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ABSTRACT

Here we present a micro-controlled digital effect unit for guitars.
Different from other undergraduate projects, we used high-quality
16-bit Analog-to-Digital (A/D) and Digital-to-Analog (D/A) con-
verters operating at 48kHz that respectively transfer data to and
from a micro-controller through serial peripheral interfaces (SPIs).
We discuss the design decisions for interconnecting all these com-
ponents, the project of anti-aliasing (low-pass) filters, and addi-
tional features useful for players. Finally, we show some results
obtained from this device, and discuss future improvements.

1. INTRODUCTION

Analog guitar effects became very popular from 70’s to 90’s as an
artifact that musicians could imprint their own personality touch
in their sounds [1]. Once that the micro-controllers become pop-
ular among engineers, new and combined effects could be added
into the so called digital effect units, which allow a single device
to have multiple effects. Nowadays, powerful micro-controllers
(with embedded DSP units) can execute sophisticated signal pro-
cessing algorithms, creating configurable digital audio effect units.

Most of available micro-controlled boards for education pur-
pose come with A/D converters (ADCs) operating at reasonable
sampling rates but coding amplitudes at 12 bits. Usually they do
not have any D/A converter (DAC) on-board. Since their use is
focused on control applications, they usually come with PWM cir-
cuits, which are not suitable for audio applications.

Reasonable audio devices require sampling rates of 48kHz
and sample resolution of 16bits/sample if we consider studio-
quality recordings. Therefore, academic audio projects require the
development of custom boards using a micro-controller and an ex-
ternal D/A converter at least, assuming that the micro-controller
has an audio-oriented A/D converter.

As an undergraduate project, we envision a programmable dig-
ital effect unit that can be useful for students interested on signal
and systems and digital signal processing: they will be able to de-
velop their algorithms on tools like Matlab or Octave and convert
them in compiled codes to be uploaded into these devices, obtain-
ing real-time processing (at maximum of 48kHz). To achieve this
goal, we conceived a device using three evaluation boards from
Texas Instruments (TI), respectively dealing with the algorithms
(a micro-controller) and with the A/D and D/A conversions. Our
primary application is applying distortion effects over electric gui-
tar sounds in real-time, although it can promptly adapted to other
instruments.

Similar work was made by Young and Chih [2] using 16-bit
converters with 48kHz but with a different micro-controller. In

⇤ This work was part the author’s undergraduate project.

addition, Hasnain and Saleem [3] used another approach to their
work on using re-programmable Matlab Simulink blocks of codes
in order to generate the audio effects.

Here we will present the design aspects of an academic-orien-
ted device, including the project of some analog filters and am-
plifier for signal conditioning (particularly avoid signal aliasing).
Thus this paper is organized as follow: first we will describe the
electronic boards and other components that we used to mount
the device, particularly focusing on their connectivity. Next, we
will present the design of low-pass filters for anti-aliasing purpose
and D/A conversion, and linear amplifiers for signal condition, fol-
lowed by details of how to implement signal processing algorithms
(focusing on time CPU interruptions). Finally some results are
presented from real use of the device (capture from digital oscillo-
scopes) along with conclusions and suggestions of improvements.

2. MATERIALS AND METHODS

Figure 1 presents a block diagram of the proposed device: The
electric guitar signal is linearly amplified and filtered by a low-
pass filter (LPF) to eliminate aliasing artifacts of the signal before
it is sampled. After this signal conditioning, it is sampled by the
external ADC in order to be properly read by the micro-controller.

Figure 1: Project’s Block Diagram

After digitally processed by the micro-controller, the signal
passes through the external DAC and filtered by a low-pass filter
(LPF) in order to be played. An additional HPF is used to remove
the signal DC component since DAC generates analog signals with
a fixed offset level equals to 2V.

Each component will be described in next sections.

