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ABSTRACT

Noise subspace methods are popular for estimating the parame-
ters of complex sinusoids in the presence of uncorrelated noise
and have applications in musical instrument modeling and micro-
phone array processing. One such algorithm, MUSIC (Multiple
Signal Classification) has been popular for its ability to resolve
closely spaced sinusoids. However, the computational efficiency
of MUSIC is relatively low, since it requires an explicit eigenvalue
decomposition of an autocorrelation matrix, followed by a linear
search over a large space. In this paper, we discuss methods for
and the benefits of converting the Toeplitz structure of the autocor-
relation matrix to circulant form, so that eigenvalue decomposi-
tion can be replaced by a Fast Fourier Transform (FFT) of one row
of the matrix. This transformation requires modeling the signal
as at least approximately periodic over some duration. For these
periodic signals, the pseudospectrum calculation becomes trivial
and the accuracy of the frequency estimates only depends on how
well periodicity detection works. We derive a closed-form expres-
sion for the pseudospectrum, yielding large savings in computa-
tion time. We test our algorithm to resolve closely spaced piano
partials.

1. INTRODUCTION

Sinusoidal parameter estimation is a classical problem with appli-
cations in radar, sonar, music, and speech, among others. When
the frequencies of sinusoids are well resolved, looking for spectral
peaks is adequate. It is shown in [1] that the maximum likelihood
(ML) frequency estimate for a single sinusoid in Gaussian white
noise is given by the frequency of the magnitude peak in the peri-
odogram. The ML approach is extended and Cramer-Rao bounds
are derived for multiple sinusoids in noise in a follow-on paper by
the same authors [2]. Some other estimators are covered in [3].

For closely spaced sinusoidal frequencies, however, other ap-
proaches have been developed. Noise subspace methods are a
class of sinusoidal parameter estimators that utilize the fact that
the noise subspace of the measured signal is orthogonal to the sig-
nal subspace. Pisarenko Harmonic Decomposition [4] makes use
of the eigenvector associated with the minimum eigenvalue of the
estimated autocorrelation matrix to find frequencies. However, it
has been found to exhibit relatively poor accuracy [3]. Schmidt
[5] improved over Pisarenko with the MUSIC (MUltiple SIgnal
Classification) algorithm which could estimate the frequencies of
multiple closely spaced signals more accurately in the presence of
noise. In MUSIC, a pseudospectrum is generated by projecting
a complex sinusoid onto all of the noise subspace eigenvectors,
defining peaks where this projection magnitude is minimum. This

method is shown to be asymptotically unbiased. An enhancement
to MUSIC, root-MUSIC, was proposed in [6]. It uses the proper-
ties of the signal-space eigenvectors to define a rational spectrum
with poles and zeros. It is said to have better resolution than MU-
SIC at low SNRs. Similarly, another popular algorithm, ESPRIT
[7], was invented by Roy et al. which makes use of the underly-
ing rotational invariance of the signal subspace. The generalized
eigenvalues of the matrix pencil formed by an auto-covariance ma-
trix and a cross-covariance matrix gives the unknown frequencies.
ESPRIT performs better than MUSIC, especially when the sig-
nal is sampled nonuniformly. More recently, another enhancement
to MUSIC, gold-MUSIC [8] has been proposed which uses two
stages for coarse and fine search, respectively.

One of the disadvantages of the MUSIC algorithm is its com-
putational complexity. Typical eigenvalue decomposition algo-
rithms are of the order O(N3) [9]. In this paper, we use the fact
that, for periodic signals, the autocorrelation matrix is circulant
when it spans an integer multiple of the signal’s period. In this
case, looking for the eigenvalues with largest magnitude is equiv-
alent to looking for peaks in the power spectrum. We know in the
circulant case that all noise eigenvectors are DFT sinusoids [10],
and hence we can derive a closed-form solution when we project
our search space onto the noise subspace, thereby reducing further
the calculations required to find the pseudospectrum. Replacing
eigenvalue decomposition in MUSIC with efficient Fourier trans-
form based methods has been previously studied in [11] where the
eigenvectors are derived to be some linear combinations of the data
vectors, while maintaining the orthonormality constraint. In this
paper, we take a different approach and show that for periodic sig-
nals, the MUSIC pseudospectrum can be exactly calculated using a
sum of aliased sinc functions and its accuracy only depends on the
accuracy with which the periodicity of the autocorrelation function
is detected. We also propose speeding up MUSIC for non-periodic
signals by initializing QR factorization for eigenvalue decomposi-
tion with the DFT matrix.

