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Foreword

The University of Aveiro and the Portuguese Association of Audio Engineering are delighted to host the 21st International
Conference on Digital Audio Effects. This privilege is amplified by two factors: the celebration of two decades since its
inaugural edition, held in Barcelona in 1998, and the opportunity of welcoming the DAFx community to Portugal for the first
time.

Organising such a prestigious event is not a simple task. We are particularly indebted to former organisers, especially
DAFx17 committee members Stefan Bilbao, Brian Hamilton and Michael Newton, for kindly sharing their experience and
support from the first call for papers right up to compiling these proceedings. The generous contribution of our industry
sponsors – Eventide, Steinberg, Arturia, Yamaha, Audiokinetic, Izotope, Imaginando, Sonnox, Ableton, Newfangledaudio
and NeuralDSP – and the support of the city councils of Aveiro, through the councillor for culture Miguel Capão-Filipe, and
Arouca, through mayor Margarida Belém, were crucial. We must also acknowledge the gracious collaboration of the Voz Nua
choir, directed by Aoife Hiney, the Xperimus Ensemble, led by Helena Marinho, and Carlos Brito, head of the Brotherhood
of Queen St. Mafalda.

Concerns over gender balance were brought to the fore last year. Stimulating female participation is part of the broader
challenge of fostering inclusion and diversity. The DAFx community is keen to embrace this challenge and we kept it in mind
at all times.

We believe that highlighting the interdisciplinarity of audio and the broad range of applications of DAFx technology
is likely to attract interest from a more diverse audience. Reflecting this idea, our call for papers explicitly encouraged
interdisciplinary submissions and the exploration of digital audio processing as a tool for inclusion. Out of 68 submissions,
52 were accepted, resulting in a 76.5% acceptance ratio, which cover the full range of proposed topics. Analog systems and
machine learning techniques attracted the most interest. Reviewers praised the high quality of many papers, the best of which
will be invited for publication in the Journal of the Audio Engineering Society.

In building our panel of keynote speakers, we strived for balance between different perspectives on digital audio effects,
namely from academic research, industry development and artistic application. We are very fortunate that Joshua Reiss,
Yvan Grabit and David Farmer were able to accept our invitation, as they perfectly match this criterion. A similar balance
was sought in the remaining invited sessions. The first day tutorials, covering a diverse range of stimulating topics, are split
between academy and industry; on the final day, we will host the inaugural DAFx jam session for musical exploration of
effects submitted by participants. The programme opens and closes with two outstanding female academics, from Portugal,
whose backgrounds are Psychology and Music respectively.

Attendance figures confirm significant gender imbalance, with only 8.9% female registrations, and the ratio for sponsor
delegates was 7.1%. Our call for student volunteers resulted in just one girl among 23 candidates (4.3%). Our invited panel
features 16.7% female participation. Geographically, attendance is also very unevenly distributed. While there are attendants
from every continent, only 8.7% come from outside Europe or North America. Lowering registration fees and providing
inexpensive student accommodation seems to have had little or no impact on this front.

Inclusion is a strong motivation for sharing the DAFx concert with the local community. This involves bridging the gap
between electroacoustic music and more mainstream genres. There could hardly be a better choice to meet this challenge
than the virtuoso bassoonist Paul Hanson, an expert in modern performance techniques with roots both in jazz and classical
music, to whom we are deeply grateful.

Reflecting our commitment to embracing diversity and promoting inclusion, the remaining events of the social pro-
gramme, and especially the Saturday tour to Arouca, seek to celebrate the remarkable diversity of our region’s natural and
cultural heritage.

We sincerely hope that you enjoy your DAFx experience in Aveiro!

The DAFx18 Local Organising Committee
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Keynotes
Joshua D. Reiss
Disruptive Innovation in Sound Design and Audio Production
Abstract In films, games, music and virtual reality, we recreate the sounds around us, or create unreal sounds to evoke
emotions and capture the imagination. But there is a world of fascinating phenomena related to sound and perception that is
not yet understood. If we can gain a deep understanding of how we perceive and respond to complex audio, we could not
only interpret the produced content, but we could create new content of unprecedented quality and range. This talk is targeted
at a general audience, and considers the possibilities opened up by such research. What are the limits of human hearing? Can
we create a realistic virtual world without relying on recorded samples? If every sound in a major film or game soundtrack
were computer-generated, could we reach a level of realism comparable to modern computer graphics? Could a robot replace
the sound engineer? Investigating such questions reveals surprising aspects of auditory perception, and has the potential to
revolutionise sound design and music production.

David Farmer
Confessions from a plugin junkie
Abstract Here, the intention is simply to give a window into an actual users experience. Some examples will be shown of
how the use of plugins is applied in a typical day. This will include what draws somebody to use certain plugins over others
that may do similar things. Some GUI features will be explored that are found useful and also what is a hinderance. It will
be also discussed what it’s like to be an end user in a saturated market of products and just how it is to discover, try, and buy
developers products.

Yvan Grabit
The top ten things you have to know as Developer from the idea to a product, based on the History of
Audio Plugin formats
Abstract From an idea of an algorithm to a final commercial plugin, there is a lot of steps you have to know and understand
as a developer in order to make the best of your idea. I will talk about such top ten things from DSP design to UX/UI design
including such concerns like latency, bypassing, parameters, precision, automation, surround, persistency,... using reference
to the development and history of Audio plugin formats, mainly based on VST 3. The goal of this keynote is to help future
or already established plugin developers to be prepared and aware of what should be not forgotten during development.
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Tutorials
Catarina Mendonça
Perceptual and cognitive factors for VR audio
Abstract There are many challenges faced by those aiming to render and reproduce convincing virtual audio. This tutorial
defines key concepts and goals to allow for the feeling of presence in a simulated audio world. The specific role of factors
such as individualization of HRTFs and headphones, sensory adaptation, room cues, motion cues, real-time rendering, and
multimodal interfaces is addressed. There is a complex interplay between the ideal sound accuracy and several of these
factors. When is accuracy perceptually relevant? When can we fool the listener? These questions are answered having
in mind indicators such as localization accuracy, externalization, multimodal interactions and attentional effects. There are
three main conclusions: 1) what the listener perceives depends on what we ask, 2) sensory adaptation ultimately allows to
overcome most technical limitations, and 3) more accurate rendering will always have benefits.

Vesa Välimäki
Digital Audio Filters
Abstract This tutorial will review the basic digital filters used in audio and music processing, such FIR, allpass, and
equalizing filters. FIR filtering is carried out by convolving the samples of the input signal with the filter coefficients. An
allpass IIR filter has a flat magnitude response and a nonlinear phase response. It is useful in numerous audio applications,
such as in artificial reverberation and in delay equalization. Equalizing filters enable enhancement of sound reproduction
systems. The tutorial will include sound examples and interactive demonstrations to explain how the digital filters work and
what they can achieve.

Julian Storer
Building plugins and DSP with JUCE
Abstract This talk is an introduction to how the JUCE library provides classes and tools that can help developers who are
building plugins (or plugin hosts) and writing DSP algorithms. Topics I’ll cover are:

• A quick high-level overview of JUCE and the functional areas it covers;

• A dive into how the audio plugin abstraction layer works and how you’d use it to build a simple plugin;

• An overview of how our plugin hosting classes work and how they might be used to write a simple plugin host;

• A dive into what our DSP module provides;

• If time permits, a quick introduction to some JUCE GUI library concepts.

No familiarity with JUCE is expected, but the talk will require some experience with C++ to get the most out of it.

Shahan Nercessian
Machine Learning with Applications to Audio
Abstract Machine learning is an exploding field which over the past few years has seen great advances, received arguably
excessive hype, and has become ubiquitous in our every-day lives. In its correct application, machine learning enables and has
already demonstrated borderline science-fiction-like processing and decision making of data, particularly in the domain of
image processing and analysis. In this tutorial, we will de-mystify machine learning and its associated buzzwords, explaining
what it is, what it isn’t, and how it works. Upon formulating some common machine learning problems and giving a short
overview of more “classical” machine learning approaches, we will take a deeper dive into neural networks and touch on
some modern deep learning architectures. Throughout, we will explore applications of machine learning to audio problems
and show how it is used in iZotope products for carrying out various audio classification and restoration tasks.
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Berlin, Germany

firstname.lastname@native-instruments.de

ABSTRACT

A significant part of the appeal of tape-based delay effects is the
manner in which the pitch of their output responds to changes in
delay-time. Straightforward approaches to implementation of de-
lays with tape-like modulation behavior result in algorithms with
time complexity proportional to the tape speed, leading to notice-
able increases of CPU load at smaller delay times. We propose
a method which has constant time complexity, except during tape
speedup transitions, where the complexity grows logarithmically,
or, if proper antialiasing is desired, linearly with respect to the
speedup factor.

1. INTRODUCTION

Delay and echo effects have been fundamental tools for manipu-
lating space and rhythm in music production since the 1950s, with
the first commercial units being based on loops of magnetic tape.
Over the following decades, other methods for producing such ef-
fects were developed, including the use of magnetic drums, and
bucket-brigade chips [1, 2, 3]. Starting in the 1970s, digital imple-
mentations of delay-lines became available.

A delay line can broadly be thought of as a black-box into
which a signal is passed, and which outputs it at some later (‘de-
layed’) time. Independent of the technology involved, all delay
lines work in fundamentally the same way. The signal is injected
into a medium at a particular point, it travels through that medium
for some time, and is received at another point. This medium can
be magnetic tape, a chain of capacitors, a digital ring-buffer, or
even potentially an acoustic or mechanical system. Despite the
change in sound-character imposed by the medium, the broad dif-
ference between different types of delay-line is the way in which
they allow the delay time to be varied. Some allow the distance
between the entry point and exit point to be varied (we call these
length-type delays), whilst others instead manipulate the speed at
which the sound traverses the medium (we call these speed-type
delays). This difference is exemplified by two famous tape-based
delay devices - the EchoPlex [4], and the Roland Space Echo se-
ries. The former allows the read head of the tape machine to be
moved, whereas the latter allows the speed of the motor driving
the tape to be changed. This distinction is important, because it
greatly influences the pitch-change perceived when manipulating
the delay-time, especially when the system is subjected to feed-
back as is the case in echo effects. In the case of length-type
delays, the pitch-change perceived in the output (and recirculated
when feedback is present) is dictated purely by the rate of change
of the length. In the case of speed-type delays, the change in pitch
is defined by the ratio of speeds between the instant the signal en-
tered the medium and the instant it exits. It turns out that the latter
behaviour is desirable musically, as it leads to much more consis-
tent control over pitch. For example, a repeating echoing sound

can be cleanly pitched up and down by varying the delay-time in
the latter case, whereas in the former the same manipulation will
result in erratic overlapping pitch changes.

