms of the unmixed and
reconstrcuted clarinet tracks are shown in Figure 9. Comparing the
spectrograms of the unmixed and reconstructed tracks, it can be
seen that the main harmonic components of the source have been
captured in the reconstruction. A graphical user interface (GUI)
is written in MATLAB in which the sources can be re-panned, us-
ing either the original panning parameters, or using new parame-
ters2. Figure 5 shows a screenshot of the mixing GUI. An informal
listening test suggests that including the residual ensures that in-
formation not captured by the harmonic model, such as breathing
noises and other non-stationarities greatly improves the perceived
quality of the reconstructed mixture.

2An audiovisual demonstration of the re-panning is available at
https://youtu.be/0HHoMVyOGcU

Figure 5: Screenshot of the GUI for mixture reconstruction.

5. DISCUSSION

In this paper, a method for separating an observed stereophonic
mixture into its harmonic components, is presented. The method
does not require knowledge of the number of sources in the mix-
ture. The sources are extracted using a multi-channel harmonic
signal model, where the panning parameters and the number of
active sources in each frame of the mixture are estimated in an ini-
tial step. The fundamental frequencies, amplitudes and number of
harmonics are estimated using an iterative approach. To enforce
spectral smoothness, the magnitude amplitudes of the harmonics
are mapped to entries in a codebook, which has been trained on in-
dividual notes played on a variation of instruments. The harmonic
components are extracted by modelling the sources using the har-
monic model and the estimated parameters. When the harmonic
sources have been extracted, they are processed individually, i.e,
the panning parameters of the sources are altered. The reconstruc-
tion of the mixture includes the residual, which contains the parts
of the signal that are not captured by the harmonic signal model.
When the residual is added to the mixture of extracted harmonic
components, the resulting mixture is more pleasing to listen to.
Extensions to this work could be the inclusion of inharmonicity in
the signal model, to allow more precise modelling of string instru-
ment signals, such as guitar, bass and piano recordings. Tempo-
ral smoothness could also be imposed in the parameter estimation
steps. Furthermore, the signal model presented here is anechoic,
i.e., the performance of the proposed method will degrade in the
presense of reverberation effects. One option is to use a method
for dereverberation, such as one of the methods presented in [31].
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Figure 6: Spectrogram of the observed mixture (top) and the resid-
ual after subtraction of the harmonic sources (bottom).

Figure 7: Spectrogram of the unmixed bass track (top) and the
reconstructed bass track (bottom).

Figure 8: Spectrogram of the unmixed trombone track (top) and
the reconstructed trombone track (bottom).

Figure 9: Spectrogram of the unmixed clarinet track (top) and the
reconstructed clarinet track (bottom).
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