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ABSTRACT

Several methods are available nowadays to artificially extend the
duration of a signal for audio restoration or creative music produc-
tion purposes. The most common approaches include overlap-and-
add (OLA) techniques, FFT-based methods, and linear predictive
coding (LPC). In this work we describe a novel OLA algorithm
based on convolution with velvet noise, in order to exploit its spar-
sity and spectrum flatness. The proposed method suppresses spec-
tral coloration and achieves remarkable computational efficiency.
Its issues are addressed and some design choices are explored. Ex-
perimental results are proposed and compared to a well-known
FFT-based method.

1. INTRODUCTION

Several techniques have been devised since the advent of digital
signal processing for the creative generation of textures and signal
[freezing effects. Some of these methods, or variations thereof, are
also employed for audio restoration (see e.g. [1]), as they allow to
mimic a given signal and extend its time duration. Several tech-
niques have been proposed [2], among which some of the most
used ones are:

e Overlap-and-add (OLA) techniques [3, 4];

e FFT-based methods based on spectral analysis and resyn-
thesis [5];

e Linear Predictive Coding (LPC) schemes ([6, 7]).

OLA techniques constitute the foundation of granular synthe-
sis, which essentially consists in summing together several time-
shifted copies of a small number of short and usually windowed
signals (grains) to form the output signal. Generally, however,
granulation is meant as a creative tool, thus grains are often pro-
cessed, e.g. with constant or time-varying pitch-shifting. Despite
its conceptual simplicity, this synthesis method finds use in a wide
variety of applications. For extrapolation and freezing, it is suffi-
cient to employ a single input grain and have a sufficient density of
overlapping repetitions. The relative computational efficiency of
such algorithms is anyway normally counterbalanced by spectral
coloration, modulation effects, and phase-related artifacts, unless
countermeasures are taken [4].

Vocoding [8] is a well-known FFT-based method for signal
analysis and resynthesis and it has been used for the purpose of
freezing or texturing of a signal. Being block-based, it results in
nonuniform execution time and/or high implementation complex-
ity, and significant difficulties arise in handling parameter changes.

Finally, LPC methods generally achieve best output perfor-
mance in terms of timbre quality, and extensions of these meth-
ods can also work in the time-frequency domain, thus allowing for
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accurate modeling of transients [9]. The good output quality nor-
mally obtained by LPC methods is however traded for high com-
putational cost due to the adaptive filtering techniques [10] they
are based on.

In this work we describe an OLA method for signal extrap-
olation which, unlike previous approaches [3, 4], is targeted not
only for efficiency, but also for maximal spectral flatness, leading
to results that are on par with FFT-based techniques.

The outline of the paper follows. In Section 2 we introduce
OLA techniques and justify our proposition from a theoretical per-
spective. Section 3 reports implementation details, experimental
and comparative data. Finally, Section 4 concludes the paper and
discusses the outcomes of this research.

2. PROPOSED METHOD

Overlap-and-Add methods are widely used in digital signal pro-
cessing to evaluate the convolution between two signals, one of
which has finite length, e.g. a filter kernel, and another that can
theoretically be infinitely long. If s[n] is the latter signal, we can
decompose it in non-overlapping blocks of length L, i.e.

+oo
n| :Zsr[n—rL]. (1)
r=0

Thus, the result of the convolution between such running signal
and a finite impulse response h[n] can be defined as

ZST[ner | * hin

If h[n] has length P, then ¢.[n — rL], has length L + P — 1.
Therefore, each two contiguous blocks ¢, and c,41 need to be
overlapped and added (hence the name) to obtain the correspond-
ing portion of ¢[n].

Many signal extrapolation methods work by summing time-
shifted copies of the windowed input signal v [n]. This is con-
ceptually equivalent to applying the OLA method to compute the
convolution between z+ 1], impersonating the fixed-length signal,
and an impulse train v[n] as the running signal. If the impulses
in v[n] are equally spaced, as is often done, the operation will
inevitably produce spectral coloration. This can be intuitively un-
derstood by considering that such a process corresponds to feeding
Zw[n] into a feedback comb filter with unitary gain, thus resulting
in significant cancellation of spectral components that cannot be
compensated by post-equalization.

For our purposes, we need v[n] not only to have infinite tem-
poral duration, but also a sufficiently flat spectrum. Two well-
known signals that have these properties are white noise and dense

Z cr[n —rL). 2)
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Figure 1: Overview of the proposed system.

velvet noise [11]. Velvet noise, in particular, consists of randomly-
spaced unitary bipolar impulses and it has been shown to approx-
imate white noise from a psychoacoustical standpoint when its
pulse density rises above a certain threshold [12]. Due to its spar-
sity and the constant amplitude of impulses, convolution with vel-
vet noise can be efficiently implemented in the time domain by
simply summing together multiple randomly time-shifted copies
of xw[n] with random sign. The random nature of v[n] implies
random fluctuations of the local energy, requiring, thus, an am-
plitude compensation mechanism to reduce this undesired phe-
nomenon, later discussed. The overall architecture is shown in
Figure 1.