Typical implementations of digital delays are based on a vari-
able length ringbuffer, where the delay time parameter controls
the distance of an interpolated read-point from the write-point [5].
This implementation clearly falls into the length-type category,
and exhibits the expected problems. Straightforward speed-style
digital delays can be implemented using a fixed array and a vary-
ing internal sample-rate. Thus, there must be sample rate con-
version at the write head (from the outside sampling rate to the
sampling rate implied by the speed) and at the read head (from
the implied to the outside sample rate). Moreover, the number
of processed “internal samples” per one “outside sample” is pro-
portional to the speed. Thus, the time complexity of such emula-
tion is O(v), where v is the speed. This particularly means that
at low delay times, where the tape speed is high, the CPU load
significantly increases. Another interpretation of variable-sample-
rate digital delay is given by Rocchesso [6] who frames the pro-
cess using interpolated read and write points. Holters extends this
variable-sample-rate paradigm to use the BBD circuits input and
output filters to perform the necessary interpolation [3].

Huovilainen [1] proposed a way to recompute speed variations
into length variations, which can then be used to simply control
the read position of a ringbuffer-based digital delay. However his
method of recomputation, even though reducing the overall com-
putation costs, still has an O(v) complexity.

In this paper, we propose a new method of implementing a
digital speed-style delay which in steady-speed situations and dur-
ing slowdowns has an O(1) complexity, regardless of the actual
speed. During speedup transitions the method has an O(log K)
complexity, where K is the speedup factor. If proper antialiasing
of speedups is desired, then during speedup transitions the compu-
tation complexity grows to O(K).

For the sake of a more intuitive language we will be talking
of emulation of a tape delay. However the discussion will equally
apply to other types of speed-style delays.

In Sec. 2, we introduce a continuous-time model for the rela-
tionship between tape speed and delay-time, which we call the tape
equation. We then discuss some results that can be derived directly
from the model. In Sec. 3, we describe a numerical scheme for
solving the tape equation in the case of arbitrary changes in speed,
including consideration of aliasing distortion in cases where tape
speed is increasing. In Sec. 4 we present some measurements of
the computation efficiency of the described method, in comparison
to existing methods. In Sec. 5, we conclude.
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2. THE TAPE EQUATION

In real-world tape-delays the tape is often looped, with an erasing
head placed before the recording head. Since the erasing head
removes the previous signal recorded to the tape, without loss of
generality we can consider this configuration to be equivalent to a
tape of infinite length in both directions. We will associate a one-
dimensional coordinate system with the tape, so that each point on
the tape has a coordinate.

Let xw(t) be the coordinate of the tape point positioned against
the write head at the time moment t, and let xr(t) be the coordi-
nate of the tape point positioned against the read head. Let the
tape move in the direction from the write head to the read head
and let’s orient the tape coordinate axis x so that xw(t) and xr(t)
will increase with time as the tape moves. Then, if v(t) denotes
the speed of the tape at time moment t,

ẋw(t) = ẋr(t) = v(t) > 0

Let the distance between the heads be fixed at

xw(t) � xr(t) � L > 0 (1)

and let T (t) denote the effective delay time at time moment t,
meaning that the signal value which is being picked up by the read
head at the time moment t was written by the write head at the
time moment t � T (t):

xr(t) = xw(t � T (t)) (2)

Clearly, during the time range [t�T (t), t] the tape has travelled the
distance equal to

� t

t�T (t)
v(�) d� and this distance must be equal

to L: � t

t�T (t)

v(�) d� = L (3)

The above formula is the tape equation in the integral form. It re-
lates the tape speed function v(t) to the effective delay time T (t).
In case of constant speed on the range [t � T (t), t] the formula
turns into v · T (t) = L giving

T (t) � L/v (4)

We can refer to L/v as steady-state delay time.
By introducing the “total distance travelled by the tape”

V (t) =

�
v(�) d� (5)

(which is understood in the sense that V (t) is some arbitrary an-
tiderivative of v(t)) the tape equation can be rewritten in the dif-
ference form

V (t) � V (t � T (t)) = L (6)

It is convenient to choose the constant of integration in V (t) in
such a way that

xw(t) = V (t) (7a)
xr(t) = V (t) � L (7b)

Alternatively, if we wish to choose the constant term of V (t) from
some other considerations, (7) can be enforced by the choice of the
origin of the coordinate axis x. From this point on we will assume
that (7) always holds.

By taking the time derivative of (6):

v(t) � v(t � T (t)) ·
�

1 � d
dt

T (t)

�
= 0

and peforming algebraic transformations, we obtain the tape equa-
tion in the differential form:

d
dt

T (t) = 1 � v(t)
v(t � T (t))

(8)

By describing the relationship between tape-speed and delay-
time, the tape equation can allow us to produce tape-like behaviour
using an ordinary variable-length ringbuffer-based digital delay. In
order to achieve this, the equation must be solved either analyti-
cally or numerically.

2.1. Suitability of equation forms for numerical solution

The differential form (8) of the tape equation doesn’t contain in-
formation about the distance between the heads. Thus, there is
no “built-in error correction mechanism” in (8) and a straitforward
numerical solution could exhibit errors which accumulate into an
indefinitely large drift of T (t). Intuitively, consider the following
example. Suppose v(t) varies for a while and then the variations
stop: v(t) = const �t � t0 � T (t0). In this case the right-hand
side of (8) will be zero �t � t0 and thus any error accumulated in
T (t) will stay there forever.

Consequently, the differential form is not well suited for use
in practical delay implementations. However in theoretical work
it can be useful in combination with differential equation solvers,
such as the ones found in CAS (computer algebra system) soft-
ware, which often expect the equation to be supplied in the differ-
ential form.

The integral form (3) contains a different potential numeri-
cal drift source. (3) suggests an incrementally computed mov-
ing sum as a numerical implementation, where the new terms of
the form v(t)�t will be incrementally added and the old terms
v(t � T (t))�t will be subtracted. However, even if what we add
exactly equals what we subtract later, addition and subtraction of
the same value might not totally cancel each other due to limited
precision of floating point calculations. This error also can accu-
mulate.

Note that, if we instead use fixed point calculations in the mov-
ing sum, the addition and subtraction of equal values will exactly
cancel. So, if we can make sure that we add and subtract exactly
the same values, there will be no drift. However, as we shall see in
the further discussion, it will be even easier to simply use the dif-
ference form (6), where we spare the subtraction of v(t�T (t))�t
and therefore don’t need to consider the resulting error.

2.2. Analytical solution for an instantaneous jump in speed

It is educative to consider the case of a single instantaneous jump
in the tape speed, the speed being constant at all other times. In
this case there is a simple analytic solution to the tape equation.
Indeed, let

v(t) =

�
v0 if t < 0

v1 if t � 0

Let V (0) = 0, giving

V (t) =

�
v0t if t < 0

v1t if t � 0
(9)
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Figure 1: Graphical interpretation of (6).

and we choose the origin of coordinate x so that (7) holds.
Now we want to substitute (9) into (6), thus obtaining T (t). It

is highly instructive to use the graphical interpretation of (6) given
in Fig. 1. The figure represents the graph of V (t) defined by (9)
with highlighted points xw(t) and xr(t) corresponding to the write
and read head positions at time t. By (1) the vertical distance be-
tween these points is L, and by (2) the horizontal distance between
these points is T (t). Thus, both write and read heads move along
the curve V (t) in such a way that the vertical distance between
these points is always L, thereby defining the horizontal distance
between them, which is T (t).1

We could use Fig. 1 to construct the explicit formula for T (t).
From (7a) we have xw(t) = V (t). Then using Fig. 1 we obtain
xr(t) = xw(t) � L and t � T (t) = V �1(xr(t)). Combining all
these formulas together yields

T (t) = t � V �1(V (t) � L) (10)

where V �1(V (t) � L) is simply the time at which the signal,
which is currently being picked up, was recorded.2

Now returning to the specific form of V (t) given by (9) and
looking at Fig. 1 we are having two obvious results:

T (t) = L/v0 if t � 0

T (t) = L/v1 if t � L/v1
(11)

For 0 � t � L/v1 (and this is specifically the case shown in
Fig. 1) to find the total time T (t) we have to add the time dura-
tion corresponding to the right semiplane part of T (t) and the one
corresponding to the left semiplane part:

T (t) = t +
L � v1t

v0
=

L
v0

+

�
1 � v1

v0

�
t (12)

1Note that this interpretation and Fig. 1 itself are not limited to the
specific shape of V (t) defined by (9), but apply for arbitrary V (t).

2Of course, (10) could have been directly obtained from (6). By ob-
taining it using Fig. 1 instead, we have given an intuitive interpretation to
(10).

(note that (12) gives T (0) = L/v0 and T (L/v1) = L/v1, the
same values as given by (11), corresponding to the fact that T (t)
must be continuous).

Thus T (t) varies linearly on the transition range t � [0, L/v1].
More specifically, T (t) changes from the old steady-state delay
time to the new one and the transition duration is equal to the new
steady-state time. This change produces the commonly known
pitch jump effect from a sudden change of the tape speed. This
jump has an obvious explanation in terms of tape speed, but now
we can also explain in in terms of delay time. The duration of the
pitch-shifting transition is exactly equal to the new steady-state de-
lay time, thus, if feedback is present, the pitch-shifted signal will
be recorded back into exactly one echo period of the “new steady-
state”, staying in the feedback loop until it decays or until a new
speed change occurs.

3. A NUMERICAL SOLUTION FOR ARBITRARY
VARIATIONS IN SPEED

If v(t) is not known in advance, we can’t compute (10) analytically
and need to develop a numerical method. We want this method to
be usable for practical delay implementations, therefore we want it
to be computationally efficient and not suffer from the drift prob-
lem explained in Sec. 2.1.

3.1. Properties of a digital ringbuffer

We intend to implement a “tape delay” by combining a numeri-
cal solution of the tape-equation with a variable-length ringbuffer-
based delay. Before we continue to discuss the solution of the tape
equation, it is helpful to address some details regarding ringbuffer-
based delays. The following discussion assumes that the sampling
period and, respectively, the sampling frequency are unity: fs = 1.

Consider the range of delay times supported by an ordinary
ringbuffer-based delay. Clearly there is maximum delay time, lim-
ited by the ringbuffer’s capacity. The minimum delay time is in
principle zero. So, we have

0 � T (t) � Tmax (13)

However there are two factors further limiting that range.
The first factor is interpolation, which is necessary to support

delay times which are not an integer number of samples. Most
interpolators need to consider some samples both before and after
the interpolation point. Thus (13) (for a symmetric interpolator)
turns into

max{� � 1, 0} � T (t) � Tmax � (� � 1) (14)

where � is half-width of the interpolator’s kernel. This limitation
can be however worked around by reducing the interpolator’s order
and/or window size when the interpolation is done at the edges of
the range. This might be particularly desirable for T � 0, e.g. if
we’re looking for a comb filtering effect.

Another factor affecting (13) and (14) appears if the delay is
used inside a feedback loop. If the ringbuffer is structured so that
output and input happen synchronously in the algorithm, a unit
delay will implicitly be introduced into the loop, as the current
output of the delay is never known when calculating the input.
(Fig. 2). For an ordinary digital ringbuffer-based delay this solely
means that the delay time is off by one sample, which can be either
tolerated or compensated by adjusting the offset of the read head
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Figure 2: Unit delay in delay’s feedback loop. k is feedback
amount. G denotes some additional processing (not necessarily
linear) which might occur in the loop.

by one sample. However if the ringbuffer delay is used as a basis
for a tape delay emulation, either of the two mentioned options
will distort the tape equation’s solution and thus might potentially
break the exact-repetition nature of the tape delay feedback in case
of modulated tape speed. Therefore we would rather avoid the
introduction of the extra unit delay altogether.

