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ABSTRACT

Decorrelation of audio signals is a critical step for spatial sound
reproduction on multichannel configurations. Correlated signals
yield a focused phantom source between the reproduction loud-
speakers and may produce undesirable comb-filtering artifacts
when the signal reaches the listener with small phase differences.
Decorrelation techniques reduce such artifacts and extend the spa-
tial auditory image by randomizing the phase of a signal while
minimizing the spectral coloration. This paper proposes a method
to optimize the decorrelation properties of a sparse noise sequence,
called velvet noise, to generate short sparse FIR decorrelation fil-
ters. The sparsity allows a highly efficient time-domain convolu-
tion. The listening test results demonstrate that the proposed op-
timization method can yield effective and colorless decorrelation
filters. In comparison to a white noise sequence, the filters ob-
tained using the proposed method preserve better the spectrum of
a signal and produce good quality broadband decorrelation while
using 76% fewer operations for the convolution. Satisfactory re-
sults can be achieved with an even lower impulse density which
decreases the computational cost by 88%.

1. INTRODUCTION

In multichannel reproduction systems as well as binaural repro-
duction, the decorrelation of signals is key in controlling the spatial
extent of a reproduced sound source. With decorrelation we aim
to reduce the cross-correlation of the reproduction signals. For in-
stance, when reproducing a mono source on headphones, the spa-
tial image is perceived in the center of the head. Decorrelation can
extend the width of the auditory image such that it appears origi-
nating from a larger area. Fully decorrelated signals may even be
perceived as separate auditory events [1]. Common applications
of decorrelation include controlling the spatial extent, spatial au-
dio coding, sound distance simulation, coloration reduction and
headphone externalization [2–5]. This paper focuses on decorre-
lation methods suitable for controlling the perceived spatial extent
of a sound source.
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Fraunhofer Institut für Integrierte Schaltungen IIS.
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Decorrelation may be achieved by randomizing the phase of a
signal while maintaining its magnitude spectrum. In [2], Kendall
proposed a decorrelation filter based on 20–30 ms sequences of
white noise. Shorter decorrelation filters can preserve the qual-
ity of the transients and prevent a reverberation effect [2]. In-
deed, since high frequencies have shorter wavelengths, random-
izing their phases can produce a noticeable smearing effects on
short transient signals if the delays are too long. Unfortunately,
limiting the length of a filter will limit its ability to decorrelate low
frequencies, since long wavelengths require long delays to alter
their phase significantly. This duality illustrates the challenge of
designing a good broadband decorrelator that can compromise be-
tween preserving the transients and low-frequency decorrelation.
This is the reason why most modern decorrelation methods oper-
ate in the time-frequency domain and restrict the phase variation
based on the wavelength of various frequency bands [6].

Laitinen et al. proposed to apply a random delay within per-
ceptually motivated bounds at each frequency band [7]. Although
this method can lead to audible artifacts in stereo reproduction,
these artifacts are less perceivable in multichannel reproduction.
An alternative and common method is to decompose the signal
into transient and non-transient signals, and apply the decorrela-
tion only to the non-transient signal. For time-domain methods,
finite impulse response (FIR) filters are applied with the fast con-
volution technique which can be computationally prohibitive for
long filters in multiple decorrelation stages of multichannel sys-
tems. Alternatively, infinite impulse response (IIR) filters such as
single or cascaded allpass filters, which guarantee a flat magnitude
response, are computationally efficient [2, 8, 9]. However, if the
group delay of the filter becomes too large, higher-order allpass
filters can cause an undesired chirping effect [10].

Karjalainen and Järveläinen proposed velvet-noise sequences
(VNSes), i.e., sparse series of uniformly distributed ±1s, as a per-
ceptually smoother alternative to Gaussian white noise [11, 12].
At only a fraction of the computational cost of dense FIR filters,
VNSes are suitable for artificial reverberation [13,14] and approxi-
mation of room impulse responses [11,15–19]. Short VNSes were
proposed as an effective decorrelation method, although it suffered
from spectral coloration [20]. In this work, we present a method
to optimize the decorrelation properties of VNSes without altering
the computational cost. We also conduct a formal listening test to
evaluate the new method and to compare it with previous methods.

