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ABSTRACT
Bucket brigade devices (BBDs) were invented in the late 1960s
as a method of introducing a time-delay into an analog electrical
circuit. They work by sampling the input signal at a certain clock
rate and shifting it through a chain of capacitors to obtain the
delay. BBD chips have been used to build a large variety of analog
effects processing devices, ranging from chorus to flanging to echo
effects. They have therefore attracted interest in virtual analog
modeling and a number of approaches to modeling them digitally
have appeared. In this paper, we propose a new model for the
bucket-brigade device. This model is based on a variable sample-
rate, and utilizes the surrounding filtering circuitry found in real
devices to avoid the need for the interpolation usually needed in
such a variable sample-rate system.

1. INTRODUCTION

Bucket brigade devices (BBDs) were invented in the late 1960s at
Philips Research Labs [1], as a method of introducing a time-delay
into an analog electrical circuit. These chips were subsequently
used to build a large variety of analog effects processing devices,
ranging from chorus to flanging to echo effects. Well-known BBD-
based devices include the Memory Man delay/echo pedal and the
Electric Mistress flanger effect from Electro-Harmonix, as well as
a series of chorus designs produced by Roland, starting in the mid
70s with the chorus circuit of the JC-120 amplifier and culminating
with the Dimension-D rack unit and the chorus included in the
Juno-60 synthesizer.

There have been a number of approaches to modeling BBD
devices digitally. Raffel [2] concentrated on the filtering and non-
linear behavior of the BBD, without treating the dynamic behavior
of the BBD when the clock-rate is varied. Huovilainen [3] and
Mačák [4] both model the BBD in the context of a flanger effect.
The latter uses a variable sample rate delay to model the BBD delay
behavior, whilst the former uses a method based on storing the
times at which an input arrived to the BBD. Variable sample rate
digital delay-lines have been described in the past, primarily for the
use in physical models of acoustic systems [5]. Recently, methods
have been proposed for emulating tape and BBD-like behaviour by
storing the previous ’speed’ of the system (clock-rate in a BBD) [6].

The presented technique is built on the observation that BBD
chips, due to their sampling nature, are typically used in conjunc-
tion with low-pass filters to prevent aliasing. We propose a novel
approach, modeling the BBD together with these filters. The BBD
itself will be trivially modeled as what it is: a fixed length but
variable sample rate delay-line. The main novelty of the proposed
approach is that the resampling between the audio sampling rate
and the variable BBD clock rate utilizes the filters already present
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Figure 1: Simplified BBD schematic

in the analog circuit and hence avoids the need for additional inter-
polation. The lack of direct interpolation results in more accurate
fitting of the frequency response of the circuit as no additional
filtering is introduced from the interpolation. Additionally, the dis-
tortion produced by the constant variation of the interpolation filter
is avoided. Experimental results confirm that the method leads to a
faithful BBD model.

2. WORKING PRINCIPLE OF BUCKET BRIGADE
DEVICES

Figure 1 shows a simplified schematic of a typical BBD. We have
omitted additional field effect transistors that, together with the
shown ones, form tetrodes to reduce unwanted coupling between the
stages. While we leave the detailed explanation of the propagation
principle to [1] and the reason for using tetrodes to [7], we shall
briefly look at the input and output circuitry.

While the input transistor, controlled by CLK2, is open, capaci-
tor C0 follows the input voltage uBBD(t) between the IN and GND
terminals. Closing the input transistor hence corresponds to sam-
pling the input signal at the time instant t0 of the respective clock
edge. The two clock signals CLK1 and CLK2 are complementary,
so that the transistor connecting C0 and C1 opens (nearly) in the
same instant and the signal sample uBBD(t0) is transferred to C1

while C0 returns to the reference voltage [1].
Let the following clock edges occur at times t1, t2, . . .. Note

that only at every second clock edge tn, n even, the input transistor
transitions from open to closed, sampling the input. Thus at any
time, only half the capacitors carry the signal, while the others are
at the reference voltage. In the metaphor of the bucket brigade,
this corresponds to half the buckets being filled with water and
transported in one direction, while the other half is empty and is
transported back (to be filled again).