2.1. Digital Processing Unit

Here we used the TI LaunchPad development kit (TIVA) that comes
with the micro-controller TM4C1294NCPDT [4] shown in Fig-
ure 2. Such a kit has easy access to the micro-controller ports and
comes with DIP switches and LEDs that can be programmed (we
used them to allow its users to respectively choose a digital ef-
fect and to have a feedback of their choices). A motivation to use

DAFX-1

DAFx-26



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

this kit is that it has connectors to attach expansion boards named
as BoosterPacks (both the A/D and D/A used here are expansion
boards sold by TI).

It also has a Ethernet connector that can be used for data trans-
fer that later will be used for direct-to-computer music recording
and remote board configuration.

Figure 2: TI’s development kit for TM4C1294NCPDT (EK-
TM4C1294XL)

All codes were implemented, debugged, and uploaded to the
kit in TI integrated development environment (Code Composer
Studio - CCS).

2.2. External A/D and D/A Converters

Although the kit used here has a A/D converter, it only supports a
bit depth of 12bits/sample, not meeting our requirements. There-
fore we used an external A/D converter (ADC161S626) provided
by TI [5] as an electronic board kit (a BoosterPack) that can eas-
ily be attached to the micro-controller board. Such an expansion
board has an operational amplifier to offset the signal to a mid
voltage reference. Its analog-to-digital conversion uses successive
approximation register (SAR) architecture. The expansion board
is shown in Figure 3.

Figure 3: ADC in TI’s BoosterPack kit (ADC161S626EVM)

After the signal is processed by the micro-controller, it is con-
verted back into audio, from a digital form to a voltage signal.
Another expansion board is used for this purpose once the micro-
controller’s kit does not have any digital-to-analog converter (DAC)
in its circuitry. Since we required a DAC with 16-bit conversion
resolution as a project specification, we chose DAC161S055, also
provided by TI [6] in a BoosterPack (Figure 4). It has a resis-
tor matrix topology and internal registers to setup its operational
mode.

In this project, the DAC was configured to operate in write-
through mode, which means it updates the voltage output as soon
as data transfer is completed (other offered modes would require
a delay between these two conversion steps). Therefore, we in-
creased the available processing time between two successive sam-
pling steps (time to execute the effects).

Figure 4: DAC in TI’s BoosterPack kit (DAC161S055EVM)

While ADC samples are coded in two-complement binary rep-
resentation (with the most significant bit for the math sign) in order
to represent both positive and negative amplitudes, DAC samples
represents only positive values since it produces only positive ana-
log signals (a reference voltage is used to correctly understand the
output signal). Therefore a simple integer math was required in
order to obtain right conversions.

2.3. Analog Filters and Amplifier

Both filters and amplifier were based on operational amplifiers (op-
amp) due to their simplicity. In both cases we powered the op-
amps with 5V because this voltage was supplied by the USB port
of the micro-controller board. In case of the amplifier, we added a
biased voltage of 2.5V (a DC level) to the input signal since ADC
and DAC require positive voltages. Consequently the outputs of all
amplifiers bounce around ±2.5V and the saturation is achieved for
voltages exceeding 0 to 5V limits. To do that, the following circuit
was implemented (Figure 5), where carefully chosen resistors and
capacitors amplify only the AC part of the signal, ignoring its DC
level.
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Figure 5: Amplifier circuit

The two LPFs in Figure 1 correspond to fourth order active
low-pass filters - using two Sallen-Key topologies (quality factor
Q = 0.5 and cut frequency fc = 24, 405.14Hz) in cascade - were
built to work as anti-aliasing filters (the value of fc is due to the
use of electrical components that were commercially available).
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Its resulting cutoff frequency was set to approximately 24kHz fol-
lowing Nyquist theorem [7].

TI OPA344 was the op-amp chosen for both amplifiers and
LPFs, which is a low power single-supply rail-to-rail op-amp el-
igible for audio applications (also it comes in dual in-line pack-
age - DIP - which is suitable for breadboard testing and building
academic circuits without any specific tool like the ones for SMD
packages).