2.1. Issues and Implementation

The proposed method exposes three degrees of freedom in its de-
sign and operation: grain length, choice of window function, and
velvet noise density.

In granular synthesis, the user can often directly choose which
window function is applied as this has noticeable effect on the
sound, and especially when using short grains. In our case, we
definitely need windowing to eliminate potential discontinuities at
the extremes of the input grain, and it would be preferable to pick
a function that has high dynamic range and that is easy to com-
pute. However, since grains need to be relatively long to retain
low frequency components in the output, we can pragmatically
choose the window function based on computational cost alone.
The Welch window seems to be a valid choice because it is twice
differentiable, except at the extremes, and has an exceptionally low
computational cost. In Section 3 a few low cost windows, namely
the triangular, half sine, and Welch windows, are compared.

While many musical signal processing devices nowadays are
able to perform real-time convolution between a running signal
and a long impulse response, the complexity and computational
cost of our system can be largely reduced by leveraging the con-
cept of voices, as in other forms of synthesis. Each voice is a sam-
ple playback engine, triggered randomly and with random sign,
thus reducing the convolution operation to a limited number of
random memory accesses, sums, and sign changes per output sam-
ple. The only potential drawback of this approach is that a finite
number of voices needs to be defined beforehand, thus limiting the
number of possible simultaneous grain playbacks, which theoreti-
cally corresponds to imposing a maximum “instantaneous density”
to the velvet noise signal.

Given the suggested implementation approach, we believe it
makes most sense to parameterize in terms of simultaneous grains
on average, which corresponds to the product of the average velvet
noise density (spikes over time) and the grain length. It is probably
impossible to determine an optimal density for a given input sig-
nal, and especially when the input grain is somehow not sonically

uniform (e.g., it contains transients), however we have empirically
verified that satisfactory results can be in most cases obtained by
employing relatively few voices, usually less than 30. Further-
more, preallocating twice the number of average voices reduces
the likelihood of running out of available voices at any instant to
at most a few percentage points.

A last issue that needs to be addressed derives from the local
energy fluctuations of v[n] that are inherent to its random nature.
Those are also found in the output signal and need be compen-
sated for. Significant variations of the amplitude are indeed usu-
ally noticeable in our experiments. To attenuate these, at least in
a psychoacoustic sense, we propose applying a time-varying gain
which depends on the signal volume. We propose employing a
simple VU meter-inspired envelope detector for volume estima-
tion, which performs full-wave rectification and conversion to the
dB scale (with a lower limit of —120 dB), then applying a one-pole
lowpass filter with a rise/fall time of 300 ms for 99% excursion
(i.e., 7 &~ 65.144 ms). In order to match input and output levels,
the same volume estimator can be also applied to the input signal
to establish a target level. In any case, the gain factor needs to be
limited to avoid the occurrence of loud peaks.

A schematic overview of the implemented algorithm is shown
in Figure 2 where the amplitude compensation strategy described
in Section 2 is detailed.

3. EXPERIMENTAL RESULTS

The algorithm has been implemented as a GNU Octave script
to determine the quality of the audio output. The script
and sound samples are available at http://www.dangelo.
audio/dafx2018-freeze.html. A C++ implementation
has also been developed for execution on regular desktop com-
puters and on an embedded system running ELK by Mind Music
Labs'. It was tested on two laptops, an Acer Extensa 5220 (Intel
Celeron M 530 1.73 GHz single-core CPU, 1 GB DDR2 RAM)
and an Acer Aspire E1-522 (AMD A4-5000 1.5 GHz quad-core
CPU, 4 GB DDR3 RAM), both running 64-bit Arch Linux and
using an external Focusrite Scarlett 2i4 sound card. In all cases
(laptops and embedded system), the CPU load never exceeded 9%
for a grain density of 32 simultaneous grains on average, at a sam-
ple rate of 44.1 kHz and with different buffering configurations.

3.1. Qualitative Results

Informal listening tests have been conducted with several audio
source materials. An example of such experiments is reported in
Figure 4, where a small excerpt of a male voice singing an /a/
phoneme tuned to A2 is taken as source. Its spectrogram is shown
in Figure 4(a) and its DFT is shown in Figure 4(d). This signal has
been extrapolated according to the proposed algorithm yielding a
signal of length 5 s. Its spectrogram is shown in Figure 4(b) and its
time-domain representation is shown in Figure 4(c). Random fluc-
tuation of the overall amplitude is visible, however within a range
of 3 dB maximum. The DFT from the original and the extrapolated
signals are depicted in Figure 4(d-e) and show high resemblance,
as expected, due to the spectral flatness of velvet noise. Similar
experiments have been done with less stationary audio material,
such as a guitar chord, polyphonic music and percussive instru-
ments, with similar outcomes, see Figures 3, 8, 7.

"https://www.mindmusiclabs.com/
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Figure 2: Schematic overview of the implemented algorithm, including the amplitude compensation strategy and exploiting multiple sample

playback voices to reduce the computational cost of the convolution.