With every edge, the charge representing the signal is prop-
agated to the next capacitor, that is after the clock edge at tn,
capacitor Cn+1 holds uBBD(t0). It follows that the signal arrives
at capacitor CN at tN�1 and drives the first output terminal OUT1
while the second output terminal OUT2 is in high impedance state.
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After the next clock edge at tN , capacitor CN+1 holds uBBD(t0)
and drives OUT2 while OUT1 is in high impedance state. This
continues until at tN+1, the next signal sample uBBD(t2) arrives at
capacitor CN and drives OUT1 while OUT2 is in high impedance
state again. Therefore, application circuits combine the two outputs,
so that the signal sampled at t0 is present at the combined output
from tN�1 to tN+1, that is

yBBD(t) = uBBD(tn) for tn+N�1  t < tn+N+1, n even. (1)

In other words, for a constant clock rate, the signal is not only
delayed by N/2 clock periods (corresponding to N clock edges).
It is also convolved with a rectangular pulse of one clock period
width giving rise to a high-frequency attenuation depending on the
BBD clock rate. For all commercially available BBDs, N is even,
so that if the input sampling occurs at every tn, n even, the output
changes its value at every tn, n odd, which we will assume for
simplicity during the development of the proposed model.

In addition to the desired functionality of delaying the signal,
due to their analog nature, BBD chips usually also alter the signal
in unwanted ways. In particular, the long chain of active semicon-
ductor stages acting upon the signal typically adds noise and may
introduce non-linear distortions. Additionally, losses and tolerances
in the capacitances may lead to non-unity overall gain. However,
this paper focuses on the sampling and delay behavior and does not
consider these parasitic effects.

Finally, as a direct consequence of the working principle, there
are several inherent sources of aliasing distortion in the BBD system
– firstly there are frequency components present at the input of the
BBD that exceed the effective Nyquist frequency of the BBD. These
components will be reflected around the BBD Nyquist frequency.
Most BBD circuits include a filter at the input to suppress this
behavior. Secondly, there are the image-spectra created by sample-
and-hold nature of the output of the BBD chip. Similarly to at the
input, most BBD circuits include an output filter to suppress these
images. These types of aliasing (at least when present in small
quantities) can be considered to be desirable for the expected sound
of a BBD and should be reproduced by a digital model.

3. PROPOSED MODEL

We propose to model the BBD as a delay-line of fixed length, oper-
ating at another, potentially varying sampling rate, the BBDs clock
rate, similar to [4]. However, instead of using simple interpolation
for the necessary sampling rate conversions, we will exploit the fact
that typical application circuits contain low-pass filters at the BBDs
input and output. These are responsible to prevent aliasing from the
sampling and reconstruction process of the BBD. We will make use
of exactly these anti-aliasing filters for the necessary resampling.
The transformation of these filters to the digital domain will be
carried out using a modified impulse-invariant transform similar to
the approach taken in [8], as this facilitates dealing with different,
asynchronous sampling rates on input and output side.

3.1. Input filter

Perfect reconstruction of the analog signal u(t) from its samples
ū(k) = u(kTs), where Ts = 1/fs is the sampling interval, can
be understood as subjecting a train of Dirac impulses weighted
with ū(k) · Ts to an ideal low-pass filter, band-limiting it to the
Nyquist frequency. Here, we replace the ideal low-pass filter with
the input low-pass filter Hin(s) found in front of the BBD, which

is assumed to have sufficient attenuation at the Nyquist frequency
(of the original audio sampling rate fs) that an acceptable amount
of aliasing remains. Our aim is to obtain samples uBBD(tn) of the
filter’s output (being the BBD’s input) at times tn, n even, at which
the BBD samples its input.