A passive HPF with a low cutoff frequency was designed to
remove the DC signal component. A common RC passive topol-
ogy was chosen with a resistor (22k⌦) and a capacitor (10µF),
resulting in a cutoff frequency of 0.72Hz.

Figures 6 and 7 shows, respectively, the frequency response of
both LP and HP filters.
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Figure 6: Active Low-pass Filter Frequency Response
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Figure 7: Passive High-pass Filter Frequency Response

2.4. Electrical Connections

Both converters use a synchronous serial interface (SSI) to com-
municate with the micro-controller. In such a data bus, a master
device manages the communication while the slave ones answer
back. Here we set the micro-controller as the master device and
both converters as slave ones. To properly work four pins of mas-
ter and slave devices should be used: the chip select pin (CS) to
select the correct peripheral to send/receive data (one of the con-
verters), the serial clock pin (SCL) to synchronize the data transfer,
the synchronous serial transmitter (SSTx), and the synchronous
serial receiver (SSRx) pins to send/receive bit streams between
the devices. An interconnection diagram for SSI used here is il-
lustrated in Figure 8. Programmatic, both ADC and DAC have
internal FIFO queues to send and receive bit-oriented streams of
data or commands.

The SSI clocks (or bit rate) for both ADC and DAC devices
were set at their maximum values, 5MHz and 20MHz respec-
tively. It was set higher than the required frequency for convert-
ing bits to voltage and vice-versa (24 bits/sample ⇥48.000 sam-
ples/sec) in order to leave enough time for audio signal processing.

Figure 8: Diagram of electrical interconnection between the
micro-controller and both A/D and D/A converteres (Synchronous
Serial Interface (SSI) Diagram)

Electrical wires connect the analog filters (LPFs and HPFs)
and amplifiers to the input of ADC board and output of the DAC
board. We used a 6.3mm female J1 connector to plug an electric
guitar in, and the same kind of connector is used to plug in an
external speaker or a sound mixer.

2.5. Implementing Digital Distortions

Basically the distortion routines are implemented as a sequential
procedure of acquiring digital samples from the ADC, processing
them according to a predefined audio effect, and converting the
result into an analog signal. Considering the sampling rate used
here (48kHz), we coded these routines as part of a micro-controller
timer interruption in order to minimize jitter effects on the output
signal. Alternatively we considered to implement direct memory
access (DMA) data transfer to speed up the process but we felt that
our current implementation with timer interruptions was efficient
enough for running some the digital distortions we describe here.

Therefore, each time this interruption is triggered, it executes
the following steps:

1. Read a sample from ADC (waiting until the ADC release a
16-bit sample);

2. Process the sample;
3. Send the processed sample to the DAC (waiting until it fin-

ishes the conversion);

Naturally, the period between the execution of two successive
timer interruptions was (1/48000)sec. There are different but al-
most fixed �t’s for running different audio effects, however the
time interval between executions is constant (it means there should
be low variable delays between input and output signals in current
implementation).

The audio distortions are selected by user when he/she presses
an specific button. It generates an interruption that alter a global
counter/variable, which is used by the timer interruption code to
sequentially select an audio distortion.

Prior to this endless procedure (meaning that our ADC and
DAC never stop acquiring and generating audio signals), both micro-
controller and external devices are properly configured.

We implemented four different audio effects: distortion (or
saturation), delay, loop, and tremolo. The first one (the simplest
effect) is the distortion. It adds harmonics to the output sound
that make the sound look like an electric guitar played in a rock
concert with its amplifiers saturating the sound levels. This effect
basically clips the sound wave (regardless positive or negative am-
plitudes) and the amount of clipping defines how much “fuzzy”
will the output sound be. The Algorithm 1 shows the basic op-
eration of this effect: an if-then-else statement compares the input
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value from ADC to the distortion limit set previously, and if the ab-
solute magnitude of the sample is greater than the distortion limit
value, then the output value will be the distortion limit, otherwise
will be the value received at first.