This paper is organized as follows. In Sec. 2, we review vel-
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vet noise and its time and frequency-domain representations. Sec-
tion 3 proposes an optimization technique for VNSes to minimize
spectral coloration. Section 4 proposes a selection process to im-
prove the decorrelation in sets of sequences. Section 5 presents the
listening tests we conducted to evaluate the proposed method.

2. VELVET NOISE

2.1. Velvet-Noise Sequences

For a given density Nd and sampling rate fs, the average spacing
between two impulses in a VNS is

Td = fs/Nd, (1)

which is called the grid size [12]. The total number of impulses is

M = LsTd, (2)

where Ls is the total length in samples. The sign of each impulse
is

�(m) = 2 br1(m)e � 1, (3)
where b·e denotes the rounding operation to the closest integer and
0  m  M � 1 is the integer impulse index, and r1(m) is a uni-
formly distributed random number between 0 and 1. The impulse
location is

⌧(m) =

(
0 for m = 0

dTd(m� 1 + r2(m))e for m > 0,
(4)

where d·e is the ceil operation to the next higher integer and 0 <
r2(m)  1 is a uniformly distributed random number.

Exponentially decaying impulse gains have been found to im-
prove the sharpness of transients and therefore the quality of the
overall decorrelation [20]. The positive gain of each impulse is

�(m) = e�⌧(m)↵, (5)

where ↵ > 0 denotes the slope of the exponential decay

↵ =
� ln 10�LdB/20

Ls
, (6)

where LdB is the target total decay in dB. The exponentially de-
caying velvet noise is denoted EVNM , where M indicates the total
number of impulses. In this work, we consider modifications to the
EVNM by allowing deviations from the exponential pulse gains
(5) to improve the sequence’s magnitude response. We refer to
this non-exponential sequences as optimized velvet noise OVNM

obtained using the method described in Sec. 3.
Since velvet noise is the sum of single delayed impulses, the

impulse response h(n) of the resulting sparse FIR filter with M
coefficients that are unequal to zero, is given by

h(n) =
M�1X

m=0

�(m)�(m)�(n� ⌧(m)), (7)

where � denotes the Kronecker delta function and n denotes the
time index in samples. An input signal x can be decorrelated by
convolution with the impulse response h. For this, we take advan-
tage of the sparsity of the sequence. By storing the VNS as a series
of non-zero elements, all mathematical operations involving zero
can be skipped [17, 19]. For a sequence with a density of a 1000
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Figure 1: Decorrelator sequences in the time domain: white noise
WN, exponential velvet noise EVN30, and two optimized velvet-
noise sequences OVN15 and OVN30. Positive impulses are indi-
cated by • and negative gains by � (except for WN).

impulses per second, which has been found sufficient for decorre-
lation [20], and a sample rate of 44.1 kHz, the zero elements repre-
sent 97.7% of the sequence. Therefore, given a sufficiently sparse
sequence, time-domain convolution can be more efficient than a
fast convolution using the FFT for an equivalent white-noise se-
quence [20]. Furthermore, this sparse time-domain convolution
offers the benefit of being latency-free.

For comparison, we use an exponentially decaying Gaussian
white noise sequence WN, with the same envelope as given in
(5). The spectral coloration, i.e., non-flatness of the magnitude re-
sponse, of the WN is reduced by replacing its magnitude response
with a constant number, and re-synthesizing the time-domain se-
quence using the inverse Fourier transform.