This can be achieved by splitting the processing of the delay’s
sample tick into two separate parts: the reading and the writing
part. The read is processed first, then the feedback path, then the
writing part. This eliminates the extra unit delay. In this case, how-
ever, the current input sample of the delay is not being written into
the delay buffer until the end of processing and thus is not avail-
able for the read interpolation. This increases the lower boundary
of supported T (t) by one sample compared to (14):

max{�, 1} � T (t) � Tmax � (� � 1) (15)

unless we would be willing to solve the implicit equation arising
out of the instantaneous dependency of delay’s output signal on
delay’s input.

In this paper we will assume that the tape delay is to be used
in a feedback loop and will develop the algorithm details under the
assumption of split read/write processing.

3.2. Tape equation variables in discrete time

Let n be the discrete time-index. Since we assumed that the sam-
pling period is unity, we have: t = n. Let’s also choose the length
scale so that the distance L between the heads is also unity: L = 1.
The tape speed v expressed in these units means the fraction of the
distance between the heads travelled over one sample period.

In order to be able to numerically apply the tape equation we
need to keep the information about the tape speed values in the
past, where the time range of interest is [t, t�T (t)], where t is the
current time. In Sec. 2.1 we gave reasons to choose the difference
form (6) of the tape equation as the basis of the numerical solution,
therefore, rather than storing the past values of v(t), we will store
the past values of its integral V (t).

We want to use T (t) obtained via the tape equation to control
the delay time of a ringbuffer-based digital delay. It is a natural
choice therefore to extend the ringbuffer elements to also contain
the values V [n] along with the stored audio signal samples. The
value V [n] will be contained in the same element as the audio
signal recorded by the delay at time n. Intuitively, the write head
simultaneously records the audio signal and the signal V (t) onto
the tape. Assuming that V is defined by

V (t) =

� t

0

v(�) d�

or, in discrete time

V [n] =
n�

i=0

v[i] (16)

we can compute V [n] incrementally

V [n] = V [n � 1] + v[n] (17)

Note that (16) and (17) imply that v(t) = v[n] is assumed to be
constant over a duration of one sample period, which is a com-
mon simplification when dealing with changing control values in
discrete time. We will work further under this assumption, unless
otherwise noted.

3.3. Representation of tape coordinates

V [n] is an infinitely growing sequence, and thus there are dangers
of increasing precision losses and/or overflow in (17), if floating
point representation is used. Instead of trying to estimate whether
this could be an issue with practical sampling rates and running
times, we are going to use fixed point representation which will
provide an elegant way to avoid such concerns altogether. We will
be using this fixed point representation for V [n] and any other val-
ues expressing the tape coordinate or derived values such as tape
speed.

(15) effectively provides the upper and the lower bound to
v[n]:

max{�, 1} � 1/v[n] � Tmax � (� � 1)

that is

0 <
1

Tmax � (� � 1)
� v[n] � 1

max{�, 1} � 1 (18)

Under the restriction (18) our fixed point numbers will need to
have a sign bit and two integer bits,3 the remaining bits are to be
used for the fractional part. Thus from a 64 bit integer we’ll make a
2.61 signed fixed point number. So we’ll have better precision than
if we used 64-bit IEEE 754 floats, which have only 52 fractional
bits of mantissa. The fixed point representation also gives constant
precision across the entire value range, which is more appropriate
for our purposes.

At any particular time the integral (3) and respectively the dif-
ference (6) are dependent only on the history within time range
[t � T (t), t]. Thus, the tape coordinate values, which we are in-
terested in are contained within the range [V (t) � L, V (t)] (or
marginally outside). Since L = 1 and t = n, this range can be
written as [V [n] � 1, V [n]]. This suggests that we should be fine
using fixed point arithmetic modulo 8 for the computations involv-
ing tape coordinates.

Under the assumption of two’s complement binary represen-
tation of 64-bit integers, arithmetic computations modulo 8 will
occur automatically for 64-bit integer-based 2.61 fixed point num-
bers. More precisely, the addition, subtraction and multiplication
will be automatically done modulo 8, while comparisons will re-
quire special care.

Instead of simply comparing two numbers for >, �, < or �,
we will need to compare their signed difference to zero, e.g.

(a > b)(mod 8)
def�� a � b > 0 (19)

3We will use the fixed point representation not only for speed, but for
anything which includes length into its dimension. That is the reason to
have the extra bits in the integer part, which should become more clear
through the discussion that follows.
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This way the comparison is made “on the shortest path” between
a and b (or, more precisely, between elements of the respective
congruence classes).

3.4. Ringbuffer index arithmetic

Ringbuffer indexing also uses modulo arithmetic. A standard ring-
buffer implementation generally needs only index increments, in
which case modulo arithmetic technically means doing a trivial
wraparound. Usually such wraparound is implemented either by a
conditional check, or, if ringbuffer size N is a power of 2, by bit-
masking with N � 1. For the purposes of this algorithm the index
arithmetic will need more of the modulo techniques.

Assuming ringbuffer indices n always take values within the
range [0, N � 1], let’s introduce the concept of a modular range of
ringbuffer indices:

[n1, n2)(mod N) =

�
[n1, n2) if n2 � n1

[n1, N) � [0, n2) if n2 < n1

The length of the range is thus

��[n1, n2)(mod N)

�� =

�
n2 � n1 if n2 � n1

n2 � n1 + N if n2 < n1

If N is a power of 2, then, under the assumption of two’s comple-
ment binary integer representation, modular range length can be
computed without evaluating a conditional:

��[n1, n2](mod N)

�� = (n2 � n1) & (N � 1)

where & denotes bitwise “and”.
Notably, we can’t use a comparison definition similar to (19)

for ringbuffer indices, because we cannot assume that the compar-
ison needs to be done “on the shortest path”.4 Therefore instead
of index comparisons, we will be comparing the lengths of index
ranges, which is a well-defined operation.

In binary search within the ringbuffer contents we will need to
be able to find the middle of a modular range. Clearly, we can’t
simply take the average of the range’s bounds, as the result could
be off by N/2. Instead, we’ll need to divide the range’s length by
2 and use this new length to obtain the middle position and the new
bounds.5

3.5. Tracking of the read position

In a ringbuffer-based delay implementation, the “write head” pro-
gressively cycles through the underlying array of the ringbuffer,
advancing by one array index per sample. The position of the “read
head” is computed each time anew, by subtracting the delay time
(in samples) from the write head’s position. In the proposed imple-
mentation of the “tape delay” we update the ringbuffer’s read po-
sition incrementally instead. The read position must be fractional
in order to support T (t) which are not integer sample counts. We
will therefore need to incrementally track the following values:

4With tape coordinate representation we have introduced additional
headroom into the modulus to make sure that the distance between the val-
ues which we would want to compare or to subtract doesn’t exceed half of
the modulus. We could have introduced similar headroom into ringbuffer
indices, but that would raise efficiency concerns.

5It could be useful to incrementally store the range’s length in a separate
variable during binary search.

• the write position in the ringbuffer’s array nw

• the write head’s tape coordinate xw

• the read position in the ringbuffer’s array nr + �r , where
nr is the integer part and �r � [0, 1) is the fractional part6

• if ringbuffer size N is not a power of two, we might want to
explicitly store the size of the ringbuffer contents (which is
equal to |[nr, nw)(mod N)|) and update it with changes to
nw and nr , thereby saving one evaluation of a conditional,
when ringbuffer content size is needed.

We will further assume that the formal indexing of V [n] is iden-
tical to the ringbuffer element indexing modulo N . We will also
notate and understand the fractional indexing of V [n] as

V (nr + �r) = V [nr] + (V [nr + 1] � V [nr]) · �r (20)

Note that the linear interpolation in (20) is chosen because it is
exactly correct given the previously stated assumption that v(t) is
constant over the duration of one sample.

As discussed in Subsec. 3.1, we wish to implement a delay us-
able in a feedback context, meaning that the reading of the audio
output signal from the ringbuffer should occur prior to and sepa-
rately from the writing of the audio input signal. Using (10) and
Fig. 1 we can construct the following algorithm for processing a
single sample step of such delay.

0. In the beginning of the step the variables are set like follows:

• nw is pointing to the ringbuffer element which is about
to be written to

• xw contains the previous coordinate of the write head

• nr + �r is pointing to the ring buffer element which was
read from in the previous step.

1. Compute the new value of xw using (17) and (in agreement
with (7a)) write it into V [nw]. This doesn’t depend on the de-
lay’s input signal value and therefore can be done in the begin-
ning.7

2. Compute xr = xw � L = xw � 1 (according to (7b)) and then
search for the new nr + �r such that

V (nr + �r) = xr (21)

The details of the search will be explained in Sec. 3.6.

3. Read the delay’s output from the ringbuffer at position nr +�r .

4. Send the delay’s output sample through the feedback loop all
the way to the delay’s input.

5. Write the delay’s input into the ringbuffer at position nw and
advance nw by one array index.

6Actually, only nr needs to be incrementally tracked, while �r will be
computed each time.

7The fact that we compute the new value of xw in the beginning and
advance nw in the end is matched in the later proposed approach to the
algorithm initialization. If cache line aliasing between the read and write
positions becomes a concern, we could perform the writing of xw into
V [nw] in step 5 instead (note that such change doesn’t affect the mentioned
initialization). However this excludes V [nw] from the allowed range of the
search in step 2, effectively decreasing the upper bound of the tape speed in
(18) and respectively increasing the minimum attainable delay time, unless
the need to access V [nw] is handled “manually” during the search.
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3.6. Updating of the read position

In step 2 of the “tape delay” processing algorithm introduced in
Sec. 3.5 we need to perform a search for the solution of (21). We
will split the search in two parts. First (the search itself) we search
for nr such that xr � [V [nr], V [nr + 1]]. Having found nr , we
can solve (20) in respect to �r , obtaining:8

�r =
xr � V [nr]

V [nr + 1] � V [nr]
(22)

According to (18) the sequence V [n] is monotonic and we
need to search only in the forward direction from the previous
value of nr . The simplest possible implementation of the search
therefore is: repeatedly advance nr by one array index, comparing
V [nr] to xr . This is actually not as bad as it may seem. Because
in the most commonly occuring case, when v(t) doesn’t change
much during [t � T (t), t], or at least doesn’t speedup noticeably,
we will need to advance nr only one or two times, until we found
the new value of nr . In case of a speedup by a factor of K we
will however need to perform ca. K steps before we find the new
position nr . Thus, during speedup transitions, the operation count
will increase by a factor of K.

This can be improved to an increase only by a factor of log2 K.
Since V (t) is monotone, it can be inverted by bisection [7], which
in discrete time case effectively takes the form of binary search
followed by the subsample position refinement at the end. Thus,
we intend to do binary search within V [n] between the old value
of nr and the new value of nw.9 In isolation, this is not such
a good idea. Because now the binary search range contains the
entire region of the tape between the read and write heads, and we
are going to binary-search this entire range (performing ca. 10-20
search steps) each time, even in case of small speed variations.
This results in not O(log K) computation complexity but rather
O(log T (t)).