Let Hin(s) be expanded into partial fractions as

Hin(s) =
MinX

m=1

rin,m

s� pin,m
(2)

where we may assume no non-negative powers of s to occur as
Hin(s) is a low-pass filter and further assume all poles pin,m to
be simple to simplify the following development. Then the corre-
sponding impulse response can easily be found to be

hin(t) =

(PMin
m=1 rin,m · epin,mt for t � 0

0 otherwise.
(3)

Exciting the filter with a single Dirac impulse weighted with
ū(k) · Ts at time kTs, we obtain the corresponding output

uBBD,k(t) =

8
><

>:
ū(k) · Ts

MinX

m=1

rin,m · epin,m(t�kTs) if t � kTs

0 otherwise.
(4)

Now let the time be decomposed as t = (ln + dn)Ts where ln is
an integer and 0  dn < 1. Then

uBBD,k((ln+dn)Ts) =

8
><

>:
ū(k)

MinX

m=1

gin,m(dn) · p̄ln�k
in,m if ln � k

0 otherwise
(5)

where p̄in,m = epin,mTs and

gin,m(dn) = Ts · rin,m · p̄dnin,m. (6)

Further rewriting as

uBBD,k((ln + dn)Ts) =
MinX

m=1

gin,m(dn) · xin,m,k(ln) (7)

with

xin,m,k(ln) =

(
ū(k) · p̄ln�k

in,m if ln � k

0 otherwise,
(8)

we see that the latter can be expressed recursively as

xin,m,k(ln) =

8
><

>:

p̄in,m · xin,m,k(ln � 1) if ln > k

ū(k) if ln = k

0 otherwise.
(9)

Now by the superposition principle, the filter response to the
complete input signal is given by

uBBD((ln + dn)Ts) =
X

k

uBBD,k((ln + dn)Ts) =

MinX

m=1

gin,m · xin,m(ln) (10)
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Figure 2: Digital realization of the input filter where tn = (k +
dn) · Ts, n even, are the sampling instants of the BBD input

where

xin,m(ln) =
X

k

xin,m,k(ln) = p̄in,m ·xin,m(ln�1)+ū(ln) (11)

constitutes a simple first-order recursive filter. This leads to the
digital realization shown in figure 2. For every input sample ū(k),
the parallel recursive parts are updated, and for every sample needed
at the BBD input, the weighted sum is evaluated. The weights of
the latter depend on the fractional offset dn of the BBD sampling
instant tn within the audio rate sampling interval.

3.2. Output filter

The development for the output filter is similar but differs in two
aspects: Now, the input samples occur at the BBD clock rate while
the output samples are needed at the fixed audio sampling rate,
and the input samples have to be treated as consecutive rectangular
pulses instead of Dirac impulses. That is, yBBD(t) is piecewise
constant in intervals [tn, tn+2), n odd.

For the following development, it is helpful to work with a
sequence of differences �(n) = yBBD(tn) � yBBD(tn�1), n odd,
with associated step functions

✏n(t) =

(
�(n) if t � tn
0 otherwise

(12)

such that
yBBD(t) =

X

n

✏n(t). (13)

Similar to the previous development, we first determine the filter
output produced by a single step ✏n(t) and consider the output filter
Hout(s) to be decomposed into partial fractions as

Hout(s) =
MoutX

m=1

rout,m

s� pout,m
. (14)

The response to a unit step (Heaviside step function) is

hout(t) =

8
><

>:

MoutX

m=1

rout,m

pout,m

�
epout,mt � 1

�
if t � 0

0 otherwise

(15)

=

8
><

>:
H0 +

MoutX

m=1

rout,m

pout,m
epout,mt if t � 0

0 otherwise

(16)

where H0 = �
PMout

m=1
rout,m
pout,m

. It follows trivially that the re-
sponse yn(t) to a single ✏n(t) is

yn(t) =

8
><

>:
H0�(n) +�(n)

MoutX

m=1

rout,m

pout,m
epout,m(t�tn) if t � tn

0 otherwise.
(17)