Figure 1 depicts four decorrelation sequences: OVN30,
OVN15, EVN30, and WN. The total length of each sequence
is 30 ms such that the VNS sequences have an impulse density
of 1 and 0.5 impulse per ms, respectively. The total decay is
LdB = �60 dB. However, the impulse response of WN decays
only by about �30 dB in total, because of the spectral post-
processing of WN. Convolution with OVN30 according to (7)
uses 76% fewer operations than the fast convolution with WN,
whereas OVN15 decreases the computational cost by 88% [20].

2.2. Velvet Noise in Frequency Domain

In addition to the time-domain formulation given in [20], we for-
mulate the z-domain transfer function of the velvet noise. This
formulation can be generalized to continuous impulse locations
which is critical for the optimization procedure in Sec. 3. The cor-

DAFX-2

DAFx-88



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21th International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

0 5 10 15 20 25 30
�2

�1

0

1

2

Time [ms]

A
m

pl
itu

de
[li

n]

Figure 2: Constraint on the optimized impulse gain � over time.
The solid blue line indicates the exponential decay as defined in (5)
with LdB = �60 dB. The shaded blue area indicates the range of
the optimized impulse gain with ±6 dB and the enforced normal-
ization of the first pulse to ±1.

responding z-domain transfer function of (7) is

H(z) =
M�1X

m=0

�(m)�(m)z�⌧(m) =
M�1X

m=0

Hm(z), (8)

where Hm(z) indicates the transfer function of the mth impulse.
The magnitude response of the mth impulse is

|Hm(eı!)| = �(m), (9)

where ! is the frequency in radians and ı =
p
�1. The corre-

sponding unwrapped phase response is

\Hm(eı!) =

(
�!⌧(m) for �(m) = 1

⇡ � !⌧(m) for �(m) = �1,
(10)

where \ denotes the radian angle of a complex number. The phase
response formulation in (10) generalizes directly to continuous
impulse locations e⌧(m). The corresponding single impulse and
summed transfer functions are denoted eHm and eH , respectively.
The continuous formulation plays a critical role in the optimization
process presented in the following section as it allows continuous
modification of both impulse location and impulse gain.

3. MAGNITUDE RESPONSE OPTIMIZATION

A central challenge in decorrelation is the coloration caused by
a non-flat magnitude response of the decorrelator. This section
is concerned with modifying the impulse locations ⌧(m) and im-
pulse gains �(m) of a VNS to improve the flatness of its magnitude
response |H(eı!)|. In the following subsections, we describe: i)
heuristic constraints on the velvet-noise parameters; ii) the objec-
tive function; iii) the optimization process; and iv) the performance
results.

3.1. Parameter Constraints

In the following, we impose heuristic constraints on the time lo-
cation ⌧(m) and gain �(m) of the impulses of the velvet noise.
An even distribution of impulses over time is desirable to ensure a
smooth time-domain response [20]. Therefore, the impulse loca-
tions should not exceed the boundaries defined in (4).

An impulse with a long delay and a large gain is perceived
as an echo, so it degrades the perceptual quality of decorrelated
transients. The exponential decay of impulse gains over time as
defined in (5) effectively minimizes the time-domain smearing of
transients signals [20]. Nonetheless, small deviations from the
exponential decay may be marginal for the perception. Informal
experiments determined an appropriate range of ±6 dB deviation
from the exponential decay, which corresponds to a multiplicative
gain factor � up to 2. To enforce a normalization of the impulse
gains, we set the first impulse gain to be ±1. Later for evaluation
purposes, all sequences are normalized to the same energy. Fig-
ure 2 depicts the constraints on the impulse gain � over time. The
positive and negative impulse gain ranges in Fig. 2 are not con-
nected such that a continuous optimization process cannot change
the impulse sign �.