We can, however, improve the selection of the search range.
Starting from the old read position nr we check the value V [nr +
2]. If V [nr + 2] � xr , then we take nr + 2 as the upper bound
of the range and nr as the lower bound. Otherwise we know that
the new read position doesn’t lie between nr and nr + 2 anyway,
so we update nr to take the value nr + 2 and now take a step of 4,
probing the value V [nr + 4] (formerly V [nr + 6]) and taking the
range from nr to nr + 4, if successful. Otherwise we update nr

to nr + 4 and take a step of 8 etc, until we finally find the range
containing xr .

Notably, during this process of searching for the initial range
we have to be careful not to cross the write position nw. As men-
tioned before, we can’t use a comparison approach like the one of
(19) for ringbuffer indices. Therefore, instead of comparing nr to
nw we need to compare the step size to the length of the modular
range [nr, nw)(mod N).

It’s not difficult to see that the described way of searching for
the initial range has computation complexity of O(log K) and so

8We should remember that we are using arithmetic modulo 8 when
dealing with tape coordinates, and, strictly speaking, the division of two
values both having the tape coordinate units in (22) hasn’t been defined.
This division doesn’t require any special treatment though, since the dis-
tances from xr to V [nr] and from V [nr] to V [nr + 1] on the tape coor-
dinate axis cannot exceed max{v[n]}, which according to (18) is 1.

9Remembering to use the previously discussed modular arithmetic
rules, for both tape coordinate and index.

does the binary searching on the range found in this way, thus our
entire implementation has O(log K) complexity.10

3.7. Initialization

The previous discussion of the tape delay algorithm was assum-
ing that we are somewhere in the middle of the running time and
all incremental variables are properly set by the previous sample’s
processing. However, how do we set these variables initially?

Let’s assume that we are using linear interpolation for reading
the audio signal at non-integer positions nr + �r . In this case we
propose to initially let

V [0] = �L = �1

V [1] = 0

nr = 0

nw = 2

xw = 0

where V [0] and V [1] are stored in the ringbuffer’s array elements
0 and 1, and the audio signal part of these elements is initialized to
zero. Then, as long as 0 � xw < 1, the read head will interpolate
between elements 0 and 1 of the array, thereby producing zero
output, as if we were reading from a clean tape.11

If instead of linear interpolation we use e.g. cubic interpola-
tion, then the same initialization idea will look like:

V [0] = V [1] = �L = �1

V [2] = V [3] = 0

nr = 1

nw = 4

xw = 0

Other interpolation schemes can be treated similarly.

3.8. Sparse storage of V [n]

The need to store V [n] in addition to the audio in the ringbuffer
significantly increases the memory usage by the delay. E.g. if the
audio consists of two 32-bit float stereo channels, by adding a 64-
bit fixed point V [n] to each sample we double the amount of used
memory.

The memory requirements can be reduced if the tape speed
doesn’t change on every sample, but at a lower “control rate”. This
could however introduce audible artifacts due to “steppy” pitch
changes corresponding to the steppy nature of the tape speed. In
such case, instead of considering the tape speed constant on the

10Obviously, if log K < 1 and especially if log K < 0, the complexity
bound O(log K) looks highly questionable. It’s not difficult to realize that
dropping K below 1 (tape slowdown) doesn’t further reduce the number
of computations. This suggests that the computation complexity estimation
for arbitrary speed changes is, strictly speaking, O(max{1, log K}). For
the simplicity of notation, however, we can agree to understand O(log K)
as a somewhat informal way of writing O(max{1, log K}).

11Thus, we have a very quick initialization procedure, not requiring to
fill the entire ringbuffer, neither with the values of V [n] nor with the zero
audio samples. This is quite useful if the implementation is used in a plugin
in a DAW, where plugin reset times may become an issue.
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range from V [n] to V [n+1] we could consider it linearly increas-
ing.12 The linear function (20) is thereby replaced by a quadratic
one and (22) turns into a quadratic equation solution formula.

Of course, other than linear segments of v[n] could be used,
as long as they can be inverted (in reasonable computation time)
to find the fractional position.

3.9. Antialiasing of speedups

The interpolated readout of the ringbuffer works well if the delay
speed is almost constant or is slowing down. However a speedup
effectively shifts the pitch of delay’s signal up, thereby creating
frequencies above Nyquist threshold, which ordinary interpolation
doesn’t try to suppress. It is, however, possible to reformulate the
polynomial interpolation in a way allowing arbitrary cutoffs below
Nyquist.

Any polynomial interpolation of a sequence yn can be alter-
natively expressed as a convolution with a kernel:

L[yn](t) =
�

n

yn�(t � n)

where �(t) is the kernel and L[yn] denotes a continuous time func-
tion which is the result of the interpolation of yn. The interpola-
tion’s kernel � is obtained by interpolating the Kronecker delta
sequence with the interpolator in question:

�(t) = L[�n](t)

and thus consists of polynomial segments. The kernel normally
corresponds to a continuous-time lowpass filter with a cutoff close
to Nyquist. We can lower the kernel’s cutoff by a factor of K � R
by stretching the kernel K times along the time axis and simulta-
neously reducing its amplitude K times:

L[yn](t) =
�

n

yn
�((t � n)/K)

K
(23)

Thus, by expressing the interpolation as convolution we can ar-
bitrarily change the interpolation filter’s cutoff, which allows us
to use the interpolator to suppress unwanted frequencies below
Nyquist.13

The speedup situation can be detected by comparing the read-
ing speed (which is simply the current tape speed) to the speed at
which the signal was recorded. According to (17) the recording
speed is simply equal to V [nr]�V [nr �1].14 Note, however, that
the computation complexity of such antialiasing is O(K), where
K is the speedup factor. We could put an upper bound on the
complexity by artificially clamping the factor K used in (23) at
the obvious cost of some unfiltered aliasing in case K exceeds the
clamping value.

12This might require storing v[n] alongside V [n], unless we want to
guess v[n] from neighboring values of V [n].

13One has to take care to make sure that the interpolator, which is
stretched along the time axis by the factor K, does not attempt to read
ahead of nw or too far behind nr , where the samples either haven’t been
written into the buffer yet or have been overwritten with newer values. The
issue can be addressed e.g. by reducing the cutoff factor K, if we get too
close to the boundaries of the valid index range.

14The forward difference V [nr + 1] � V [nr] also can be in principle
taken, since (23) is only an approximation of a proper resampling process
anyway.

The equation (23) is only a somewhat rough approximation,
done under the assumption that the tape speed doesn’t change very
quickly, because it assumes that the samples yn are equally spaced
in time. In reality the samples are not traversed by the read head at
equal time intervals, this happens at different times and at different
speeds. A more correct version of (23) therefore might be

L[yn](t) =
�

n

yn
�((t � �n)/ max{Kn, 1})

max{Kn, 1} (24)

where �n is the time at which the sample yn is traversed and Kn is
the respective upsampling factor. Note that some of the times �n

in (24) occur in the future. They still may be known in advance, if
we can know the variations of the tape speed in advance, in which
case (24) is still perfectly implementable.15

3.10. Extending the bounds of tape speed

The tape speed bounds imposed by (15) can be significantly ex-
tended.

If we are having no feedback or if we are willing to solve the
implicit feedback equation, then (14) applies instead of (15) and
we might want to support arbitrarily large speeds. Notably, we
still have quite a lot of headroom which we could add into the
proposed fixed point format. E.g. we could use 11.52 signed fixed
point numbers, thereby increasing the upper boundary of the tape
speed headroom (18) by a factor of 512 giving v � 512.

Conversely, as 1/v reaches the maximum capacity of the ring
buffer (more precisely defined by (14) and (15)) we attain the max-
imum delay time possible with our proposed approach based on
(10). At this point, however, we could add the ideas of the straight-
forward implementation of tape delay, which would correspond to
slowing down the medium below the natural speed of the 1:1 ra-
tio (the medium moves by 1 sample during one sample tick). In
our setup this would correspond to advancing nw by a fractional
amount less than 1. The writing to the ringbuffer will be occur-
ring “in between” the sample ticks with proper interpolation, or, if
antialiasing is desired, with proper “downsampling filtering”.

In this way we can achieve arbitrarily small and even zero tape
speeds, corresponding to arbitrarily large to infinite delay times.
In principle one could even go in negative speed direction.16 A
limitation of this approach is that in this case the bandwidth of the
signal transmitted through the medium will be reduced, since the
“tape’s sampling rate” is lower than the outside sampling rate.

4. RESULTS

In order to get an idea of the performance of our method, we have
made a comparison between an ordinary ringbuffer-based digi-
tal variable-length delay (VL), variable sample-rate delay (VS),
Huovilainen’s method (H) and the proposed method (P), all meth-
ods using SIMD-ified Catmull–Rom interpolation of two stereo

15We only need to know the future tape speed but not the future values of
the audio signal. This means that (24) is implementable even for a feedback
delay without introducing any additional latency into the feedback. The
latency will be introduced only into how the delay responds to the speed
control signal.

16As the speed goes to zero and negative values, V (t) stops being
strictly monotonic, and one needs to take additional decisions during the
search for the solution of (21).

DAFX-7

DAFx-9
DAFx-9



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Method x1 x2 x10 x100
(VL) 21 21 21 21
(VS) 46 58 163 1320
(H) 37 47 97 725
(P) 39 39 39 39
(P’) 39 38 54 110

Table 1: Performance cost (in TSC clocks per processed sample)
of different algorithms at different tape speeds.

Method x1 x2 x10 x100
(VL) 23 75 277 2531
(VS) 48 112 419 3810
(H) 39 101 353 3235
(P’) 41 92 310 2620

Table 2: Performance cost of different algorithms during speedups,
with enabled antialiasing.

channels of audio17. The comparison is presented in Table 1 where
(P’) is the performance of the proposed method in the case of a
speedup from 1x to the specified speed. The measurements were
taken by letting the algorithm run for a large number of samples
at different equivalent tape speeds, each time taking the average
number of TSC18 clocks per processed sample. The relative mea-
surement error is ca. 5%. The 1x tape speed corresponds to 1 tape
‘sample’ processed per 1 outside sample. The identical perfor-
mance costs of the proposed method at x1 and x2 speeds are due
to the fact that the bisection method is searching over the same
initial range of two entries in both cases.

We also measured the performance of the proposed method
with enabled antialiasing of speedups. Whilst not measured di-
rectly, we have assumed that the antialiasing overhead would be
identical between different methods and added the same overhead
to other measured results.19 The respective performance compari-
son is presented in Table 2, where the tape speed of the delay line
is being switched from x1 to the specified speed.

5. CONCLUSION

In this paper, we introduced the tape equation, which allows the
translation of variations of the medium speed into variations of
delay time, thus allowing to implement tape-like modulation be-
havior using ordinary digital delays. In certain cases, when the
speed variation pattern is known in advance, this translation can
be done analytically. We have also introduced a numerical method
to be used in cases where analytical solution is not possible. Com-
pared to previous methods, which have O(v) time complexity, the
presented method has mostly O(1) time complexity, except dur-
ing speedup transitions, where the complexity is O(log K). If an-

17Audio samples of each of these methods are available at the ac-
companying website: https://github.com/julian-parker/
DAFX-Tape

18Time Stamp Counter, a processor’s internal high-precision timer.
19In (VS) the antialiasing will need to be done constantly unless we take

additional effort to store the information about the recording speed. In
other methods this information is already available, thus the antialiasing
may be done just during the speedups.

tialiasing of speedups is desired, the time complexity of speedup
transitions grows to O(K), however, the complexity can be bound-
ed by artificially clamping the antialiasing filter’s cutoff.