Now let ȳn(k) = yn(kTs) be samples of the individual re-
sponses taken at the original audio sampling rate, and tn = (ln �
1 + dn)Ts, where ln is an integer and 0 < dn  1. Then

ȳn(k) =

8
><

>:
H0�(n) +�(n)

MoutX

m=1

rout,m

pout,m
p̄k�ln+1�dn

out,m if k � ln

0 otherwise
(18)

where p̄out,m = epout,mTs . We further rewrite as

ȳn(k) =
MoutX

m=1

xout,m,n(k) +

(
H0�(n) if k � ln
0 otherwise

(19)

with

xout,m,n(k) =

(
p̄k�ln

out,mgout,m(dn)�(n) if k � ln
0 otherwise

(20)

where
gout,m(dn) =

rout,m

pout,m
p̄1�dn

out,m . (21)

Similar to the input filter, we can express this using the recursion

xout,m,n(k) =

8
><

>:

p̄out,m · xout,m,n(k � 1) if k > ln
gout,m(dn)�(n) if k = ln
0 otherwise

(22)

and by superimposing all input step functions get the recursive first
order subsystem

xout,m(k) =
X

n

xout,m,n(k) =

p̄out,m · xout,m(k � 1) +
X

n
k=ln

gout,m(dn)�(n) (23)

where the driving term includes all steps occurring during the past
sampling interval, that is all odd n such that (k�1)Ts < tn  kTs.
Further, by definition

H0

X

n
lnk

�(n) = H0yBBD(kTs). (24)
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Figure 3: Digital realization of the output filter where tn = (k �
1 + dn) · Ts, n odd, are the switching instants of the BBD output

The final output then is the sum of these first-oder subsystems,
i.e.

y(k) = H0yBBD(kTs) +
MoutX

m=1

xout,m(k), (25)

leading to the digital realization shown in figure 3, where the ⌃-
nodes on the border between the sampling rates shall denote the
accumulation of the inputs on the n side over one interval of the k
side.

Algorithm 1 shows pseudo code for the complete model of
BBD and filters. Note that the inner loop (lines 6–19), which per-
forms the operations running at the BBD clock rate, is executed
before the k-th input sample ū(k) is processed in line 21, and there-
fore effectively does the processing for the time interval between
the k � 1-th and k-th sample. The BBD samples are assumed to be
stored in a queue of fixed length N , accessed with enqueue() and
dequeue() to insert and retrieve a sample, respectively.

3.3. Real-valued systems

In above derivation, all coefficients are potentially complex-valued.
Of course, unless they are already real, they occur in conjugate
complex pairs, so that two complex-valued first-order systems can
be combined into one real-valued second-order system. The calcula-
tion is straight-forward and we only present the resulting equivalent
sub-systems in figures 4 and 5, where the m-th and m̂-th pole are
assumed to form a conjugate pair and the (real-valued) coefficients
for the formed input-filter sub-system are given by

a1,in,m = 2 cos(\p̄in,m) (26)

a2,in,m = �|p̄in,m|2 (27)

b0,in,m(dn) = �in,m · |p̄in,m|dn · cos(\rin,m + dn\p̄in,m) (28)

b1,in,m(dn) = ��in,m · |p̄in,m|dn+1

· cos
�
\rin,m + (dn � 1)\p̄in,m

�
(29)

where �in,m = 2Ts · |rin,m|. Similarly, the coefficients for the

Algorithm 1 Proposed BBD and filters model
1: n 0
2: xin,m  0 for m = 1, . . . ,Min
3: xout,m  0 for m = 1, . . . ,Mout
4: yBBD,old  0
5: for all k do
6: while tn < kTs _ (n odd ^ tn = kTs) do
7: dn  tn � (k � 1)Ts
8: if n even then
9: enqueue