3.2. Objective Function

We establish the objective function as to represent the perceived
quantity of coloration of the decorrelator. In this work, we employ
a third-octave smoothing of the magnitude response in dB between
20 Hz to 20 kHz [21]. The magnitude response is sampled at log-
arithmically spaced frequencies

flog(k) = eflin(k), (11)

where flin = [ln(20), . . . , ln(fs/2)] is a linearly spaced 1 ⇥ K
vector and K is the number of frequency points. The correspond-
ing frequencies in radian are !log = 2⇡

fs
flog. The rectangular

smoothing kernel  for a third-octave smoothing is then given by

(k) =

(
1

2w+1 for |k| < w

0 otherwise,
(12)

where the kernel width w is defined by

w

K
ln(fs/2)
ln(20)

=
1
6
. (13)

The third-octave smoothed magnitude response H is then

H(k) =
⇣
 ⇤ 20 log

���H
⇣
eı!log(k)

⌘���
⌘
, (14)

where ⇤ denotes the convolution operation. The objective function
L is given by the root mean squared error (RMSE) of the smoothed
magnitude response

L(⌧, �) =

vuut 1
K

K�1X

k=0

�
H(k)�H

�2
, (15)

where H =
PK�1

k=0 H(k)/K is the mean smoothed magnitude
response. The proposed optimization problem is then

min
⌧,�

L(⌧, �)

subject to ⌧(0) = 0 and �(0) = 1

Td(m� 1) < ⌧(m)  Td m

e�⌧(m)↵/�  �(m) < �e�⌧(m)↵,

(16)
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(a) Magnitude response error without smoothing.
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(b) Magnitude response error with third-octave smoothing.

Figure 3: Magnitude responses error of an EVN30 between a con-
tinuous impulse location e⌧ and the closest integer impulse location
be⌧e. The error between the non-smoothed magnitude responses
in Fig. 3a increases with frequency up to 20 dB. However, for
the third-octave smoothed response in Fig. 3b the error is within
1.3 dB.

where the possible gain deviation � = 2 and the impulse sign � is
a random, but fixed parameter in the objective function L.

3.3. Optimization Process

The optimization problem (16) is a constrained, non-linear and
non-convex problem such that the optimal solution, i.e., the global
minimum, is generally difficult to find. However, local minima can
be attained by various gradient descent algorithms. Here we em-
ploy a variant of the interior-point method [22]. The initial point
is given by a randomly generated EVN according to (4) and (5).

To allow gradual changes of all parameters during optimiza-
tion, we employ the continuous impulse location e⌧ in the objective
function

min
e⌧ ,�

L(e⌧ , �). (17)

The corresponding integer impulse location solution is then given
by ⌧ = be⌧e. In the following, we evaluate the error introduced by
the continuous impulse location solution.

The continuous impulse location e⌧ introduces a phase error of
the single impulse transfer function in (10). The maximum im-
pulse location error is

|e⌧(m)� be⌧(m)e|  0.5. (18)

Consequently, the maximum phase error between the continuous
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(a) Standard deviation on the smoothed magnitude response for 500
sequences.
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(b) Smoothed magnitude response of the best sequence, i.e., with the
lowest objective function value, out of 500 sequences.

Figure 4: Performance evaluation of the proposed optimization
process by comparing 500 sequences of the four decorrelator
types: WN, EVN30, OVN30, and OVN15.

and the closest integer transfer function is

���\ eHm(eı!)� \Hm(eı!)
���  !/2 (19)

such that the maximum phase error increases linearly with fre-
quency. The phase error of the single impulse transfer function
Hm results in a magnitude error of the full sequence transfer func-
tion H .

Figure 3a depicts the magnitude response error of an EVN30

between a continuous impulse location e⌧ and the closest integer
impulse location be⌧e. Whereas the magnitude error is below 1 dB
for frequencies below 1 kHz, the error increases up to 20 dB for
high frequencies. In Fig. 3b, the magnitude response error of the
same two sequences are shown with third-octave smoothing. The
maximum error over the complete frequency range stays below
1.3 dB. Similarly, Karjalainen and Järveläinen observed that in-
creasing the time resolution beyond 44.1 kHz, does not improve
velvet noise [11]. Hence, the proposed optimization using contin-
uous impulse locations which are then rounded to the nearest inte-
gers introduces only minor deviations in the magnitude response.
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(b) Distribution of frequency mean absolute coherence.

