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ABSTRACT

This paper proposes a new partial tracking method, based on
linear programming, that can run in real-time, is simple to imple-
ment, and performs well in difficult tracking situations by consid-
ering spurious peaks, crossing partials, and a non-stationary short-
term sinusoidal model. Complex constant parameters of a gener-
alized short-term signal model are explicitly estimated to inform
peak matching decisions. Peak matching is formulated as a vari-
ation of the linear assignment problem. Combinatorially optimal
peak-to-peak assignments are found in polynomial time using the
Hungarian algorithm. Results show that the proposed method cre-
ates high-quality representations of monophonic and polyphonic
sounds.

1. INTRODUCTION

The sinusoidal model proves beneficial for its capacity to repre-
sent non-stationary sounds. The sinusoidal model represents a
sound signal as a sum of P time-varying sinusoids, called par-
tials, with instantaneous log-amplitude ap(t), phase �p(t), and
frequency fp(t),

s(t) =
PX

p=1

exp
�
ap(t) + i�p(t)

�
(1)

�p(t) = �p(0) + 2⇡

Z t

0

fp(u)du (2)

Decomposing a sound signal into a set of partials, or partial track-
ing, is useful for a variety of applications, including sound syn-
thesis [1], sound source separation [2] [3], audio coding [4], audio
effects [5] [6], and automatic music transcription [7] [8].

Partial tracking consists of two operations that are performed
either sequentially or jointly. First, instantaneous sinusoidal model
parameters are estimated from a short-term analysis of the sound
signal. Second, the instantaneous parameters are linked according
to their expected temporal progressions, forming partial trajecto-
ries. The parameter estimates are interpolated between each short-
term analysis frame so that ap(t) and �p(t) can be evaluated at the
sampling rate.

Despite practical applications of partial tracking and its wide
use in the field, aspects of the process complicate the potential for
a flawless outcome. A complex sound often has hundreds of par-
tials, plus a stochastic component, sculpting its time-varying spec-
tral envelope [9]. Sinusoidal model parameters must be estimated
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accurately from short-term estimates to ensure appropriate track-
ing decisions. Polyphonic sounds further complicate the analysis
because the frequency trajectories of two partials might cross [10].
Peak matching poses a large combinatorial problem that must be
repeated for many, typically thousands, of time frames. Thus, there
are not only difficulties associated with the quality of tracking, but
also with speed and tractability [11]. Many partial tracking meth-
ods have been proposed over the last several decades, as summa-
rized in Section 1.1.

This paper presents a new partial tracking method, based on
linear programming, that improves the state of the art of sinu-
soidal modeling. The proposed method can operate in real-time,
is simpler to implement than the McAulay and Quatieri (MCQ)
method [12], and creates sinusoidal model representations com-
parable to the leading hidden Markov model (HMM)-based meth-
ods [10] [11]. For parameter estimation, the method considers a
generalized non-stationary short-term sinusoidal model. The peak
matching procedure is formulated as a variation of the linear as-
signment problem [13], a fundamental combinatorial optimization
problem, allowing for an optimal peak-to-peak assignment solu-
tion in polynomial time.

This paper is organized as follows. Section 2 overviews the as-
signment problem. Section 3 establishes the new method of partial
tracking, first by describing short-term analysis additive model pa-
rameter estimation, then by deriving the assignment problem costs.
Section 4 details the results from experiments that demonstrate the
ability of the new partial tracker. Section 5 concludes the paper
and proposes future research on the applications of the assignment
problem in audio.

1.1. Overview of Previous Work

McAulay and Quatieri (MCQ) [12] developed the first partial track-
ing algorithm for sinusoidal modeling of speech. The MCQ method
connects peaks that have minimum frequency difference between
consecutive analysis frames. The MCQ method uses a non-optimal
greedy algorithm, does not consider spurious peaks, and assumes
a stationary short-term signal model. Modifications of the MCQ
method include using a reassigned bandwidth enhanced model [14]
and considering an intermediate “sleep” state for every trajectory
[15]. A linear prediction coding-based method was proposed in
[16] [17] that determines the most probable match using the tra-
jectory’s previous samples and can interpolate missing data. A
non-causal strategy was proposed in [18] that builds each trajec-
tory starting from a reliable two-point connection then growing it
in every direction by appending smaller pieces to it. The adaptive
method from [19] uses B-splines to estimate the parameters of the
additive model. Adaptive oscillators were used to track partials in
[20], and a Kalman filtering approach was described in [21]. The
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hidden Markov model (HMM) partial tracker [10] optimizes the
combination of trajectories within an analysis window, considers
spurious peaks, and performs well in several difficult tracking situ-
ations. The HMM tracker was improved in [11] for non-stationary
and noisy signals by formulating a new peak matching criterion
that incorporates explicitly measured frequency slope information.