The proposed numerical method is also exact in the sense that
the error from time discretization manifests solely as the tape speed
being assumed constant over the duration of each sample, whereas
precision losses occur only in the quantization of the speed val-
ues and in the final computation of the subsample read position for
the ringbuffer (where it’s totally negligible). Thus, all error is ef-
fectively contained in the time- and level-quantization of the tape
speed, the solution of the tape equation itself being exact. Fur-
thermore, the time-quantization error can be further improved by
assuming linearly changing speed during each sample.

The proposed method can be used in implementations of de-
lays where tape-like modulation behavior is desired. Compared to
previously used approaches, our method has comparable or better
CPU load at all delay times.

6. REFERENCES

[1] A. Huovilainen, “Enhanced digital models for analog modula-
tion effects,” in Proc. Int. Conf. Digital Audio Effects (DAFx-
05), Madrid, Spain, 2005, pp. 155–160.

[2] C. Raffel and J. O. Smith, “Practical modeling of bucket-
brigade device circuits,” in Proc. Int. Conf. Digital Audio Ef-
fects (DAFx-10), Graz, Austria, Sep. 2010, pp. 50–56.

[3] M. Holters and J. D. Parker, “A combined model for a bucket
brigade device and its input and output filters,” in Proc.
Int. Conf. Digital Audio Effects (DAFx-18), Aveiro, Portugal,
2018.

[4] S. Arnardottir, J. S. Abel, and J. O. Smith III, “A digital
model of the Echoplex tape delay,” in Proc. of the 25th Audio
Engineering Society Convention. Audio Engineering Society,
2008.

[5] J. Dattorro, “Effect design, part 2: Delay line modulation and
chorus,” Journal of the Audio Engineering Society, vol. 45,
no. 10, pp. 764–788, 1997.

[6] D. Rocchesso, “Fractionally addressed delay lines,” IEEE
Transactions on Speech and Audio Processing, vol. 8, no. 6,
pp. 717–727, 2000.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical recipes in C, vol. 2, Cambridge University
Press, 1996.

DAFX-8

DAFx-10
DAFx-10



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

A COMBINED MODEL FOR A BUCKET BRIGADE DEVICE AND ITS INPUT AND
OUTPUT FILTERS

Martin Holters

Department of Signal Processing and Communication
Helmut Schmidt University

Hamburg, Germany
martin.holters@hsu-hh.de

Julian D. Parker

Native Instruments GmbH
Berlin, Germany

julian.parker@native-instruments.com

ABSTRACT
Bucket brigade devices (BBDs) were invented in the late 1960s
as a method of introducing a time-delay into an analog electrical
circuit. They work by sampling the input signal at a certain clock
rate and shifting it through a chain of capacitors to obtain the
delay. BBD chips have been used to build a large variety of analog
effects processing devices, ranging from chorus to flanging to echo
effects. They have therefore attracted interest in virtual analog
modeling and a number of approaches to modeling them digitally
have appeared. In this paper, we propose a new model for the
bucket-brigade device. This model is based on a variable sample-
rate, and utilizes the surrounding filtering circuitry found in real
devices to avoid the need for the interpolation usually needed in
such a variable sample-rate system.

1. INTRODUCTION

Bucket brigade devices (BBDs) were invented in the late 1960s at
Philips Research Labs [1], as a method of introducing a time-delay
into an analog electrical circuit. These chips were subsequently
used to build a large variety of analog effects processing devices,
ranging from chorus to flanging to echo effects. Well-known BBD-
based devices include the Memory Man delay/echo pedal and the
Electric Mistress flanger effect from Electro-Harmonix, as well as
a series of chorus designs produced by Roland, starting in the mid
70s with the chorus circuit of the JC-120 amplifier and culminating
with the Dimension-D rack unit and the chorus included in the
Juno-60 synthesizer.

There have been a number of approaches to modeling BBD
devices digitally. Raffel [2] concentrated on the filtering and non-
linear behavior of the BBD, without treating the dynamic behavior
of the BBD when the clock-rate is varied. Huovilainen [3] and
Mačák [4] both model the BBD in the context of a flanger effect.
The latter uses a variable sample rate delay to model the BBD delay
behavior, whilst the former uses a method based on storing the
times at which an input arrived to the BBD. Variable sample rate
digital delay-lines have been described in the past, primarily for the
use in physical models of acoustic systems [5]. Recently, methods
have been proposed for emulating tape and BBD-like behaviour by
storing the previous ’speed’ of the system (clock-rate in a BBD) [6].

The presented technique is built on the observation that BBD
chips, due to their sampling nature, are typically used in conjunc-
tion with low-pass filters to prevent aliasing. We propose a novel
approach, modeling the BBD together with these filters. The BBD
itself will be trivially modeled as what it is: a fixed length but
variable sample rate delay-line. The main novelty of the proposed
approach is that the resampling between the audio sampling rate
and the variable BBD clock rate utilizes the filters already present

IN

GND
C0 C1 C2 CN CN+1

CLK2
CLK1

VDD

OUT1

OUT2OUT2

Figure 1: Simplified BBD schematic

in the analog circuit and hence avoids the need for additional inter-
polation. The lack of direct interpolation results in more accurate
fitting of the frequency response of the circuit as no additional
filtering is introduced from the interpolation. Additionally, the dis-
tortion produced by the constant variation of the interpolation filter
is avoided. Experimental results confirm that the method leads to a
faithful BBD model.

2. WORKING PRINCIPLE OF BUCKET BRIGADE
DEVICES

Figure 1 shows a simplified schematic of a typical BBD. We have
omitted additional field effect transistors that, together with the
shown ones, form tetrodes to reduce unwanted coupling between the
stages. While we leave the detailed explanation of the propagation
principle to [1] and the reason for using tetrodes to [7], we shall
briefly look at the input and output circuitry.

While the input transistor, controlled by CLK2, is open, capaci-
tor C0 follows the input voltage uBBD(t) between the IN and GND
terminals. Closing the input transistor hence corresponds to sam-
pling the input signal at the time instant t0 of the respective clock
edge. The two clock signals CLK1 and CLK2 are complementary,
so that the transistor connecting C0 and C1 opens (nearly) in the
same instant and the signal sample uBBD(t0) is transferred to C1

while C0 returns to the reference voltage [1].
Let the following clock edges occur at times t1, t2, . . .. Note

that only at every second clock edge tn, n even, the input transistor
transitions from open to closed, sampling the input. Thus at any
time, only half the capacitors carry the signal, while the others are
at the reference voltage. In the metaphor of the bucket brigade,
this corresponds to half the buckets being filled with water and
transported in one direction, while the other half is empty and is
transported back (to be filled again).

With every edge, the charge representing the signal is prop-
agated to the next capacitor, that is after the clock edge at tn,
capacitor Cn+1 holds uBBD(t0). It follows that the signal arrives
at capacitor CN at tN�1 and drives the first output terminal OUT1
while the second output terminal OUT2 is in high impedance state.
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After the next clock edge at tN , capacitor CN+1 holds uBBD(t0)
and drives OUT2 while OUT1 is in high impedance state. This
continues until at tN+1, the next signal sample uBBD(t2) arrives at
capacitor CN and drives OUT1 while OUT2 is in high impedance
state again. Therefore, application circuits combine the two outputs,
so that the signal sampled at t0 is present at the combined output
from tN�1 to tN+1, that is

yBBD(t) = uBBD(tn) for tn+N�1 � t < tn+N+1, n even. (1)

In other words, for a constant clock rate, the signal is not only
delayed by N/2 clock periods (corresponding to N clock edges).
It is also convolved with a rectangular pulse of one clock period
width giving rise to a high-frequency attenuation depending on the
BBD clock rate. For all commercially available BBDs, N is even,
so that if the input sampling occurs at every tn, n even, the output
changes its value at every tn, n odd, which we will assume for
simplicity during the development of the proposed model.

In addition to the desired functionality of delaying the signal,
due to their analog nature, BBD chips usually also alter the signal
in unwanted ways. In particular, the long chain of active semicon-
ductor stages acting upon the signal typically adds noise and may
introduce non-linear distortions. Additionally, losses and tolerances
in the capacitances may lead to non-unity overall gain. However,
this paper focuses on the sampling and delay behavior and does not
consider these parasitic effects.

Finally, as a direct consequence of the working principle, there
are several inherent sources of aliasing distortion in the BBD system
– firstly there are frequency components present at the input of the
BBD that exceed the effective Nyquist frequency of the BBD. These
components will be reflected around the BBD Nyquist frequency.
Most BBD circuits include a filter at the input to suppress this
behavior. Secondly, there are the image-spectra created by sample-
and-hold nature of the output of the BBD chip. Similarly to at the
input, most BBD circuits include an output filter to suppress these
images. These types of aliasing (at least when present in small
quantities) can be considered to be desirable for the expected sound
of a BBD and should be reproduced by a digital model.

3. PROPOSED MODEL

We propose to model the BBD as a delay-line of fixed length, oper-
ating at another, potentially varying sampling rate, the BBDs clock
rate, similar to [4]. However, instead of using simple interpolation
for the necessary sampling rate conversions, we will exploit the fact
that typical application circuits contain low-pass filters at the BBDs
input and output. These are responsible to prevent aliasing from the
sampling and reconstruction process of the BBD. We will make use
of exactly these anti-aliasing filters for the necessary resampling.
The transformation of these filters to the digital domain will be
carried out using a modified impulse-invariant transform similar to
the approach taken in [8], as this facilitates dealing with different,
asynchronous sampling rates on input and output side.

3.1. Input filter

Perfect reconstruction of the analog signal u(t) from its samples
ū(k) = u(kTs), where Ts = 1/fs is the sampling interval, can
be understood as subjecting a train of Dirac impulses weighted
with ū(k) · Ts to an ideal low-pass filter, band-limiting it to the
Nyquist frequency. Here, we replace the ideal low-pass filter with
the input low-pass filter Hin(s) found in front of the BBD, which

is assumed to have sufficient attenuation at the Nyquist frequency
(of the original audio sampling rate fs) that an acceptable amount
of aliasing remains. Our aim is to obtain samples uBBD(tn) of the
filter’s output (being the BBD’s input) at times tn, n even, at which
the BBD samples its input.