Figure 5: Evaluation of the absolute coherence between over all
sequence pairs of the 500 randomly generated sequences of four
decorrelator types: WN, EVN30, OVN30, and OVN15.

3.4. Results

In this subsection, we compare the magnitude response of four
decorrelation sequence types: WN, EVN30, OVN30 and OVN15.
The total length of the sequences is 30 ms and the total decay is
LdB = �60 dB. We generated 500 sequences for each decor-
relation filter type. For the optimized sequence types, the initial
sequences are EVN15 and EVN30, respectively, which were ran-
domly generated. As convergence is not guaranteed, the optimiza-
tion algorithm was limited to 60 iteration steps to comply with a
time limit of 30 s. The mean absolute change in impulse location
between the initial point and the local minima is 11 to 12 samples.
The mean absolute gain deviation from the exponential decay is
about 3 to 4 dB.

Figure 4a depicts the standard deviation of the smoothed mag-
nitude response over 500 sequences. The EVN30 has the largest
standard deviation over all frequencies indicating a relatively poor
flatness of the magnitude response. The largest deviation is in
the low frequencies with 5.3 dB, which decays with frequency to
1.5 dB. The standard deviation of the WN is similar in shape to the
EVN30 with the largest deviation of 2.3 dB in the low frequencies
and a minimum of 0.5 dB in the high frequencies. The standard

deviations of the optimized sequences OVN30 and OVN15 are sim-
ilar to WN for high frequencies, but is considerably lower for low
frequencies. The minimum standard deviation at around 30 Hz is
1 dB and 1.6 dB, respectively, and by this up to 2.5 times lower
than WN and up to 4 times lower than EVN30. The low standard
deviation of the OVN30 implies a successful minimization of the
objective function (16).

Figure 4b depicts the smoothed magnitude response for the
best sequences, i.e., with the lowest objective function value, out
of all 500 sequences. The magnitude responses confirm the trends
of the standard deviation, as shown in Fig. 4a. The best sequence
demonstrates that optimization can yield sequences with less than
a 1-dB maximum deviation from the mean magnitude. Despite the
large standard deviation in the low frequencies, the best sequences
have rather flat magnitude responses at low frequencies.

4. SET OF DECORRELATOR SEQUENCES

In many applications, a set of decorrelators is required such that
each pair of decorrelation filters is as “different” as possible. In
the following, we measure the difference using the coherence and
present a method to choose a low-coherence set of multiple decor-
relators. When a mono signal is required to be decorrelated to ND
channels, we need ND decorrelation sequences where each pair-
wise coherence is minimal.

4.1. Coherence

The effectiveness of decorrelation can be measured with the cross-
correlation in different frequency bands, called coherence. Nor-
mally, a broadband decorrelator is more effective at higher fre-
quencies than at lower, which is a result of the effective length
of a decorrelation filter. Indeed, a longer filter will exhibit
stronger decorrelation for longer wavelengths, but will also cre-
ate potentially perceivable artifacts when the input signal contains
transients. To study the decorrelation behavior on a frequency-
dependent scale, we use a third-octave filterbank. The signals for
the jth band are denoted as aj and bj and the normalized correla-
tion coefficient as

⇢(j)a,b =

P
n aj(n)bj(n)qP

n a2
j (n)

P
n b2j (n)

, (20)

where 1  j  J , and J is the number of third-octave bands.
Between 20 Hz and 20 kHz, we have J = 30. A lower abso-
lute value indicates a more effective decorrelation such that we are
mainly interested in the absolute correlation

���⇢(j)a,b

���. To summa-
rize the broadband effectiveness of the decorrelation, we use the
frequency mean absolute coherence

|⇢a,b| =
1
Q

JX

j=1

���⇢(j)a,b

��� . (21)

Note that the sparse impulse locations of two velvet noise se-
quences rarely coincide such that the classic broadband decorre-
lation is ill-defined and (21) is preferred instead.