⇣PMin
m=1 gin,m(dn) · xin,m

⌘

10: else
11: yBBD  dequeue()
12: � yBBD � yBBD,old
13: yBBD,old  yBBD
14: for m 2 1, . . . ,Mout do
15: xout,m  xout,m + gout,m(dn) ·�
16: end for
17: end if
18: n n+ 1
19: end while
20: for m 2 1, . . . ,Min do
21: xin,m  p̄in,mxin,m + ū(k)
22: end for
23: y(k) = H0 · yBBD,old +

PMout
m=0 xout,m(k)

24: for m 2 1, . . . ,Mout do
25: xout,m  p̄out,mxout,m
26: end for
27: end for

ū(k)
+

p̄in,m
z�1 gin,m(dn)

+

+

p̄in,m̂
z�1 gin,m̂(dn)

=
ū(k)

+

z�1

a1,in,m
+

z�1

a2,in,m

b0,in,m(dn)

b1,in,m(dn)

+

computed for every k
computed for
every even n

Figure 4: Two complex-valued first-order systems for a conjugate
complex pole pair of the input filter and the equivalent real-valued
second-order system
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�(n)

gout,m(dn)
⌃ +

p̄out,m
z�1

+

gout,m̂(dn)
⌃ +

p̄out,m̂
z�1

=
�(n)

b0,out,m(dn)
⌃ +

z�1

a1,out,m
⌃ +

b1,out,m(dn)
z�1

a2,out,m

computed for every odd n computed for every k

Figure 5: Two complex-valued first-order systems for a conjugate
complex pole pair of the output filter and the equivalent real-valued
second-order system

formed output-filter sub-system are given by

a1,out,m = 2 cos(\p̄out,m) (30)

a2,out,m = �|p̄out,m|2 (31)

b0,out,m(dn) = �out,m · |p̄out,m|1�dn

· cos(\rout,m + (1� dn)\p̄out,m) (32)

b1,out,m(dn) = ��out,m · |p̄out,m|2�dn

· cos
�
\rout,m � dn\p̄out,m

�
(33)

where �out,m = 2
��� rout,m
pout,m

���. Note that by precomputing constants
and reusing common terms, computing the b coefficients for one
second-order sub-system requires evaluation of one exponential
and two cosine functions. Alternatively, given the limited range
of dn, one may use polynomial approximations or look-up tables
for the b coefficients. An analysis of the effects of approximation
errors is beyond the scope of this paper, however.

4. RESULTS

In the following, we consider the BBD and filter combination
as found in the chorus effect of the Juno-60 synthesizer. As a
detailed circuit analysis is beyond the scope of this paper, we only
state the relevant aspects. Both the input and output filter are
sixth-order filters that can be decomposed into a first-order high-
pass filter (for adjusting bias voltages) and a fifth-order low-pass
filter. We will only include the latter in our combined BBD/filter
model. Numerical circuit analysis gives the coefficients of table 1,
corresponding to the frequency responses shown in figure 6.

We first validate the model by studying a situation where we
can analytically derive the expected output: sinusoidal input and a
BBD clock with constant rate fBBD so that the time interval between

Table 1: Coefficients of the input and output filters

Hin Hout

r1 251 589 5092
r2 �130 428� 4165i 11 256� 99 566i
r3 �130 428 + 4165i 11 256 + 99 566i
r4 4634� 22 873i �13 802� 24 606i
r5 4634 + 22 873i �13 802 + 24 606i

p1 �46 580 �176 261
p2 �55 482 + 25 082i �51 468 + 21 437i
p3 �55 482� 25 082i �51 468� 21 437i
p4 �26 292� 59 437i �26 276� 59 699i
p5 �26 292 + 59 437i �26 276 + 59 699i

0 dB

�10 dB
�20 dB
�30 dB
�40 dB
�50 dB
�60 dB
�70 dB
�80 dB
�90 dB
�100 dB

10Hz 100Hz 1 kHz 10 kHz 100 kHz
f

|H
(2
⇡
jf

)|

Figure 6: Frequency response of the input filter ( ) and output
filter ( )
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two clock edges is tn � tn�1 = 1
2fBBD

, where we assume the clock
to have 50% duty cycle, i.e. tn � tn�1 = tn�1 � tn�2, as is
typical in BBD applications. For signals band-limited to fBBD/2
and ignoring aliasing distortion introduced by the BBD, the BBD
may then be treated as the linear filter

HBBD(i!) = e
�i! N

2fBBD · sinc
✓

!
2⇡fBBD

◆
(34)

where N is the number of stages of the BBD and sinc(x) = sin(⇡x)
⇡x .