Let Hin(s) be expanded into partial fractions as

Hin(s) =
Min�

m=1

rin,m

s � pin,m
(2)

where we may assume no non-negative powers of s to occur as
Hin(s) is a low-pass filter and further assume all poles pin,m to
be simple to simplify the following development. Then the corre-
sponding impulse response can easily be found to be

hin(t) =

��Min
m=1 rin,m · epin,mt for t � 0

0 otherwise.
(3)

Exciting the filter with a single Dirac impulse weighted with
ū(k) · Ts at time kTs, we obtain the corresponding output

uBBD,k(t) =

�
��

��
ū(k) · Ts

Min�

m=1

rin,m · epin,m(t�kTs) if t � kTs

0 otherwise.
(4)

Now let the time be decomposed as t = (ln + dn)Ts where ln is
an integer and 0 � dn < 1. Then

uBBD,k((ln+dn)Ts) =

�
��

��
ū(k)

Min�

m=1

gin,m(dn) · p̄ln�k
in,m if ln � k

0 otherwise
(5)

where p̄in,m = epin,mTs and

gin,m(dn) = Ts · rin,m · p̄dn
in,m. (6)

Further rewriting as

uBBD,k((ln + dn)Ts) =
Min�

m=1

gin,m(dn) · xin,m,k(ln) (7)

with

xin,m,k(ln) =

�
ū(k) · p̄ln�k

in,m if ln � k

0 otherwise,
(8)

we see that the latter can be expressed recursively as

xin,m,k(ln) =

�
��

��

p̄in,m · xin,m,k(ln � 1) if ln > k

ū(k) if ln = k

0 otherwise.
(9)

Now by the superposition principle, the filter response to the
complete input signal is given by

uBBD((ln + dn)Ts) =
�

k

uBBD,k((ln + dn)Ts) =

Min�

m=1

gin,m · xin,m(ln) (10)
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ū(k)
+

p̄in,1

z�1

xin,1(k)

gin,1(dn)
+

+

p̄in,2

z�1

xin,2(k)

gin,2(dn)
+

+

p̄in,Min

z�1

xin,Min(k)

gin,Min(dn)

uBBD(tn)

computed for every k
computed for
every even n

Figure 2: Digital realization of the input filter where tn = (k +
dn) · Ts, n even, are the sampling instants of the BBD input

where

xin,m(ln) =
�

k

xin,m,k(ln) = p̄in,m ·xin,m(ln�1)+ū(ln) (11)

constitutes a simple first-order recursive filter. This leads to the
digital realization shown in figure 2. For every input sample ū(k),
the parallel recursive parts are updated, and for every sample needed
at the BBD input, the weighted sum is evaluated. The weights of
the latter depend on the fractional offset dn of the BBD sampling
instant tn within the audio rate sampling interval.

3.2. Output filter

The development for the output filter is similar but differs in two
aspects: Now, the input samples occur at the BBD clock rate while
the output samples are needed at the fixed audio sampling rate,
and the input samples have to be treated as consecutive rectangular
pulses instead of Dirac impulses. That is, yBBD(t) is piecewise
constant in intervals [tn, tn+2), n odd.

For the following development, it is helpful to work with a
sequence of differences �(n) = yBBD(tn) � yBBD(tn�1), n odd,
with associated step functions

�n(t) =

�
�(n) if t � tn

0 otherwise
(12)

such that
yBBD(t) =

�

n

�n(t). (13)

Similar to the previous development, we first determine the filter
output produced by a single step �n(t) and consider the output filter
Hout(s) to be decomposed into partial fractions as

Hout(s) =
Mout�

m=1

rout,m

s � pout,m
. (14)

The response to a unit step (Heaviside step function) is

hout(t) =

�
��

��

Mout�

m=1

rout,m

pout,m

�
epout,mt � 1

�
if t � 0

0 otherwise

(15)

=

�
��

��
H0 +

Mout�

m=1

rout,m

pout,m
epout,mt if t � 0

0 otherwise

(16)

where H0 = �
�Mout

m=1
rout,m
pout,m

. It follows trivially that the re-
sponse yn(t) to a single �n(t) is

yn(t) =

�
��

��
H0�(n) + �(n)

Mout�

m=1

rout,m

pout,m
epout,m(t�tn) if t � tn

0 otherwise.
(17)

Now let ȳn(k) = yn(kTs) be samples of the individual re-
sponses taken at the original audio sampling rate, and tn = (ln �
1 + dn)Ts, where ln is an integer and 0 < dn � 1. Then

ȳn(k) =

�
��

��
H0�(n) + �(n)

Mout�

m=1

rout,m

pout,m
p̄k�ln+1�dn

out,m if k � ln

0 otherwise
(18)

where p̄out,m = epout,mTs . We further rewrite as

ȳn(k) =
Mout�

m=1

xout,m,n(k) +

�
H0�(n) if k � ln
0 otherwise

(19)

with

xout,m,n(k) =

�
p̄k�ln

out,mgout,m(dn)�(n) if k � ln
0 otherwise

(20)

where
gout,m(dn) =

rout,m

pout,m
p̄1�dn

out,m . (21)

Similar to the input filter, we can express this using the recursion

xout,m,n(k) =

�
��

��

p̄out,m · xout,m,n(k � 1) if k > ln
gout,m(dn)�(n) if k = ln
0 otherwise

(22)

and by superimposing all input step functions get the recursive first
order subsystem

xout,m(k) =
�

n

xout,m,n(k) =

p̄out,m · xout,m(k � 1) +
�

n
k=ln

gout,m(dn)�(n) (23)

where the driving term includes all steps occurring during the past
sampling interval, that is all odd n such that (k�1)Ts < tn � kTs.
Further, by definition

H0

�

n
ln�k

�(n) = H0yBBD(kTs). (24)
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yBBD(tn)

z�1

+
�

�(n)

gout,1(dn)
� +

p̄out,1
z�1

xout,0(k)
+

gout,2(dn)
� +

p̄out,2
z�1

xout,1(k)
+

gout,Mout(dn)
� +

p̄out,Mout

z�1

xout,Mout(k)

ȳ(k)

computed for every odd n computed for every k

Figure 3: Digital realization of the output filter where tn = (k �
1 + dn) · Ts, n odd, are the switching instants of the BBD output

The final output then is the sum of these first-oder subsystems,
i.e.

y(k) = H0yBBD(kTs) +
Mout�

m=1

xout,m(k), (25)

leading to the digital realization shown in figure 3, where the �-
nodes on the border between the sampling rates shall denote the
accumulation of the inputs on the n side over one interval of the k
side.

Algorithm 1 shows pseudo code for the complete model of
BBD and filters. Note that the inner loop (lines 6–19), which per-
forms the operations running at the BBD clock rate, is executed
before the k-th input sample ū(k) is processed in line 21, and there-
fore effectively does the processing for the time interval between
the k � 1-th and k-th sample. The BBD samples are assumed to be
stored in a queue of fixed length N , accessed with enqueue() and
dequeue() to insert and retrieve a sample, respectively.

3.3. Real-valued systems

In above derivation, all coefficients are potentially complex-valued.
Of course, unless they are already real, they occur in conjugate
complex pairs, so that two complex-valued first-order systems can
be combined into one real-valued second-order system. The calcula-
tion is straight-forward and we only present the resulting equivalent
sub-systems in figures 4 and 5, where the m-th and m̂-th pole are
assumed to form a conjugate pair and the (real-valued) coefficients
for the formed input-filter sub-system are given by

a1,in,m = 2 cos(�p̄in,m) (26)

a2,in,m = �|p̄in,m|2 (27)

b0,in,m(dn) = �in,m · |p̄in,m|dn · cos(�rin,m + dn�p̄in,m) (28)

b1,in,m(dn) = ��in,m · |p̄in,m|dn+1

· cos
�
�rin,m + (dn � 1)�p̄in,m

�
(29)

where �in,m = 2Ts · |rin,m|. Similarly, the coefficients for the

Algorithm 1 Proposed BBD and filters model
1: n � 0
2: xin,m � 0 for m = 1, . . . , Min
3: xout,m � 0 for m = 1, . . . , Mout
4: yBBD,old � 0
5: for all k do
6: while tn < kTs � (n odd � tn = kTs) do
7: dn � tn � (k � 1)Ts
8: if n even then
9: enqueue

��Min
m=1 gin,m(dn) · xin,m

�

10: else
11: yBBD � dequeue()
12: � � yBBD � yBBD,old
13: yBBD,old � yBBD
14: for m � 1, . . . , Mout do
15: xout,m � xout,m + gout,m(dn) · �
16: end for
17: end if
18: n � n + 1
19: end while
20: for m � 1, . . . , Min do
21: xin,m � p̄in,mxin,m + ū(k)
22: end for
23: y(k) = H0 · yBBD,old +

�Mout
m=0 xout,m(k)

24: for m � 1, . . . , Mout do
25: xout,m � p̄out,mxout,m
26: end for
27: end for

ū(k)
+

p̄in,m

z�1 gin,m(dn)
+

+

p̄in,m̂

z�1 gin,m̂(dn)

=
ū(k)

+

z�1

a1,in,m

+

z�1

a2,in,m

b0,in,m(dn)

b1,in,m(dn)

+

computed for every k
computed for
every even n

Figure 4: Two complex-valued first-order systems for a conjugate
complex pole pair of the input filter and the equivalent real-valued
second-order system

DAFX-4

DAFx-14
DAFx-14



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

�(n)

gout,m(dn)
� +

p̄out,m
z�1

+

gout,m̂(dn)
� +

p̄out,m̂
z�1

=
�(n)

b0,out,m(dn)
� +

z�1

a1,out,m
� +

b1,out,m(dn)
z�1

a2,out,m

computed for every odd n computed for every k

Figure 5: Two complex-valued first-order systems for a conjugate
complex pole pair of the output filter and the equivalent real-valued
second-order system

formed output-filter sub-system are given by

a1,out,m = 2 cos(�p̄out,m) (30)

a2,out,m = �|p̄out,m|2 (31)

b0,out,m(dn) = �out,m · |p̄out,m|1�dn

· cos(�rout,m + (1 � dn)�p̄out,m) (32)

b1,out,m(dn) = ��out,m · |p̄out,m|2�dn

· cos
�
�rout,m � dn�p̄out,m

�
(33)

where �out,m = 2
��� rout,m

pout,m

���. Note that by precomputing constants
and reusing common terms, computing the b coefficients for one
second-order sub-system requires evaluation of one exponential
and two cosine functions. Alternatively, given the limited range
of dn, one may use polynomial approximations or look-up tables
for the b coefficients. An analysis of the effects of approximation
errors is beyond the scope of this paper, however.

4. RESULTS

In the following, we consider the BBD and filter combination
as found in the chorus effect of the Juno-60 synthesizer. As a
detailed circuit analysis is beyond the scope of this paper, we only
state the relevant aspects. Both the input and output filter are
sixth-order filters that can be decomposed into a first-order high-
pass filter (for adjusting bias voltages) and a fifth-order low-pass
filter. We will only include the latter in our combined BBD/filter
model. Numerical circuit analysis gives the coefficients of table 1,
corresponding to the frequency responses shown in figure 6.