In the following, we evaluate the coherence between the
500 generated sequences of each decorrelation type explained in
Sec. 3. Since the coherence is symmetric, there are 500⇥499/2 =
124, 750 different pairs of sequences. Figure 5a depicts the mean
absolute coherence for each third-octave band over all sequence
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Table 1: Best pair of optimized velvet noise OVN30 found with the proposed method. The gains � are given with a factor of 10.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⌧a(m) 1 46 91 134 175 182 239 271 351 359 407 484 531 536 581
�a(m) 4.71 7.37 -3.72 1.46 1.12 -1.84 0.64 -0.54 -0.64 1.08 -0.32 0.24 0.21 -0.49 0.14
⌧b(m) 1 5 78 125 172 219 234 271 318 381 403 460 531 575 583
�b(m) 4.11 -3.91 5.58 4.30 -2.96 2.02 -0.61 -1.34 1.15 -0.93 0.81 -0.37 -0.26 0.16 0.14

m 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

⌧a(m) 651 669 731 797 829 851 890 961 984 1027 1074 1130 1175 1232 1246
�a(m) 0.18 -0.14 -0.09 -0.08 -0.08 0.07 0.05 0.04 -0.04 0.02 0.02 0.01 -0.01 0.01 -0.01
⌧b(m) 663 703 737 791 809 881 902 950 999 1041 1083 1135 1177 1216 1258
�b(m) 0.10 -0.19 0.07 0.06 0.05 0.05 -0.06 -0.04 0.03 0.02 -0.02 0.01 -0.01 -0.01 -0.01

Table 2: Best pair of optimized velvet noise OVN15 found with the proposed method. The gains � are given with a factor of 10.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⌧a(m) 1 51 101 200 291 372 476 581 627 736 827 913 998 1089 1180
�a(m) 4.80 -7.51 -4.18 -1.58 -0.48 0.29 0.21 0.43 -0.08 0.20 0.12 0.08 0.05 0.03 -0.01
⌧b(m) 1 10 140 215 279 365 485 579 668 756 836 892 1005 1071 1192
�b(m) 6.10 -2.94 6.63 -1.05 -2.88 -0.46 -0.28 -0.68 -0.36 0.06 0.04 -0.09 0.02 0.01 -0.02

pairs. For all four decorrelator types, the absolute coherence de-
creases with frequency due to the effective length of the decorre-
lator. The maximum absolute coherence at low frequencies is be-
tween 0.35 and 0.4 and the minimum absolute coherence of 0.1 and
0.33 at high frequencies. The coherence is generally slightly larger
for EVN30 and OVN15 due to the systematic exponential gain, and
higher sparsity, respectively. Since coherence is not modeled in the
optimization process in Sec. 3, it is expected to have little influence
on the overall coherence.

Figure 5b depicts the distribution of the frequency mean abso-
lute coherence |⇢a,b| over all pairs. The difference between the
four decorrelation types is small, as expected, and a frequency
mean absolute coherence of around 0.19 to 0.22 is most frequent.
However, there are sequence pairs with rather large coherence val-
ues up to 0.8 suggesting poor decorrelation performance. In the
next subsection, we present methods to choose a set of decorrela-
tion sequences with low pairwise coherence.