The first factor is the phase shift due to the delay, the second factor
the amplitude distortion due to presenting rectangular pulses at the
output. For the input signal

u(k) = sin
⇣
2⇡ f0

fs
k
⌘

(35)

we therefore expect the output

y(k) = a · sin
⇣
2⇡ f0

fs
k + '

⌘
(36)

where

a = sinc
⇣

f0
fBBD

⌘
· |Hin(2⇡if0)| · |Hout(2⇡if0)| (37)

' = �⇡f0 N
fBBD

+ \Hin(2⇡if0) + \Hout(2⇡if0). (38)

This expected output is compared in figure 7 with the output
computed using the proposed model. Here, we choose f0 = 1kHz,
fs = 44.1 kHz, N = 256, and fBBD = 50 kHz. As can be seen,
model output and theoretically expected output are in good agree-
ment, small differences remain however. These are caused by
aliasing due to the non-perfect attenuation of the filters at and above
the Nyquist frequency. Figure 8 shows the same configuration,
but with an instant step in fBBD occurring at t = 5ms. A smooth
change in the frequency of the output can be seen, as is expected
for a BBD. This is in contrast to a simple digital delay-line, which
would exhibit a discontinuity at the output when subjected to a
discontinuous change in delay time. This behaviour arises because
the effective pitch of the output of the BBD compared to its input
depends on the ratio of fBBD between the instant when the signal
was sampled by the BBD and when it exits the BBD.

As a more practically relevant scenario, we compare the model
output to the output of the BBD output filter recorded from a real
Juno-60 synthesizer. The BBD clock period is controlled by a
triangular LFO signal, leading to piecewise constant pitch shifts,
alternatingly upwards and downwards. It is worth noting that the
minimum BBD clock rate is about 26 kHz, so that the analog
circuit may already introduce aliasing distortion itself, as discussed
previously.

To allow a meaningful comparison, several extra considerations
are necessary:

• The first-order high-pass filters previously omitted have to
be included. This is done by converting them to digital filters
using the bilinear transform and applying them to the input
signal before and the output signal after running the BBD
model.

• Measurements in the circuit showed that the BBD amplifies
the signal by approximately 2.3 dB which is also included
in the simulation.

�1

0

1

1ms 2ms 3ms 4ms
t

(a) Output of the proposed model ( ) and the theoretically ex-
pected output ( )

�0.001

0

0.001

1ms 2ms 3ms 4ms
t

(b) Difference between proposed model output and theoretically ex-
pected output

Figure 7: Comparison of the output of the proposed model and
theoretically expected output for a sinusoid at f0 = 1kHz sampled
at fs = 44.1 kHz delayed by a BBD with N = 256 stages clocked
at fBBD = 50 kHz

�1

0

1

0ms 5ms 10ms 15ms
t

Figure 8: Model output ( ) for a sinusoid of f0 = 1kHz sampled
at fs = 44.1 kHz delayed by a BBD with N = 256 stages clocked
at fBBD = 50 kHz before t = 5ms and fBBD = 25 kHz afterwards.
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Figure 9: Model output ( ) and recorded output ( ) for a Cmaj

chord input

• Instead of recording the BBD clock signal, which would
necessitate a very high sampling rate, we reconstruct the
clock rate by estimating phase, frequency, and amplitude of a
triangular oscillator. Visual inspection of the measurements
and simulation results reveals a mismatch in obtained delay
time of up to 0.13ms, varying with time, which is likely
due to non-perfect clock rate reconstruction.