The assignment problem [22], presented in Section 2, is a fun-
damental combinatorial optimization problem that describes a va-
riety of real-world problems. Variations of the assignment prob-
lem, especially the multidimensional assignment problem [23],
have been used to describe the problem of multi-target tracking
[24], jointly estimating the number of targets and their trajectories
from sensor measurements. Although the assignment problem has
been successfully applied to such problems for over a half century,
to the extent of our knowledge, it has not been applied to tracking
problems in audio.

2. THE ASSIGNMENT PROBLEM

2.1. Problem statement

The assignment problem is a fundamental combinatorial optimiza-
tion problem in the field of operations research [13].

The problem involves assigning R members of one set, agents,
to another, tasks. Any agent can perform any task. An agent-task
assignment incurs a cost that may vary depending on the assign-
ment. The goal is to assign an agent to perform one task, and
assign a task to one agent, such that the sum of individual costs is
minimized.

The assignment problem is formally expressed as a linear pro-
gramming problem with the following mathematical model:

minimize
RX

i=1

RX

j=1

CijXij (3a)

subject to
RX

i=1

Xij = 1 j = 1, . . . , R (3b)

RX

j=1

Xij = 1 i = 1, . . . , R (3c)

where Cij is the cost of assigning agent i to task j, and Xij is a
binary variable that equals 1 if agent i is assigned to task j and
0 otherwise. The first constraint (3b) ensures that every agent is
assigned to one task, while the second constraint (3c) ensures that
every task is assigned to one agent.

In terms of graph theory, this is equivalent to finding the min-
imum cost assignment in a weighted bipartite graph [22]. Figure
1 represents the assignment of agents to tasks as a graph and as an
annotated cost matrix.

Linear programming problems can be solved by the simplex
algorithm [25], however, more efficient algorithms have been de-
veloped that take advantage of the assignment problem’s specific
structure.

2.2. Hungarian algorithm

The Hungarian algorithm is a combinatorial algorithm that can
solve the assignment problem in polynomial time [26]. The algo-
rithm takes as an input the cost matrix C and outputs the optimal
assignments matrix X. If the number of agents does not equal the
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Figure 1: Assignments represented as bold lines in a bipartite
graph (left) and as bold elements in a cost matrix (right).

number of tasks, dummy variables are appended to the cost ma-
trix to make it square. The Hungarian algorithm consists of the
following three steps.

1. For each row, subtract the row’s minimum value from every
value in that row. For each column, subtract the column’s
minimum value from every value in that column.

2. Cover the zeros in the resulting matrix with the minimum
number of vertical and horizontal lines. If R lines are re-
quired, an optimal assignment of zeros exists and the algo-
rithm stops. If less than R lines are required, proceed to
Step 3.

3. Find the minimum value in the matrix that is not covered by
the lines from Step 2. Subtract the value from every uncov-
ered element and add the value to every covered element.
Return to Step 2.

This popular algorithm’s implementation is freely available on-
line (commonly as a single function) in several software languages
[27].

2.3. Variations of the Assignment Problem

Variations of the assignment problem use different objectives, con-
straints, or dimensions. A survey of such variations is in [13].
For example, a one-to-many assignment problem has a looser con-
straint that allows an agent to perform more than one task. A vari-
ation that is particularly applicable to multi-target tracking is the
multidimensional assignment problem.

2.4. Multidimensional Assignment Problem

Multidimensional assignment problems consist of assigning the
members of three or more sets [28]. A type of multidimensional
problem that has been applied to multi-target tracking is the axial
three-dimensional assignment problem. This type of problem in-
volves assigning members over three sets, where each assignment
incurs a cost Chij , such that the total cost is minimized.