4.2. Choosing Set of Decorrelators

Although the mean absolute coherence is typically between 0.19
and 0.22, the coherence of a set of sequences can be improved by
a selection process. More formally, the goal is to find a set D of
ND sequences such that

min
D

X

a,b2D

|⇢a,b|. (22)

Let us consider the coherence matrix, i.e., all pairwise frequency
mean absolute coherences, to be the adjacency matrix of an undi-
rected graph. The minimization problem (22) then corresponds to
finding the thinnest ND-subgraph. By taking the negative of the
coherence matrix, this problem is equivalent to the better known
densest ND-subgraph problem [23]. Although finding the optimal
solution is NP-hard, greedy algorithms can be applied to yield an
approximative solution [24]. In this contribution, however, we are
mainly concerned with pairs of sequences to allow decorrelated

stereo reproduction. Thus, (22) is merely the minimum entry of
the coherence matrix. Although, the frequency mean absolute co-
herence peaks around 0.2 in Fig. 5b, sequence pairs with coherence
as low as 0.05 can be found for all decorrelator types.

In the choice of the optimal set of decorrelators, the lowest co-
herence pairs are not necessarily those which have flat magnitude
responses. To account for the coloration of the single sequences,
we introduce a penalty term for (22):

min
D

X

a,b2D

(1� �)|⇢a,b|+ �µ(La + Lb), (23)

where La and Lb are the objective functions (15) of sequences a
and b, � is the weighting factor, and µ is the normalization factor
to balance the two objective functions with � = 0.5. The balance
is optimal if the distributions of |⇢a,b| and µ(La + Lb) overlap
maximally. In this work, this is achieved by µ = 0.1. The larger
�, the more emphasis is put on magnitude flatness rather than a low
coherence value. Tables 1 and 2 give the best decorrelation pairs
we have found through our proposed method with � = 0.8. These
sequences were evaluated via a formal listening test, as explained
in the next section.

5. PERCEPTUAL EVALUATION

We conducted two formal listening tests to evaluate the perceived
quality of the decorrelation filters obtained using the proposed
method. The first test assessed the coloration introduced by the
decorrelators via comparison of the processed signal to the unpro-
cessed signal. The second test evaluated the effectiveness of the
decorrelators to extend the auditory source width and overall qual-
ity. The tests were conducted in special listening booths built for
sound isolation and high-quality reproduction over headphones.
The test interface was based on a MUSHRA-type web interface
with a subjective rating scale from 0 to 100 allowing seamless
switching between test conditions and looping of short sections.
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(a) Coloration test with mono reproduction.
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(b) Stereo quality test with stereo reproduction.

Figure 6: Results of two listening tests of four decorrelator types: OVN30, OVN15, EVN30, and WN. In each box, the central red line
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, and the outliers are plotted individually using the + symbol. The box notches indicate
the confidence intervals, i.e., two medians are significantly different at the 95% confidence level if their intervals do not overlap.

Each test page compared six conditions: OVN30, OVN15, EVN30,
WN, anchor, and reference. For each decorrelation type, we chose
four decorrelator instances. Each test page was repeated once dur-
ing the test. In total, 4 instances ⇥ 2 trials ⇥ 4 input signals = 32
test pages were presented for each test1.

Each listening test was participated by 11 listeners (10 males
and 1 female) who were all aged between 24 and 34. Due to the
long test time, few participants performed both tests on the same
day. Four different input signals were convolved with the decorre-
lation sequences: drums, guitar, singing, and speech. The order of
the test conditions was individually randomized. From the differ-
ence between the identical trials, the test-retest reliability could be
computed. The cross-correlation coefficient between the first and
second trial was 0.96 suggesting that most participants were able
to give consistent ratings.

5.1. Coloration Test

The first listening test evaluated how much the decorrelation filters
distort the input signal. The input signal was convolved with a
single decorrelation filter, and the difference to the unprocessed
signal was rated by the participants. In MUSHRA terminology, the
unprocessed mono signal was the reference, and the input signal
processed with a lowpass filter having a 3.5-kHz cutoff frequency
was the anchor. The resulting mono signals were reproduced on
both headphone channels. The main coloration was expected to be
caused by the change in timbre and smearing of transients.