Figure 5 shows the DFT from the impulse train method. This
signal has been synthesized by convolution with an impulse train
having the same density as in the previous experiments, i.e. 32
pulses per second. In this case, it is quite evident that the signal
has a comb-like pattern, with peaks at multiples of 32 Hz. As
discussed previously, since the convolution with an impulse train
has the same effect of a comb filter with unitary gain, the peaks are
very pronounced, losing the timbre of the original signal.

We have also verified that the output sound quality has little
dependency on the choice of the window function when the input
grain is sufficiently long. The DFT from signals extrapolated using
three window types, triangular, half sine, and Welch, are shown in
Figure 6(a),(b) and (c), respectively. The results are almost iden-
tical, as expected. Please note that this is also true for any pulse
density.

3.2. Comparison to FFT analysis-resynthesis

In this section we compare the proposed method with a well-
known method based on FFT analysis-resynthesis, dubbed tim-
bre stamping in [5]. In general, the quality of such an FFT-based
method is rather high if the number of DFT bins is sufficiently
large. In Figures 7 and 8 we compare the proposed method and
the FFT-based method with a polyphonic music excerpt (trumpet
playing a scale and accompanying jazz combo in the background)
and a percussive jazz excerpt (containing a double bass note and
cymbals) respectively. Both methods retain features of the original
spectra. For instance, the polyphonic excerpt overlaps the notes of
the scale are contained in the window. The time envelope of the
FFT-based method is perceived as smoother for long grain size (1 s
or more), however with shorter windows, such as those used in the
figures (32 windows per second and window size of 300ms) the
FFT method shows periodic repetitions in the output that are easily
perceived especially in the presence of transients in the windowed
signal. This is even clearer with percussive audio material. In the
FFT-based method, transients may result smeared and are repeated
periodically. The proposed method shows to have a smoother tem-
poral domain envelope with respect to the FFT-based method, re-
sulting in a less mechanical behavior and a denser output.

4. CONCLUSIONS

This paper described a novel method for signal extrapolation that
has a low computational cost and is, thus, easily implemented in
real-time applications. The method is mathematically formulated
as a convolution problem with spectral flatness as a constraint.

Owing from overlap-and-add methods we derived a formulation
that ensures maximal spectral flatness. The low computational
cost of this method is an additional benefit that allows for real-time
implementations with a very low effort, as it processes the signal
directly in the time domain and requires no filter adaptation, as in
LPC methods. The real-time implementation can take advantage
of the sparsity of the velvet noise reducing the convolution to the
playback of randomly triggered voices. The method requires an
additional step of automatic gain control to reduce random fluc-
tuations of the output signal energy. In the current work we de-
scribe a mechanism that is widely used in the literature, however,
this may be improved upon taking in consideration both the vel-
vet noise density and the fluctuations inherent to the input signal
as well. Experimental results are provided showing the preserva-
tion of the original spectrum and the minimal effect of the window
type, which can be, thus, selected depending on computational
constraints. As a future work, subjective listening tests could be
performed to compare it to other well-known methods. The qual-
ity of these effects is very subjective, thus, some audio semantic
descriptors may be employed as well for the evaluation.
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Figure 3: Extrapolation of a guitar chord: spectrogram of the orig-
inal excerpt (a), spectrogram of the extrapolated audio (b) and
waveform (c).
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Figure 4: Experiments with voice extrapolation. The input signal
is an excerpt of an /a/ phoneme by a male singer tuned to A2. Its
spectrogram is shown in (a) and the resulting extrapolated signal is
shown in (b), where the impulse density is set to 32 pulses per sec-
ond. The original phoneme length was 1 s, while the extrapolated
signal lasts 5 s. The time domain plot of the extrapolated signal is
shown in (c), while the DFTs for the original and the extrapolated
signals are respectively shown in (d-e). All signals are sampled at
44100 Hz.
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Figure 5: Repeating the experiment of Figure 4 with an impulse
train instead of velvet noise with impulse density 32. The DFT is
shown in (a). A detailed view shows that the periodicity can be
clearly seen by the peaks emerging at multiples of 32 Hz, reducing
the effect to a comb filter with unitary gain. The sampling rate is
4100 Hz.
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Figure 6: Comparison between signals extrapolated from the vo-
cal signal in Figure 4(a) with window duration of 0.3 s and differ-
ent window types: triangular (a), half sine (b) and Welch (c). All
signals were generated using a grain density of 32 simultaneous
grains on average. All signals are sampled at 44100 Hz.
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Figure 7: Extrapolation of jazz polyphonic music: spectrogram of the original excerpt (a), spectrogram of the extrapolated audio using the
proposed method (b) and a FFT-based method (c). The time waveform are the one from the proposed method (d) and from the FFT-based
method (e). The FFT-based method and the proposed extrapolation method use same window size. All signals are sampled at 44100 Hz.
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Figure 8: Extrapolation of a jazz excerpt with double bass and cymbals: spectrogram of the original excerpt (a), spectrogram of the
extrapolated audio using the proposed method (b) and a FFT-based method (c). The time waveform are the one from the proposed method

(d) and from the FFT-based method (e). The FFT-based method and the proposed extrapolation method use same window size. All signals
are sampled at 44100 Hz.
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