Multidimensional assignment problems are NP-hard [23]. The
simplest way to solve a multidimensional assignment problem is to
enumerate every possible combination of assignments then choose
the one with the lowest cost [28], however, this solves the problem
in factorial time. Research has led to algorithms that either solve
or approximately solve the problem with improved tractability. For
example, [29] details a branch and bound algorithm that approxi-
mately solves the axial three-dimensional case. Alternatively, [23]
shows that an axial three-dimensional problem can be solved in
polynomial time if the cost Chij can be split into the sum of two
sub-costs, Chij = Chi + Cij .
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3. PROPOSED METHOD

3.1. Overview

The proposed partial tracking method sequentially performs two
processes. First, short-term sinusoidal model parameters are esti-
mated for each peak j in frame k. Second, the short-term parame-
ter estimates are connected over consecutive analysis frames, k�1
and k, by solving an assignment problem, forming trajectories.

This paper considers a trajectory to be a time-sequence of
spectral peaks with short-term sinusoidal model parameters, de-
fined in Section 3.2, that satisfy continuity constraints at the mid-
point of consecutive analysis frames. Accordingly, useful assign-
ments satisfy those continuity constraints while spurious assign-
ments do not. Section 3.3 defines a cost for both assignment types.
The assignment type with the lowest cost is the most probable. The
optimal combination of assignments is found using the Hungarian
algorithm.

3.2. Short-Term Additive Parameter Estimation

Parameters are estimated over short-term analysis frame k at time
tk = kH/fs, where H is the hop size and fs is the sampling
frequency. The frame’s time index n ranges from �N/2 to N/2,
where N + 1 is the frame’s duration. The center of the frame is at
n = 0 and aligned with tk.

The short-term signal model over frame k is a sum of Rk gen-
eralized sinusoids

s(n) =
RkX

j

exp

 
QX

i=0

↵ijn
i

!
(4)

where ↵ij are the complex constants of sinusoid j and Q is the
order of the polynomial [30]. The instantaneous log-amplitude
and phase of sinusoid j are

ak
j (n) = <

 
QX

i=0

↵ijn
i

!
(5)

�k
j (n) = =

 
QX

i=0

↵ijn
i

!
(6)

Since the sinusoid’s normalized angular frequency is the time deriva-
tive of the phase,

fk
j (n) =

fs
2⇡

=
 

QX

i=0

↵ijin
i�1

!
(7)

There are several options for estimating ↵ij . A comparison of
sinusoidal model parameter estimators is in [31]. Using the distri-
bution derivative method (DDM) [30] allows for the estimation of
↵ij up to an arbitrary polynomial order Q.

3.3. Costs of Useful and Spurious Assignments

An assignment cost is quantified by a multivariate Gaussian, sim-
ilarly to the “matching criterion” defined in [10]. The cost of as-
signing peak i in frame k � 1 to peak j in frame k is

Aij = 1� exp

✓
�

�f2
ij

2�2
f

�
�a2

ij

2�2
a

◆
(8)
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Figure 2: Illustration of equation (10) (left) and (11) (right) for
different settings of polynomial order Q.

for useful assignments and

Bij = 1� (1� �)Aij (9)

for spurious assignments, where

�aij = ak�1
i (H/2)� ak

j (�H/2) (10)

�fij = fk�1
i (H/2)� fk

j (�H/2) (11)
Figure 2 illustrates that equations (10) and (11) evaluate the mid-
point continuity over peak i and j by extending their short-term
sinusoidal model amplitude and frequency trajectories.

Standard deviations �f and �a are defined by the formulas

�2
f = ⇣2f/

�
2 ln(� � 2)� 2 ln(� � 1)

�
(12)

�2
a = ⇣2a/

�
2 ln(� � 2)� 2 ln(� � 1)

�
(13)

The parameter � changes the relative preference towards spurious
or useful assignments: smaller values promote spurious ones and
larger values promote useful ones. Parameters ⇣f and ⇣a are val-
ues of �f and �a, respectively, that mark the point of transition
between a useful or spurious assignment. Figure 3 shows how the
cost functions change with respect to these parameters.
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Figure 3: Illustration of how the parameters ⇣f and � change the
useful cost Aij , spurious cost Bij , and cost Cij defined in equation
(14).

3.4. Cost Matrix

This is a multi-criteria assignment problem [13] because it consists
of minimizing an objective function that has two decision criteria.
There is not only a cost Aij of connecting two peaks as a useful
trajectory, but also a cost Bij of not connecting them. We can
recognize this decision model’s multiple criteria simply by con-
structing a single cost matrix whose values are

Cij = min{Aij , Bij} (14)

3.5. Solving the Assignment Problem

The optimal assignments matrix X is retrieved by inputting the cost
matrix C into the Hungarian algorithm. Following equation (14),
an assignment Xij = 1 is useful if Aij is less than Bij .