The four decorrelation instances were selected out of the 500
sequences which were generated in Sec. 3. For OVN30 and
OVN15, we selected the four best sequences according to spectral
flatness as defined in (15). The EVN30 sequences were selected
as the initial sequences of the OVN30, i.e., the original random
sequence before the optimization to emphasize the improvement
gained by the proposed method. The WN sequences were gener-
ated randomly and spectrally flattened, as described in Sec. 2.

Figure 6a shows the resulting subjective rating of the col-
oration test. The median ratings for OVN30, OVN15, EVN30, and

1Audio examples are available at https://www.
audiolabs-erlangen.de/resources/2018-DAFx-VND.

WN are 90, 86, 26, and 75, respectively. All pairwise compar-
isons of the confidence interval suggests that the medians are sig-
nificantly different at the 95% confidence level. The superior rat-
ing of both optimized velvet-noise sequences suggests a substan-
tial reduction in spectral coloration compared to EVN30, and this
demonstrates the effectiveness of the optimization method and the
corresponding objective function (15). Furthermore, both OVN30

and OVN15 were rated slightly superior to WN suggesting that
they are valid alternatives.

5.2. Stereo Quality Test

The second listening test evaluated the effectiveness of the decor-
relators in extending the auditory source width and the overall spa-
tial quality. The input signal was convolved with a decorrelation
filter for each channel (left and right) and the participants were
asked to rate the perceived width, localization at the center, and
overall quality. In this test, no ideal reference could be defined,
so the unprocessed mono signal was provided only for guidance.
The lowpass filtered mono signal was given as the anchor. The
resulting stereo signal was reproduced on the left and right head-
phone channels. Once again, we selected the sequences from the
generated set as in the coloration test. For OVN30 and OVN15, we
selected the four best sequence pairs according to the rating func-
tion (23) and weighting factor � = 0.8. Tables 1 and 2 present the
top-rated sequence pairs. The EVN30 sequence pairs were selected
as the initial optimization sequences of the OVN30 pairs. The WN
sequence pairs were generated randomly according to Sec. 2.

Figure 6b shows the resulting subjective rating of the auditory
source width test. The median ratings for OVN30, OVN15, EVN30,
and WN are 72, 71, 32, and 80, respectively. Pairwise comparison
of the confidence interval suggests that the EVN30 and WN medi-
ans are significantly different at the 95% confidence level. No sig-
nificant difference between OVN30 and OVN15 was found. Here
again, a superior rating was given to the optimized sequences over
the EVN30, which is expected due to the perceptible coloration of
the EVN30 found in the coloration test. A slightly inferior rating
was given to the optimized methods compared to WN. This may be
a result of our pair selection process favoring a flat spectrum over
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low coherence. Nonetheless, these results suggest that OVN30 and
OVN15 are valid alternatives to WN, since they can yield reduc-
tion in the computational cost without affecting significantly the
overall sound quality.

6. CONCLUSION

We have proposed an optimization method to improve the per-
ceived quality of velvet-noise decorrelators. The original method
EVN employed short, sparse, and exponentially decaying se-
quences, which were generated randomly [20]. The proposed
method OVN attempts to improve such sequences by allowing
small deviations in the impulse gains and timings. The optimiza-
tion maximizes the spectral flatness within given heuristic con-
straints. A continuous impulse location formulation facilitates si-
multaneous modifications of gains and times. Furthermore, we
proposed a method to select a set of minimally correlated se-
quences according to a coherence metric. An additional weight-
ing factor allows user-defined control over the trade-off between
coherence and spectral flatness.

Two formal listening tests were conducted to evaluate possible
coloration as well as the auditory source width and overall stereo
quality. The subjective ratings show a substantial improvement of
the proposed method against the original and perceptually satis-
factory decorrelation. While convolving a signal with velvet noise
can be performed using as much as 88% less operations compared
with WN, the objective ratings as well as the subjective ones con-
firms that the proposed OVN method is a good alternative to the
WN decorrelation, when it is possible to pre-compute sets of opti-
mal sequences.
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