We first validate the model by studying a situation where we
can analytically derive the expected output: sinusoidal input and a
BBD clock with constant rate fBBD so that the time interval between

Table 1: Coefficients of the input and output filters

Hin Hout

r1 251 589 5092
r2 �130 428 � 4165i 11 256 � 99 566i
r3 �130 428 + 4165i 11 256 + 99 566i
r4 4634 � 22 873i �13 802 � 24 606i
r5 4634 + 22 873i �13 802 + 24 606i

p1 �46 580 �176 261
p2 �55 482 + 25 082i �51 468 + 21 437i
p3 �55 482 � 25 082i �51 468 � 21 437i
p4 �26 292 � 59 437i �26 276 � 59 699i
p5 �26 292 + 59 437i �26 276 + 59 699i
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�80 dB
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Figure 6: Frequency response of the input filter ( ) and output
filter ( )
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two clock edges is tn � tn�1 = 1
2fBBD

, where we assume the clock
to have 50% duty cycle, i.e. tn � tn�1 = tn�1 � tn�2, as is
typical in BBD applications. For signals band-limited to fBBD/2
and ignoring aliasing distortion introduced by the BBD, the BBD
may then be treated as the linear filter

HBBD(i�) = e
�i� N

2fBBD · sinc

�
�

2�fBBD

�
(34)

where N is the number of stages of the BBD and sinc(x) = sin(�x)
�x .

The first factor is the phase shift due to the delay, the second factor
the amplitude distortion due to presenting rectangular pulses at the
output. For the input signal

u(k) = sin
�
2� f0

fs
k
�

(35)

we therefore expect the output

y(k) = a · sin
�
2� f0

fs
k + �

�
(36)

where

a = sinc
�

f0
fBBD

�
· |Hin(2�if0)| · |Hout(2�if0)| (37)

� = ��f0
N

fBBD
+ �Hin(2�if0) + �Hout(2�if0). (38)

This expected output is compared in figure 7 with the output
computed using the proposed model. Here, we choose f0 = 1 kHz,
fs = 44.1 kHz, N = 256, and fBBD = 50 kHz. As can be seen,
model output and theoretically expected output are in good agree-
ment, small differences remain however. These are caused by
aliasing due to the non-perfect attenuation of the filters at and above
the Nyquist frequency. Figure 8 shows the same configuration,
but with an instant step in fBBD occurring at t = 5 ms. A smooth
change in the frequency of the output can be seen, as is expected
for a BBD. This is in contrast to a simple digital delay-line, which
would exhibit a discontinuity at the output when subjected to a
discontinuous change in delay time. This behaviour arises because
the effective pitch of the output of the BBD compared to its input
depends on the ratio of fBBD between the instant when the signal
was sampled by the BBD and when it exits the BBD.

As a more practically relevant scenario, we compare the model
output to the output of the BBD output filter recorded from a real
Juno-60 synthesizer. The BBD clock period is controlled by a
triangular LFO signal, leading to piecewise constant pitch shifts,
alternatingly upwards and downwards. It is worth noting that the
minimum BBD clock rate is about 26 kHz, so that the analog
circuit may already introduce aliasing distortion itself, as discussed
previously.

To allow a meaningful comparison, several extra considerations
are necessary:

• The first-order high-pass filters previously omitted have to
be included. This is done by converting them to digital filters
using the bilinear transform and applying them to the input
signal before and the output signal after running the BBD
model.

• Measurements in the circuit showed that the BBD amplifies
the signal by approximately 2.3 dB which is also included
in the simulation.

�1

0

1

1ms 2ms 3ms 4ms
t

(a) Output of the proposed model ( ) and the theoretically ex-
pected output ( )

�0.001

0

0.001

1ms 2ms 3ms 4ms
t

(b) Difference between proposed model output and theoretically ex-
pected output

Figure 7: Comparison of the output of the proposed model and
theoretically expected output for a sinusoid at f0 = 1 kHz sampled
at fs = 44.1 kHz delayed by a BBD with N = 256 stages clocked
at fBBD = 50 kHz

�1

0

1

0ms 5ms 10ms 15ms
t

Figure 8: Model output ( ) for a sinusoid of f0 = 1 kHz sampled
at fs = 44.1 kHz delayed by a BBD with N = 256 stages clocked
at fBBD = 50 kHz before t = 5 ms and fBBD = 25 kHz afterwards.
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Figure 9: Model output ( ) and recorded output ( ) for a Cmaj

chord input

• Instead of recording the BBD clock signal, which would
necessitate a very high sampling rate, we reconstruct the
clock rate by estimating phase, frequency, and amplitude of a
triangular oscillator. Visual inspection of the measurements
and simulation results reveals a mismatch in obtained delay
time of up to 0.13ms, varying with time, which is likely
due to non-perfect clock rate reconstruction.

• While the filter parameters used are derived from nominal
component values, the tolerance of the real components will
lead to slightly different filtering behavior.

Figure 9 shows a time domain comparison of the model output
and the recorded output when driven with a Cmaj chord (C4, E4,
G4). As can be seen, despite the uncertainties mentioned above,
very good agreement is achieved. Closer inspection reveals a small
time offset (less than 0.04ms in the shown excerpt) between model
output and recording. This impedes interpretation of the difference
signal, as it is dominated by peaks around the steep edges of the
signal due to the misalignment.

To specifically study the effects of aliasing, the highest note
available on the Juno-60, C7 nominally at 2093Hz, is used as input.
The spectrograms in figure 10 reveal a small amount of aliasing in
the recorded output of the analog device (figure 10(c)) and slightly
more aliasing in the digital model output at the sampling rate fs =
44.1 kHz (figure 10(a)), as was to be expected.

This extra aliasing in both examples is produced by the assump-
tion of the input to be an impulse-train, as well as the reflection
around the audio Nyquist frequency of the image-spectra generated
by the sample-and-hold nature of the BBD output. Helped by the
existing presence of aliasing in the analog BBD system, this extra
aliasing is not audible. In applications where the extra aliasing is
problematic, the easiest remedy is oversampling. This is almost
tautological, but note that here, a significant portion of the com-
putation happens at the BBD clock rate and is independent of the
audio sampling rate, making oversampling especially attractive.
The effectiveness can be seen in figure 10(b), where the sampling
rate is doubled to fs = 88.2 kHz and the extra aliasing due to the
model vanishes.

Evaluation based on the Objective Difference Grade (ODG)
[9] (advanced mode) as computed with GstPEAQ [10] confirms
the high similarity of the simulation to the measurements. Table 2
shows the ODG for the two stimuli discussed above as well as for a
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(a) Model output at fs = 44.1 kHz
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(b) Model output at fs = 88.2 kHz
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(c) Recorded output
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Figure 10: Spectrograms of the model output and the recorded
output of the BBD output filter in a Juno-60 synthesizer, excited
with a C7 (nominally 2093Hz), and the LFO-controlled BBD clock
edge interval
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Table 2: Objective difference grade (ODG) comparing measure-
ment of BBD output and simulation for different stimuli and sam-
pling rates

stimulus fs = 44.1 kHz fs = 88.2 kHz

C2 �0.696 �0.670
C7 �0.530 �0.393
Cmaj �0.646 �0.611

low pitched note, C2 nominally at 65.41 hertz1. The ODG ranges
between 0 (“differences imperceptible”) and �4 (“differences very
annoying”), where �1 corresponds to “differences perceptible but
not annoying”. Hence the achieved results could be classified as
“differences not annoying if perceptible at all”, with the expected
slight improvement for the higher sampling rate. Considering that,
as outlined above, the BBD model is not the only source of differ-
ences between simulation and measurements, this is a clear success.

5. CONCLUSION

BBD chips sample a signal and delay it by a constant number
of sampling intervals. To prevent aliasing from high-frequency
content present in the input signal and to suppress image-spectra
in the output signal, typical application circuits contain low-pass
filters at their input and output. In this paper, we have proposed a
model for the combination of the BBD and the filters. In fact, the
BBD is trivially modeled as delay-line of constant length, working
at the same clock rate as in the analog circuit. The key idea is that
the resampling between the audio sampling rate and the BBD clock
rate utilizes the filters already existing in the circuit. To this end,
the filters are transformed into the digital domain by a modified
impulse-invariant transform that allows the output to be taken or
the input to be given at arbitrary time instants.

As verified with experimental results, the model thus obtained
allows faithful reproduction of the analog system’s behavior, even
including aliasing distortion that may occur. However, the audio
sampling rate has to be high enough that the filters have sufficient
attenuation at the Nyquist frequency. Otherwise, additional aliasing
distortion may be introduced. If necessary, this can be trivially
prevented by oversampling.
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ABSTRACT

The noise that lavalier microphones produce when rubbing against
clothing (typically referred to as rustle) can be extremely diffi-
cult to automatically remove because it is highly non-stationary
and overlaps with speech in both time and frequency. Recent
breakthroughs in deep neural networks have led to novel techni-
ques for separating speech from non-stationary background noise.
In this paper, we apply neural network speech separation techni-
ques to remove rustle noise, and quantitatively compare multiple
deep network architectures and input spectral resolutions. We find
the best performance using bidirectional recurrent networks and
spectral resolution of around 20 Hz. Furthermore, we propose an
ambience preservation post-processing step to minimize potential
gating artifacts during pauses in speech.

1. INTRODUCTION

The lavalier microphone (lav mic) is an invaluable tool for the au-
dio engineer. By inconspicuously attaching near the mouth it al-
lows the person wearing the microphone to move freely, minimi-
zes visual distractions, and also helps to reduce reverberation and
noise from the recording environment. Because lav mics are ty-
pically attached to a subjects wardrobe, they can sometimes rub
against clothing creating an auditory disturbance often described
as rustle. Lav mic rustle can overlap with speech in both time and
frequency and vary in unpredictable ways based on how the person
wearing the microphone moves their body. This makes developing
an algorithm to automatically detect and remove rustle extremely
challenging.

Traditional techniques for single-channel speech enhance-
ment, e.g., spectral subtraction [1], work well for stationary back-
ground noise (e.g., air conditioner hum), but struggle in the pre-
sence of non-stationary disturbances, such as lav mic rustle. Re-
cently, source separation approaches have achieved success in se-
parating speech from complex non-stationary background noise,
such as music, weather, or even other speech [2]. These techni-
ques typically operate on a time-frequency representation of the
signal, e.g., the spectrogram, and often take a supervised learning
approach where a collection of clean speech and isolated noise
samples are used to learn a model. Once trained, this model can
obtain separated speech and noise signals when given noisy speech
as input.

Time-frequency masking is one approach to single-channel
speech separation which estimates the amount of speech and noise
present in each spectrogram bin (i.e., the mask). This mask is then
used as a time-varying filter to separate speech from noise. Re-
cent advances in deep neural networks have drastically improved
the ability to learn the nonlinear mapping function necessary to

estimate time-frequency masks from noisy speech. The approa-
ches of [3, 4, 5, 6] use feedforward network architectures where
the mask for a frame of audio is predicted using input features
from several surrounding frames. In this architecture, increasing
the amount of temporal context requires increasing the dimension
of the network input, which extends the size of the entire network.
This increases the risk of overfitting and the resources necessary
to train and deploy the network.

For this reason, recurrent architectures have demonstrated
success on several sequential prediction tasks [7] like language
translation, video captioning, speech recognition, and speech/noise
separation. Recurrent architectures save an internal hidden state
between time steps, and the appropriate context for a problem
at hand can be learned from data. However, to avoid the vanis-
hing/exploding gradient problem, gated architectures, such as the
long short-term memory (LSTM) [8], must be used. Additio-
nally, [9] showed improved performance on a speech noise se-
paration task using a bidirectional LSTM (BLSTM) [10], which
performs both a forward and backward pass over the data, thus
incorporating future context at the cost of offline operation.