3.6. Partial Labeling

A trajectory is an unbroken (continuous) path from a peak in some
frame to a peak in a future frame. Therefore, a useful assignment
that continues an existing trajectory from the previous observation
is labeled with that trajectory’s index. On the other hand, if a use-
ful assignment does not continue a path but rather starts one, it is
labeled with a new index. Figure 4 illustrates the labeling of useful
assignments over time.

1

2 1

3 3

4

Figure 4: Illustration of labeling useful assignments (solid lines)
over a sequence of frames. Dashed lines show spurious assign-
ments.

3.7. Computation Cost & Implementation

True real-time operation is possible not only because the peak
matching method has a low computational cost, but also because
peak assignment and labeling only depends on the current frame

k and previous frame k � 1. Solving the assignment problem is a
polynomial time operation, O(R3), where R is the largest of the
two number of peaks Rk�1 and Rk. The proposed method can run
in real-time in many practical situations, depending on R, the hop
size H , and the speed of the parameter estimator.

Implementing this partial tracker is simpler than other ones,
including the MCQ method. Peak matching only consists of defin-
ing a cost matrix with equation (14) and running the Hungarian
algorithm.

3.8. Recasting Previous Partial Tracking Methods

The McAulay and Quatieri (MCQ) method matches peaks over
consecutive frames based on a minimum frequency difference cri-
terion. In terms of an assignment problem, the cost is simply

Cij = |fi � fj | (15)

Rather than use the MCQ method’s non-optimal greedy algorithm,
optimal assignments can be found using the Hungarian algorithm.
This approach avoids all the heuristics associated with the MCQ
method. The MCQ method recast as an assignment problem is a
simple case of the proposed method with Q = 1 that does not
consider amplitude information or spurious assignments.

The hidden Markov model (HMM)-based method considers
the peak connections over two frames as a hidden state. State
transition probabilities are the product of matching criteria. Each
matching criterion ✓hij quantifies how well peaks h, i, and j, over
frames k � 2, k � 1, and k (two states), satisfy parameter slope
continuity constraints,

✓hij = exp

✓
� (�fhi ��fij)

2

�2
f

� (�ahi ��aij)
2

�2
a

◆
(16)

where �fij = fi � fj and �aij = ai � aj .
The HMM-based method can be recast as a multidimensional

assignment problem. The peak connections that admit the largest
product of matching criteria (state transition probability) are the
same ones that admit the smallest sum of assignment costs.

More specifically, the recast HMM method involves a three-
dimensional assignment problem because the cost depends on peak
parameters (members) over three frames (sets). Recall from Sec-
tion 2.4 that such a problem is NP-hard. Making the HMM method
tractable involves constraining the number of potential states.

Alternatively, if the matching criterion can be expressed as
a product of two sub-criteria, ✓hij = ✓hi✓ij , then a polynomial
time solution is possible through an assignment problem with cost
Chij = Chi + Cij . In [11] frequency slope  is explicitly esti-
mated and the matching criterion is

✓hij = exp

✓
� �f2

hi

�2
f

�
�f2

ij

�2
f

� (�ahi ��aij)
2

�2
a

◆
(17)

where �fij = (fi+ iH/2fs)�(fj� jH/2fs). While the fre-
quency slope calculation depends on only two frames, the calcula-
tion of amplitude slope depends on parameters over three frames,
so the problem is still NP-hard.

The cost function developed in Section 3.3 is expressed in
terms of parameters across only two frames, k and k � 1, by ex-
plicitly estimating both the amplitude and the frequency slope, en-
abling a linear assignment problem formulation and polynomial
time solution.
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Figure 5: Detected partials (lines) from simulated data (dots) that
resemble overlapping chirp sinusoids plus noise.
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Figure 6: Detected partials (lines) from simulated data (dots) that
resemble overlapping frequency modulated sinusoids plus noise.