Input: ith sample from ADC: sample_to_adc
Output: ith sample to DAC: sample_to_dac
if sample_to_adc >= distortion_limit then

sample_to_dac = distortion_limit
else if sample_to_adc <= -distortion_limit then

sample_to_dac = -distortion_limit
else

sample_to_dac = sample_to_adc
end

Algorithm 1: Distortion implementation

The delay effect simply delays the sound signal by a fixed
amount of time. It requires storing a quantity of samples in a vec-
tor/array. Here we used 1sec delay, which requires storing 48, 000
samples. To avoid moving data in order to store new samples, we
logically implemented a circular buffer with a single variable to
control the access to it. Algorithm 2 shows this implementation.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
sample_to_dac = sound_array [i ]
sound_array [i ] = sample_from_adc
i ++
i = i % 48000

Algorithm 2: Delay implementation

The loop effect replays a pre-recorded signal in loop fashion,
basically giving a base sound for musical arrangements. To do
that, first an array of fixed size (here we used a size equivalent to
1sec) receives all samples from ADC (up to 48000 samples). Once
the buffer is full, our routine starts to send all these stored samples
to DAC indefinitely.

The user can set another pre-recorded signal by pressing a
button which triggers an interruption where a variable called is-
Recording is set in order to enable the recording mode of Algo-
rithm 2.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
if isRecording then

sound_array [i ] = sample_from_adc
i ++
if i = imax then

i = 0
isRecording = false

end
else

sample_to_dac = sound_array [i ]
i ++
i = i % 48000

end
Algorithm 3: Loop implementation (Both i and isRecording are
set by an interruption triggered by a button pressed)

The last effect is tremolo: it modulates the ADC signal ac-
cording to a preset signal. Analog tremolos are implemented by

a low-frequency oscillator (LFO) - whose frequency ranges from
0.5 to 10Hz - to vary the sound amplitude. Here we digitally im-
plemented it using a 10000-samples array containing a 4.8Hz si-
nusoidal signal with amplitude equals to 0.25 and an offset of 0.75
(these values affect the way the input signal is altered). This array
was generated in MATLAB and hardcoded in the tremolo routine.

The implementation consists of multiplying samples of this
array by the samples from ADC. Therefore the amplitude of the
input signals are attenuated to a maximum of 50% according to
the preset sinusoidal signal used.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
sample_to_dac = tremolo_array [i ] ⇥
sample_from_adc

i ++
i = i % 10000

Algorithm 4: Tremolo implementation

3. RESULTS

The resulting device is depicted in Figure 9. To demonstrate its
usefulness, we first present the A/D and D/A conversions carried
out by our prototype with no digital distortions and no analog fil-
tering been applied to the signal except by the analog amplifica-
tion. Two sinusoidal (narrow-band) signals were separately ap-
plied to the prototype input jack and the DAC output pin (therefore
using no output LP and HP filters) was connected to an oscillo-
scope. Figures 10 and 11 shows this output signals for a 1kHz and
5kHz sinusoidal signals.

Figure 9: Picture of the device

The difference on voltage scale of each channel occurred be-
cause each converter had different numeric ranges: ADC works
with 15-bit values plus one bit for signal (the most significant one)
in two’s complement notation, while DAC uses all 16-bits to rep-
resent positive output values. That led to an output value equals to
the half of an input value in this no-distortion scenario.

The stair effect on channel 2 was given by the zero-order holder
effect of DAC. Figure 11 shows that clearly. It also shows its influ-
ence on the signal frequency captured by the oscilloscope. Consid-
ering that we were focusing on building a guitar effect unit, such a
problem may not be a big deal since an in-tune guitar has frequen-
cies ranging from 80Hz up to 1200Hz and we were using high
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Figure 10: 1kHz test sinusoid wave: channel 1 and 2 registers the
input and output signals, respectively (this setting will be used in
all following figures)

clock rate to excite our DAC module. However, to confidently
cope with any input signal, we used low-pass filters (Section 2.3 to
finish the DA conversion, as shown in Figure 12. Note that these
kind of filter impose a delay (in case of a 5kHz sinusoidal signal,
it is about 52µs).