We test our algorithm to resolve closely spaced partials of the
A3 note played on a piano. It is a well known fact that the strings
corresponding to a particular piano key are slightly mistuned. Cou-
pled motion of piano strings has been studied in detail by Weinre-
ich in [12, 13]. There is a slight difference in frequency of the
individual strings, giving rise to closely spaced peaks in the spec-
tra. We show that FAST MUSIC can resolve two closely spaced
peaks much faster than MUSIC.

The rest of this paper is organized as follows : Section 2 gives
an outline of the MUSIC algorithm, Section 3 derives the FAST
MUSIC algorithm, Section 4 describes the experimental results on
a) an artificially synthesized signal containing two sinusoids with
additive white noise and b) a partial of the A3 note played on the
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piano which contains beating frequencies. We conclude the paper
in Section 5 and delineate the scope for future work. Estimation of
real-valued sine wave frequencies with MUSIC has been studied
in [14]. For all derivations in this paper, we work with real signals,
because we are interested in audio applications. This saves some
time in computing the pseudospectrum since we know it will be
symmetric. Our derivations can be easily extended to complex
signals.

2. MUSIC

2.1. Model

We wish to estimate the parameters of a signal composed of ad-
ditive sinusoids from noisy observations. Let y(n) be the noisy
signal, composed of a deterministic part, x(n), made of r real sinu-
soids and random noise, w(n). We assume that w(n) ⇠ N(0,�2),
and that w(n) and x(n) are uncorrelated. The sinusoidal phases
�i’s are assumed to be i.i.d. and uniformly distributed �i ⇠ U(�⇡,
⇡).

y(n) =
rX

i=1

Ai cos (!in+ �i) + w(n)

y(n) = s(n) + w(n)

In vector notation, the signal y 2 RM can be characterized
by the M ⇥ M autocorrelation matrix Ky = E(yyT ). For a
zero-mean signal, the autocorrelation matrix coincides with the
covariance matrix. Since this matrix is Toeplitz and symmetric
positive-definite, its eigenvalues are real and nonnegative (and pos-
itive when � > 0). We can perform an eigenvalue decomposition
on this matrix to get a diagonal matrix ⇤ consisting of the eigen-
values, and an eigenvector matrix Q. The 2r eigenvectors cor-
responding to the 2r largest eigenvalues, Qs, contain signal plus
noise information, whereas the remaining M-2r eigenvectors, Qw,
only represent the noise subspace. Thus, we have the following
relationships:

Ky = Ks +Kw = Ks + �2I

Ky = Q⇤QH

Ky =
⇥
Qs Qw

⇤ ⇤0 0
0 �2IM�2r

� 
QH

s

QH
w

� (1)

2.2. Pseudospectrum Estimation

Let a vector of M harmonic frequencies be denoted as b(!) =
[1, ej!, e2j! · · · e(M�1)j!]T . We project this vector onto Qw, i.e.,
the subspace occupied by the noise (where there is no signal com-
ponent). MUSIC defines the following pseudospectrum as a func-
tion of a set of !’s:

P (!) =
1

b(!)HQwQH
wb(!)

P (!) =
1

||QH
wb(!)||2

(2)

For a particular value of ! that is actually present in the sig-
nal, the sum of projections of b onto the eigenvectors spanning the
noise subspace will be zero. This is because the subspace occupied
by the signal is orthogonal to that occupied by noise since they are
uncorrelated. Thus, we see that P (!) will take on a very high

value in such cases (theoretically infinite). In conclusion, we can
find peaks in the function P (!) and those will correspond to our
estimated frequencies. Since the search space can consist of any
number of densely packed frequencies, very closely spaced peaks
can show up in the pseudospectrum. However, as the search-space
grows, so does computational complexity.