4. RESULTS

4.1. Simulated Data

In these examples, peak parameters are simulated (set “by hand”).
Circumventing the short-term analysis highlights the ability of the
proposed peak matching method. Useful peaks are simulated by
sampling parameter values from analytic expressions of partial tra-
jectories, while spurious peaks are simulated by setting parameter
values randomly. Each peak’s amplitude-related values are set to
zero, which further complicates tracking. Figures 5 and 6 show
that the tracker perfectly classifies useful and spurious peaks and
resolves overlapping partials that have similar frequency slopes.

4.2. Audio Signals

In the following examples, peak parameters are estimated from a
short-term analysis of an audio signal, s(n), using the distribution
derivative method (DDM) [30]. The first group of examples in-
volve audio signals that are synthesized from partial trajectories
with constant amplitude and corrupted with -40 dB of white noise.
The second group of examples involve real speech and musical au-
dio signals. The signal is reconstructed as ŝ(n) using the synthesis
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(a) Q = 1. 12 dB R-SNR.
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(b) Q = 2. 52 dB R-SNR.

Figure 7: Detected partials from a synthesized audio signal con-
sisting of harmonically-related logarithmic chirp sinusoids plus
noise for different settings of polynomial order Q.

method described in [12]. The reconstruction signal-to-noise ratio
(R-SNR) is used to help quantify the results, given by

R-SNR = 10 log10

 PN�1
n=0 s(n)2

PN�1
n=0

�
s(n)� ŝ(n)

�2

!
(18)

Figure 7 shows the results of tracking a synthetic harmonic
signal whose fundamental frequency quickly increases on a log-
arithmic scale. If frequency slope is not estimated, as shown in
Figure 7a, then ⇣f must be large enough to ensure useful peaks are
connected over large frequency differences. This results in many
false detections of useful assignments from spurious data. Figure
7b shows how the results improve dramatically when frequency
slope is estimated.

Figure 8 shows the results of tracking a harmonic signal with
strong vibrato (±5 semitones). A further challenge is posed at 0.5
seconds where the fundamental frequency smoothly steps up by 5
semitones, resulting in close partials with steep slopes.

Figure 9 shows the results of tracking synthetic polyphonic
audio that resembles a violin sound with unnaturally strong and
fast vibrato superimposed with a trombone sound performing a
fast upward glissando.
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Figure 8: Detected partials from synthesized harmonic audio with
vibrato plus noise. The fundamental frequency smoothly steps up
by 5 semitones, from 330 Hz to 440 Hz. 26 dB R-SNR.
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Figure 9: Detected partials from synthesized polyphonic audio
plus noise. 19 dB R-SNR.

Formant tracking is another time-frequency tracking process
that is especially suitable for vocal sounds. The proposed method
can be used without modification for formant tracking applica-
tions. Figure 10a shows the partials detected from a real male voice
sound while Figure 10b shows the results of tracking the formants
of the same sound. Linear predictive coding (LPC) with 24 coeffi-
cients was used instead of DDM to estimate each formant’s short-
term amplitude and frequency, corresponding to an order Q = 1
polynomial.

Finally, the results of tracking a tango excerpt by Piazolla are
shown in Figure 11. This multi-instrumental composition admit-
ted dense short-term spectra with several frames having greater
than 150 peaks. For this 14-second long signal over 12,000 par-
tials were detected in a total computational time of 13 seconds
on a 2.8 GHz quad-core processor: parameter estimation took 9
seconds and tracking took 4 seconds. The reconstructed sound is
perceptually close to the original with a 15 dB R-SNR.

All test signals and reconstructed sounds are available for lis-
tening at http://www.music.mcgill.ca/~julian/dafx18.
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(a) Detected partials. 22 dB R-SNR.
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(b) Detected formants.

Figure 10: Male voice signal tracking results (/kara/).

5. CONCLUSIONS AND FUTURE WORK

This paper developed a new partial tracking method that matches
sinusoidal model parameters over consecutive analysis frames by
solving a linear assignment problem with the Hungarian algorithm.
Results show that the proposed method easily handles exception-
ally difficult partial tracking scenarios, involving strongly modu-
lated partials embedded in noise and crossing partials that are com-
mon in polyphonic recordings. Moreover, the proposed tracker
can operate in real-time and is simple to implement. Other pop-
ular methods were recast under the assignment problem frame-
work, revealing them as specific cases of the proposed method.
Future work may examine the results of tracking without slope
information by solving a multidimensional assignment problem.
More generally, other audio applications may be advantageously
described as assignment problems.
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