• While the filter parameters used are derived from nominal
component values, the tolerance of the real components will
lead to slightly different filtering behavior.

Figure 9 shows a time domain comparison of the model output
and the recorded output when driven with a Cmaj chord (C4, E4,
G4). As can be seen, despite the uncertainties mentioned above,
very good agreement is achieved. Closer inspection reveals a small
time offset (less than 0.04ms in the shown excerpt) between model
output and recording. This impedes interpretation of the difference
signal, as it is dominated by peaks around the steep edges of the
signal due to the misalignment.

To specifically study the effects of aliasing, the highest note
available on the Juno-60, C7 nominally at 2093Hz, is used as input.
The spectrograms in figure 10 reveal a small amount of aliasing in
the recorded output of the analog device (figure 10(c)) and slightly
more aliasing in the digital model output at the sampling rate fs =
44.1 kHz (figure 10(a)), as was to be expected.

This extra aliasing in both examples is produced by the assump-
tion of the input to be an impulse-train, as well as the reflection
around the audio Nyquist frequency of the image-spectra generated
by the sample-and-hold nature of the BBD output. Helped by the
existing presence of aliasing in the analog BBD system, this extra
aliasing is not audible. In applications where the extra aliasing is
problematic, the easiest remedy is oversampling. This is almost
tautological, but note that here, a significant portion of the com-
putation happens at the BBD clock rate and is independent of the
audio sampling rate, making oversampling especially attractive.
The effectiveness can be seen in figure 10(b), where the sampling
rate is doubled to fs = 88.2 kHz and the extra aliasing due to the
model vanishes.

Evaluation based on the Objective Difference Grade (ODG)
[9] (advanced mode) as computed with GstPEAQ [10] confirms
the high similarity of the simulation to the measurements. Table 2
shows the ODG for the two stimuli discussed above as well as for a
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(a) Model output at fs = 44.1 kHz
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(b) Model output at fs = 88.2 kHz
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(c) Recorded output
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Figure 10: Spectrograms of the model output and the recorded
output of the BBD output filter in a Juno-60 synthesizer, excited
with a C7 (nominally 2093Hz), and the LFO-controlled BBD clock
edge interval
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Table 2: Objective difference grade (ODG) comparing measure-
ment of BBD output and simulation for different stimuli and sam-
pling rates

stimulus fs = 44.1 kHz fs = 88.2 kHz

C2 �0.696 �0.670
C7 �0.530 �0.393
Cmaj �0.646 �0.611

low pitched note, C2 nominally at 65.41 hertz1. The ODG ranges
between 0 (“differences imperceptible”) and �4 (“differences very
annoying”), where �1 corresponds to “differences perceptible but
not annoying”. Hence the achieved results could be classified as
“differences not annoying if perceptible at all”, with the expected
slight improvement for the higher sampling rate. Considering that,
as outlined above, the BBD model is not the only source of differ-
ences between simulation and measurements, this is a clear success.

5. CONCLUSION

BBD chips sample a signal and delay it by a constant number
of sampling intervals. To prevent aliasing from high-frequency
content present in the input signal and to suppress image-spectra
in the output signal, typical application circuits contain low-pass
filters at their input and output. In this paper, we have proposed a
model for the combination of the BBD and the filters. In fact, the
BBD is trivially modeled as delay-line of constant length, working
at the same clock rate as in the analog circuit. The key idea is that
the resampling between the audio sampling rate and the BBD clock
rate utilizes the filters already existing in the circuit. To this end,
the filters are transformed into the digital domain by a modified
impulse-invariant transform that allows the output to be taken or
the input to be given at arbitrary time instants.

As verified with experimental results, the model thus obtained
allows faithful reproduction of the analog system’s behavior, even
including aliasing distortion that may occur. However, the audio
sampling rate has to be high enough that the filters have sufficient
attenuation at the Nyquist frequency. Otherwise, additional aliasing
distortion may be introduced. If necessary, this can be trivially
prevented by oversampling.
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