3. FAST MUSIC

3.1. Deriving the autocorrelation matrix

In vector form, y 2 RM can be written as:

y = Sa+w

w ⇠ N(0,�2I)
(3)

2

6664

y(n)
y(n� 1)

...
y(n�M + 1)

3

7775
=

2

6664

1 0 · · ·
cos(!1) sin(!1) · · ·

...
... . . .

cos[(M � 1)!1] sin[(M � 1)!1] · · ·

3

7775

⇥

2

6664

A1 cos(!1n+ �1)
A1 sin(!1n+ �2)

...
Ar sin(!rn+ �r)

3

7775
+

2

6664

w(n)
w(n� 1)

...
w(n�M + 1)

3

7775

(4)

Since y is zero-mean, its covariance matrix is

Ky = E(yyT ) = SKaS
T + �2I. (5)

We now want to get Ky in terms of Ka. We have assumed �i ⇠
U(�⇡,⇡) (uniformly identically distributed random phase). We
observe that every term of Ka is of the form Ka(i, j) = E[Ai cos(!i

n+ �i)Aj cos(!jn+ �j)], or E[Ai sin(!in+ �i)Aj sin(!jn+
�j)], or E[Ai sin(!in+�i)Aj cos(!jn+�j)], or E[Ai cos(!in+
�i)Aj sin(!jn+�j)]. All of these terms are zero, except the first
two when i = j, i.e. E[A2

i cos (!in+ �i)
2] = E[A2

i sin(!in +

�i)
2] =

A2
i
2 , which makes it a diagonal matrix:

Ka =

2

666664

A2
1
2 0 · · · 0 0

0
A2

1
2 · · · 0 0

...
... . . .

...
...

0 0 · · · 0
A2

r
2

3

777775
(6)

The autocorrelation matrix of the observed signal is given in (7).
This is an M ⇥ M real, symmetric Toeplitz matrix.

3.2. For periodic signals

Under conditions to be specified, it is possible to replace the eigen-
value decomposition required in MUSIC by a Fast Fourier Trans-
form (FFT). In this subsection, we derive the order of the autocor-
relation matrix for which it is circulant instead of only Toeplitz.
We also derive a closed-form expression for finding the pseudospec-
trum.
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SKaS
T + �2I =

2

666664

P
i
A2

i
2 + �2 P

i
A2

i
2 cos!i

P
i
A2

i
2 cos 2!i · · ·

P
i
A2

i
2 cos (M � 1)!iP

i
A2

i
2 cos!i

P
i
A2

i
2 + �2 P

i
A2

i
2 cos!i · · ·

P
i
A2

i
2 cos (M � 2)!i

...
...

...
. . .

...
P

i
A2

i
2 cos (M � 1)!i

P
i
A2

i
2 cos (M � 2)!i · · · · · ·

P
i
A2

i
2 + �2

3

777775
(7)

3.2.1. Circulancy of the autocorrelation matrix

We have seen that the autocorrelation matrix Ky is symmetric Toeplitz.
However it is to be noted that for k = 1, 2, ..., if M is an integer
such that M = 2⇡n/!i, n 2 Z+, then

rX

i=1

A2
i

2
cos (M � k)!i =

rX

i=1

A2
i

2
cos k!i (8)

If we choose M carefully, then the autocorrelation matrix may be
written as :

2

666666664

P
i
A2

i
2 + �2 P

i
A2

i
2 cos!i · · ·

P
i
A2

i
2 cos!iP

i
A2

i
2 cos!i

P
i
A2

i
2 + �2 · · ·

P
i
A2

i
2 cos 2!i

P
i
A2

i
2 cos 2!i

P
i
A2

i
2 cos!i

...
P

i
A2

i
2 cos 3!i

...
...

. . .
...

P
i
A2

i
2 cos!i

P
i
A2

i
2 cos 2!i · · ·

P
i
A2

i
2 + �2

3

777777775

(9)
This matrix is circulant! Hence, its eigenvectors are given by

the DFT sinusoids and its eigenvalues are the DFT coefficients
of the first row [10]. The eigenvalues can be computed using an
FFT algorithm when M is a power of 2 or highly composite. The
relationship between eigenvalues of Toeplitz matrices and those of
asymptotically equivalent circulant matrices have been studied in
[15].