Figure 11: 5kHz test sinusoid wave

Figure 13 shows a guitar signal captured after directly con-
necting the guitar cable jack in an oscilloscope: its peak-to-peak
amplitude does not exceed 200mV. Although it varies according
to instrument technology, brand, and age, for example, the volt-
age amplitude never reaches 1V. Such voltage values demands a
pre-amplifier for using sound systems as usually digital effect units
requires. Our proposed amplifier at the input of the system allows
some adjustments before applying analog filters and digital effects
coded into the micro-controller.

To demonstrate the distortion effect, a sinusoid signal were ap-
plied: Figure 14 shows the resulting effect whose distortion_limit
was set to 3000 which is equivalent to 0.92V after the analog-to-
digital conversions.

For delay, loop, and tremolo effects, we played a few tones in
an electric guitar connected to our device, which is altered by such
effects. In all cases, the oscilloscope was set to capture 5sec of
input (channel 1) and output (channel 2) signals after triggered.

Figure 12: 5kHz test sinusoid wave after the output LP filter

Figure 13: Example of guitar signal

Figure 15 shows the delay effect: channel 2 shows the delayed
version of the input signal (delay of 1sec). In case of loop effect,
one second of an input signal was previously recorded by the de-
vice (not shown here). After that, Figure 16 shows that an input
signal captured by the device was ignored, and the recorded signal
was repetitively reproduced by the device as its output signal.

Finally, the tremolo effect altered the input signal (channel 1)
by modulating it with a sinusoidal signal. Channel 2 of Figure 17
shows the expected result. Due to the nature of the input signal,
this modulation is more evident at the middle of the oscilloscope
screen in this example.

4. CONCLUSIONS AND FUTURE IMPROVEMENTS

Here we present a digital audio effect for guitars that was imple-
mented with a micro-controller and external digital converters -
ADC and DAC - to operate at 48kHz. Additional circuitry for am-
plifiers and low pass filters were designed to cope with Nyquist
limits, and a few digital effects were implemented to demonstrate
the use of the unit. The use of timer interruptions to filter the in-
put signal, sample-by-sample, before sending it to DAC minimized
the jitter level. All the system requires a voltage source of +5V
(0.47W), which can be powered through the USB connector of the
micro-controller kit.
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Figure 14: Distortion result from a 1kHz sinusoid wave

Figure 15: Result (Channel 2) of applying the delay effect (1sec)
over a signal produced by a electric guitar (Channel 1)

Although the delays imposed by the analog LP filters, this aca-
demic prototype of a digital effect unit worked fine. Other effects
can be readily implemented in order to have near real-time digital
effects. Our next steps are:

• Add digital dithering to improve sound quality, specially for
live guitar sounds;

• Reduce the jitter caused by lengthy complex digital filters
by using two different timer interrupts (respectively for ADC
and DAC procedures) and respective data buffers that oper-
ates in parallel;

• Create an internet (tcp/ip) server inside the micro-controller
that transfers all sampled data to a remote client applica-
tions, allowing to create a virtual mixer with multiple chan-
nels (limited by the computer client capacity);

• Create an internet (tcp/ip) server inside the micro-controller
that receives additional digital effects algorithms (and its
configurations) from remote client applications, which al-
lows the digital effect unit be remotely programmed.
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Figure 16: Result (Channel 2) produced by a previous recorded
sound from an electric guitar. The guitar keeps playing (Channel
1) but the loop, once recorded, wont change its output values

Figure 17: Result (Channel 2) of applying the tremolo effect over
a signal produced by a electric guitar (Channel 1)
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