For example, if the signal consists of 3 sinusoids with frequen-
cies ⇡

2 ,
⇡
4 and ⇡

5 then the minimum order of M which will make
the autocorrelation matrix circulant is given by 2⇥LCM(2, 4, 5) =
40. However, if any of the denominators is irrational, then the
LCM does not exist, and hence no value of M will make the auto-
correlation matrix circulant. Of course, in reality we do not know
the frequencies and cannot determine M this way. However, we
can instead detect when the autocorrelation corresponds to a sig-
nal that is periodic. If we can find the periodicity of the estimated
autocorrelation function and set M to be that period, then the re-
sulting autocorrelation matrix will be circulant. Since no signal
is truly precisely periodic, this procedure can be viewed as intro-
ducing an approximation based on assuming the signal is periodic.
Such a periodic/harmonic approximation is common when the un-
derlying signal source is known to be a quasi periodic oscillator
such in voiced speech, bowed strings, woodwinds, flutes, brasses,
organs, and so on.

In this paper, we use the Average Magnitude Difference Func-
tion [16] to detect the period. We find all local minima in the
AMDF and pick the period as the lowest minimum index which
is smaller than its adjacent neighbors. We set M to be an integer
multiple of the detected period. This gives us more data points for
the FFT, thus increasing accuracy. It also comes at a higher cost,
but the FFT is still orders of magnitude faster than eigenvalue de-
composition, hence the trade-off is justified.

3.2.2. Searching over a large range of frequencies

Suppose we want to calculate the pseudospectrum for N � M
distinct frequencies !k = 2⇡ k

N for k = �N
2 , . . . ,

N
2 �1 covering

the range [�⇡,⇡), i.e, the search space has N points. Each search
space vector is

b(k) = [1, e
2⇡jk
N , e

4⇡jk
N . . . , e

2⇡(M�1)jk
N ]T . (10)

The noise subspace consists of M�2r vectors. Instead of project-
ing on to the noise subspace, Qw, we can make the computation
easier by using the signal subspace, Qs instead, which only has 2r
vectors. This is because the noise subspace and the signal subspace
are orthogonal complements and hence the following holds

QsQ
H
s +QwQ

H
w = I (11)

The projection onto the noise subspace can be simplified as

||QH
wb||2 = b

HQwQ
H
wb

= b
H(I �QsQ

H
s )b

= b
H
b� b

HQsQ
H
s b

= ||b||2 � ||QH
s b||2

(12)

Since b(k) is a vector of length M consisting of complex exponen-
tials of unit magnitude, ||b(k)||2 = M . The matrix Qs 2 CM⇥2r

is composed of columns of signal eigenvectors, such that each col-
umn is denoted as

qs =
1p
M

[1, e
2⇡jmi

M , e
4⇡jmi

M , · · · , e
2⇡(M�1)jmi

M ]T (13)

where mi are the complex frequencies associated with the signal
eigenvectors [10], i.e, the indices of the top 2r FFT magnitudes.
The projection of b(k) onto the signal subspace can be written as :

QH
s b(k) =

1p
M

2

664

PM�1
p=0 exp[2⇡jp

�
k
N � m1

M

�
]

...PM�1
p=0 exp[2⇡jp

�
k
N � m2r

M

�
]

3

775

=
1p
M

2

66664

e�⇡j( k
N �m1

M )(M�1) sin[⇡( k
N �m1

M )M ]

sin[⇡( k
N �m1

M )]

...

e�⇡j( k
N �m2r

M )(M�1) sin[⇡( k
N �m2r

M )M ]

sin[⇡( k
N �m2r

M )]

3

77775

(14)
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The pseudospectrum can be approximated as:

P (k) =
1

||b(k)||2 � ||QH
s b(k)||2

=
1

M � 1
M

P2r
i=1

⇥ sin[⇡( k
N �mi

M )M ]

sin[⇡( k
N �mi

M )]

⇤2

=
1

M �
P2r

i=1

⇥
asincM ( k

N � mi
M )

⇤2

(15)

where asinc stands for the aliased sinc function1. The pseudospec-
trum is independent of the data and only depends on the calculated
period, M . At signal frequencies, when k

N = mi
M , one aliased

sinc term in the summation dominates and we can evaluate it us-
ing L’Hospital’s rule.

lim
x!0

asincM (x) = M (16)

Therefore, at signal frequencies, the pseudospectrum is theoreti-
cally infinite.

P (k) ⇡ 1 if
k
N

=
mi

M
(17)

For the special case of periodic signals, MUSIC is essentially equiv-
alent to looking for the top 2r peaks in the power spectrum and
using the positions of those peaks to form the signal space.

3.2.3. Algorithm Summary

1. Estimate the autocorrelation function (ACF) of the given
signal.

2. Find the periodicity M of the ACF and take the FFT of its
first M samples. This is equivalent to computing the power
spectrum.

3. Sort the FFT magnitudes in descending order. The indices
corresponding to the largest 2r magnitudes are the signal
eigenvector frequencies.

4. Form search space vectors according to (10) with k = �N
2 ,

. . . , N
2 � 1.

5. Calculate the pseudospectrum according to (15) and find 2r
peaks in it.

6. Do parabolic interpolation on the peaks to get more accu-
rate frequency estimates [17].

3.3. For non-periodic signals

Most signals in practical applications are non-periodic. In that
case, these derivations do not hold exactly. However, we can still
speed up the eigenvalue decomposition process. From (1), we can
write the diagonal eigenvalue matrix as

⇤ = QHKyQ (18)

The eigenvectors Q are usually estimated with QR factorization
[9]. We can use the DFT matrix W as an initial value for QR
factorization, which will ensure its convergence in fewer steps.

1https://ccrma.stanford.edu/~jos/sasp/
Rectangular_Window.html

⇤+ ✏ = WHKyW (19)
For exactly periodic signals ✏ is a null matrix. For approximately
periodic signals, ✏ is a non-diagonal matrix with small entries. We
can see that within some iterations W will converge to Q. The
speed of convergence will depend on how close to being periodic
the signal is.

4. EXPERIMENTS AND RESULTS

4.1. Synthesized signal

To compare FAST MUSIC with MUSIC, we tested a signal com-
posed of cosines at frequencies 0.004 Hz and 0.005 Hz at fs = 1
Hz and added normally distributed noise w(n) at an SNR of 10dB.

y(n) = cos (0.01⇡n) + 0.5 cos (0.008⇡n+ �) + w(n) (20)

To detect periodicity of the autocorrelation function, we need
at least two periods of the signal. This signal has a periodicity of
M = 1000 samples. Thus, we made the signal 2500 samples long.
It is to be noted that the closer the frequencies in the signal, the
larger will be its periodicity, and hence we will need more samples
of data to accurately determine it.

To measure computation time, we compared various eigen-
value decomposition algorithms with Fast Fourier Transform al-
gorithms for increasing orders of the autocorrelation matrix. The
results can be seen in Figure 1. QR factorization is used to find
eigenvalues and eigenvectors for MUSIC. QR factorization with
Gram Schmidt orthogonalization is slow, symmetric tridiagonal
QR with implicit Wilkinson shift is slightly faster whereas reduc-
tion to the Hessenberg form is fastest. More details about these
algorithms can be found in [9]. The Fourier transform algorithms
are orders of magnitude faster, with the DFT dominating at lower
orders and self-sorting mixed radix FFT [18] and resampled split
radix FFT [19] giving faster speeds at higher orders. It is to be
noted that the order of the autocorrelation matrix for which circu-
lancy is achieved is not likely to be a power of 2, and hence we
cannot use the well-known radix-2 FFT algorithm. However, we
can first resample the data to a power of 2 [20] and then apply a
radix-2/split radix FFT algorithm or use a mixed-radix FFT algo-
rithm on any composite order. All of these functions have been
implemented in MATLAB. More efficient implementations can be
done in C, where the FFT functions should overtake the DFT at
much lower orders.

We also conducted 1000 Monte-Carlo simulations on the above
example, with uniformly distributed random phase. We plotted the
mean-squared errors vs SNR for MUSIC and FAST MUSIC, along
with the Cramer-Rao bounds (CRB) as given in [21] in Figure 2.
The order of the autocorrelation matrix for MUSIC is set to 200.
For FAST MUSIC, the period is calculated for each simulation
and found to be 1000 samples. The number of points in the search
space is 2000. The poor performance of FAST MUSIC at low
SNRs is due to the inaccuracy in periodicity detection. In Figure
2a, FAST MUSIC overtakes the CRB at high SNRs, where period-
icity is detected accurately, hence MSE = 0. At high SNRs, FAST
MUSIC also outperforms MUSIC. Increasing the order of the au-
tocorrelation matrix would have improved the accuracy of MUSIC
at a cost of high computational time, so we decided to work with
a reasonable order of 200, while FAST MUSIC used 2000 sam-
ples in the autocorrelation function (an integer multiple of the pe-
riod). As seen in Figure 2b, both methods have significant bias.
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Bias can be reduced arbitrarily in FFT based peak finding methods
[17] by increasing the amount of zero-padding, as well as by other
methods [22]. We expect it to reduce similarly in FAST-MUSIC
and MUSIC when the number of points in the search space is in-
creased.
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Figure 2: MSE vs SNR plots
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Figure 3: Spectrogram of piano note

4.2. Piano data

We tested our algorithm on the A3 note played on the piano. The
spectrogram of the steady state portion of the note is given in Fig-
ure 3. We can observe beating in some of the partials. We decided
to work with the 11th partial, located close to 2600 Hz, where a
beating of roughly 1 Hz is observed. We bandpass-filtered the sig-
nal using a 4th-order Butterworth filter with cut-off frequencies at
2400 Hz and 2900 Hz. We ran FFTs with the rectangular win-
dow and FAST MUSIC on different data lengths, as shown in Fig-
ure 4, where the vertical lines indicate the frequencies detected by
FAST MUSIC. One disadvantage of using the rectangular window
is high side lobe height as seen in Figure 4, but we compromise
side lobe height for the narrowest main lobe width for the sake
of best resolution. We see that for window size of 214, the FFT
magnitude does not exhibit two separately discernible peaks at all,
whereas FAST MUSIC provides two peak frequencies with some
error. This is because we specify the number of sinusoids to be 2 in
FAST MUSIC, whereas the FFT has no prior information about the
number of peaks expected in the magnitude spectrum. For longer
window sizes, both FFT and FAST MUSIC are able to resolve the
two peaks with greater accuracy. One potential application is in pi-
ano tuning, where FAST MUSIC could be used to quickly resolve
closely spaced peaks caused by the coupled motion of the piano
strings.

5. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a computationally efficient inter-
pretation of the MUSIC algorithm for periodic signals that makes
use of the peaks in the power spectrum. The autocorrelation ma-
trix has been derived and approximated by a circulant matrix. This
approximation has allowed us to replace computationally inten-
sive eigenvalue decomposition algorithms with an FFT. We have
subsequently derived a closed-form expression for searching over
a range of frequencies. These modifications have yielded a sig-
nificant improvement in computational speed. For non-periodic
signals, we have proposed initialization of QR factorization with
the DFT matrix to speed up eigenvalue decomposition.2

2The code and the simulations can be found at https://github.
com/orchidas/fast_MUSIC
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Figure 4: FFT magnitude plots and FAST MUSIC frequency estimates (vertical lines)

A key factor in the accuracy of FAST MUSIC is the precision
in periodicity detection. If the period is off by a significant number
of samples, the autocorrelation matrix is no longer circulant and
FAST MUSIC falls apart. AMDF based periodicity detector is
simple but time consuming, not foolproof and often yields wrong
results if the number of lags in the autocorrelation function is very

high. Ideally, a better method for periodicity detection should be
used.

Another issue is finding the number of sinusoids present in a
given signal, when not known a priori. To do so, one can look at
the relative magnitude of the eigenvalues (power spectrum peak
values in our case). This works well if the signal to noise ratio is
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sufficiently high and the peak separation sufficient. More robust
partitioning schemes have been used in [8]. Once the signal fre-
quencies are known, the estimation of amplitudes is simple and
can be done using linear least squares.

We found that the estimator mean squared errors for both FAST-
MUSIC and MUSIC were dominated by bias at high SNRs. Future
work should reduce or eliminate the bias so that the relative perfor-
mance can be observed at high SNRs. FAST MUSIC also needs to
be better evaluated with non-periodic signals. We have not tested
its performance with non-periodic signals in this paper.
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