In this paper, we explore deep feedforward, recurrent LSTM,
and BLSTM network architectures for removing lav-mic rustle
from speech, a specific problem for audio engineers that, to the
best of our knowledge, has not previously been explored in the
literature. We begin by reviewing mask estimation approaches to
single-channel source separation and different deep network archi-
tectures in Section 2. We benchmark the performance of our recur-
rent architectures against feedforward networks in terms of noise
reduction and speech intelligibility and explore trade-offs in the
spectral features used as network inputs in Section 3. Techniques
for removing lav-mic rustle while maintaining a certain amount of
background ambience to maintain the natural quality of the recor-
ding are explored in Section 4. Finally, conclusions and discussi-
ons of future work are provided in Section 5.

2. SPEECH SEPARATION NETWORKS

Our algorithm works on a mono mixture y(t) = s(t) + n(t) of
speech s(t) corrupted by lav mic rustle n(t). Given a training
set with examples of isolated speech and rustle signals, we create
mixtures with known ground truth to learn a mapping that estima-
tes the clean speech signal ŝ(t) from noisy mixture y(t). Rather
than operating on the time-domain waveform, our neural networks
take as input the short-time Fourier transform (STFT) magnitude
spectrogram of y(t), denoted as Y = [y1,y2, ...,yT ] � Rd�T ,
where d is the number of frequency bins.

We use the magnitude ratio mask as the time-varying filter for
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Figure 1: Incorporating temporal context via multiple frame inputs (a) or hidden layer state propagation (b) and (c).

separating speech and rustle, which is defined as

mt =
st

st + nt
, (1)

where t is the STFT frame (time) index, st are the spectral magni-
tude coefficients of clean speech, and nt is the rustle magnitude
spectrum. The division operation in (1) is performed element-
wise. Because magnitude spectra st and nt are nonnegative, the
mask elements mt from (1) are in the interval [0, 1]. The output
of our neural network is m̂t, which we use to obtain estimated
magnitude spectra for separated speech and rustle, i.e.,

ŝt = m̂t � yt, (2)
n̂t = (1 � m̂t) � yt, (3)

where � represents an element-wise product. We use (2) and
(3) to obtain the estimated time-domain waveforms ŝ(t) and ŷ(t)
through the inverse STFT, with phase information taken from the
noisy mixture y(t).

2.1. Network architectures

We estimate m̂t using a feedforward neural network architecture
as follows:

m̂t = �(WLhL�1
t + bL), (4)

h�
t = ReLU(W�h��1

t + b�), � = 2, ..., L � 1, (5)

h1
t = ReLU(W1yc

t + b1), (6)

where L represents the number of layers, �(·) the sigmoid nonli-
nearity, and ReLU(·) the rectified linear unit activation function.
The weight and bias parameters of layer �, whose values are le-
arned during training, are denoted by W� and b�. The input to
the feedforward architecture is yc

t = [yt�c, ...,yt, ...,yt+c]
T �

Rd(2c+1), which incorporates temporal context by stacking a small
number of frames to use as the network input.

We can alternatively incorporate temporal context using a re-
current network architecture for estimating m̂t as

m̂t = �(WLhL�1
t + bL), (7)

h�
t = f(h��1

t , h�
t�1), � = 2, ..., L � 1, (8)

h1
t = f(yt, h1

t�1), (9)

where f(·) represents the nonlinear mapping function of a recur-
rent layer, and the state of each recurrent hidden layer, i.e., h�

t for
layer � is stored and used as an additional input at the next time
step. We use LSTM-style [8] recurrent layers for f(·), which were
successfully used for speech denoising in [9, 11]. The input to the
network, yt in (9), is only a single spectrogram frame.

We can further incorporate temporal context into a source se-
paration architecture by using bidirectional LSTM (BLSTM) ar-
chictures [10]. BLSTM networks require offline operation, and
we can define a BLSTM layer as

h̃�
t = f(h��1

t , �h�
t�1) + f(h��1

t , �h�
t+1), (10)

where �h�
t�1 and �h�

t�1 are outputs of the forward and backward
recurrent layers, respectively. The backward layer �h�

t�1 consumes
the input spectrogram in time-reversed order. Figure 1 illustra-
tes how temporal context is incorporated in feedforward, recurrent
(LSTM), and bidirectional recurrent (BLSTM) layers.

2.2. Training objective

Given a training set of isolated speech and isolated rustle noise
spectrograms, we can create mixtures with known ground truth for
learning the nonlinear mapping between noisy speech spectra yt

and estimated ratio mask m̂t. Several studies on neural network
based speech separation [2, 3, 11] have shown the utility of using
the error in the estimated spectrum ŝt (as opposed to the error in
the estimated mask m̂t) as the network training objective. This
leads to the so-called signal approximation mean squared error ob-
jective function

JMSE =
1
T

T�

t=1

||ŝt � st||22. (11)

But using this objective can sometimes cause the network to be too
conservative in situations where noise is quieter than speech, yet
still perceptible. An alternative objective proposed in [2] is

JDIS =
1
T

T�

t=1

�
||ŝt � st||22 + ||n̂t � nt||22�

�||st � n̂t||22 � �||nt � ŝt||22
�
, (12)
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where the parameter � provides a trade-off between interference
(i.e., rustle remaining in the separated speech) and artifacts caused
by the source separation process. We found setting � = 10�3 to
work well for removing rustle from speech, and we use that value
and the objective function from (12) in all experiments described
in Section 3. The objective function in (12) is minimized using
backpropagation and stochastic gradient descent.

3. EXPERIMENTS

3.1. Dataset description

To create a training set for rustle noise removal, we needed to
collect a large amount of clean speech and isolated rustle data.
While several publicly available datasets for speech research offer
only low sampling rate data (less than 40 kHz), we have used the
pitch tracking corpus from [12], the reverberant speech from the
Chime challenge [13], the processed speech from the DAPS expe-
riment [14], and the TSP speech dataset [15]. All of these datasets
provide audio at sampling rates of 44.1 or 48 kHz. We have also
supplemented our clean speech training data with several hours of
audio recorded for iZotope tutorial videos. While no publicly avai-
lable datasets of isolated rustle exist, we were able to use sound
effects from www.prosoundeffects.com that shared sonic qualities
with lav mic rustle. However, these sound effects alone were in-
sufficient to cover the wide range of lav mic rustle disturbances we
wanted our algorithm to remove. We thus collected approximately
one hour of isolated lav mic rustle noise, varying microphone type,
clothing, movement, and recording environment. All of the audio
processed in these experiments had a sampling rate of 48 kHz.

While most rustle disturbances are rather quiet relative to
speech (i.e., SNR � 0), we also wanted our algorithm to be ro-
bust to low-SNR situations, such as lav mics mounted on athletes
during competition or while outdoors in extreme weather events.
Thus, using these isolated speech and rustle noise datasets, we cre-
ated mixtures with SNR ranging from �6 to +9 dB (SNR has been
measured over periods with active rustle). To limit the computa-
tional resources necessary for training, all mixtures were limited
to 10 seconds in length, and these mixtures sometimes consis-
ted of multiple speech utterances and/or rustle noise concatenated
together prior to forming the mixture.

While we can qualitatively test the performance of our algo-
rithm using actual rustle-corrupted speech, to quantitatively evalu-
ate performance using the metrics described in Section 3.2 requires
mixtures with ground truth (i.e., the isolated speech and rustle used
to create the mixture) available. This testing dataset is composed
of speech from speakers not used to train the algorithm, as well
as held out rustle noises that were distinct from those used during
training. All testing set mixtures were 12 seconds in length and
the SNR varied over the same �6 to +9 dB range.

3.2. Performance metrics

We quantitatively evaluate the performance of our algorithm in
terms of separation performance and intelligibility. For separation
performance, we use the SNR of the separated speech, typically
referred to as source to distortion ratio (SDR) in the source se-
paration literature [16]. For speech quality and intelligibility, we
use the short-term objective intelligibility (STOI) metric proposed
in [17]. The STOI algorithm returns a value in [0, 1] range, with 1
representing the highest quality. However, we evaluate our rustle

removal in terms of �STOI, which we define as the difference
between the STOI score of the separated speech and that of the
original noisy mixture, converted to a percentage.

3.3. Analysis of results

In this section we compare performance of our rustle removal al-
gorithm for different network structures and their associated tem-
poral context, as shown in Figure 1. Additionally, we investigate
the impact of spectral resolution (i.e., the FFT size) used to create
the spectrograms input and output by the network. All experi-
ments use the Adadelta [18] optimizer and are trained for 20,000
mini-batches of 16 sequences each. Each sequence consists of 10
seconds of clean speech randomly mixed with segments of mic
rustle.

Besides comparing objective measures, we have also perfor-
med informal listening tests with real-world speech signals having
diverse SNR. They have shown a significant reduction in audibility
of rustle. Some audio examples are available for download at
http://www.izotope.com/tech/aes_rustle

3.3.1. FFT size

To determine an upper bound on source separation performance,
we can use the so-called “oracle mask” which is the magnitude
ratio mask computed using the ground truth isolated speech and
rustle noise spectrograms. Figures 2(a) and (b) display the SDR
and � STOI for FFT sizes of 1024, 2048, and 4096 (at 48 kHz
sampling rate) as a function of input SNR. For all FFT sizes we
used 4� overlap and Hann windows. From Figure 2 we see that
the FFT size of 4096 performs best in terms of SDR, but worst in
terms of STOI.

Figure 3 repeats the same FFT size comparison, but this time
evaluates testing set performance of a trained two-layer BLSTM
network with 256 hidden units per layer. The SDR from Fi-
gure 3(a) exhibits the opposite trend with respect to increasing
FFT size when compared to the oracle results from Figure 2(a),
with 4096-point FFT leading to the lowest level performance. This
discrepancy might be caused by the curse of dimensionality, as lar-
ger FFT sizes require more network parameters in the input and
output layers. In terms of STOI performance for the trained BL-
STM network shown in Figure 3(b), an FFT size of 2048 exhibits
the best performance, while FFT sizes of 1024 and 4096 perform
similarly, although the larger FTT size (4096) does show impro-
vements at SNR of �6 dB. In terms of both the SDR and STOI
results from Figures 2 and 3, the FFT size of 2048 appears to con-
sistently demonstrate strong performance for both the oracle and
trained BLSTM network.

3.3.2. Network structure

In this section we evaluate the feedforward, recurrent (LSTM), and
bidirectional (BLSTM) architectures shown in Figure 1. All three
architectures were designed to have a nearly equivalent number of
parameters as shown in Table 1. For the feedforward architecture
we used a context size of c = 2 frames, meaning that our network
input is the concatenation of five frames. Because a single BLSTM
layer has independent forward and backward layers, its complexity
is comparable to a forward-only LSTM with four hidden layers.

Figures 4(a) and (b) display the SDR and STOI for the three
different network architectures. The LSTM and BLSTM perform
similarly in terms of SDR and much better than the feedforward
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(a) SDR (b) �STOI

Figure 2: Metrics of separated speech using the oracle (ground truth) ratio mask for different FFT sizes at different input SNR levels.

(a) SDR (b) �STOI

Figure 3: Metrics of speech separated using BLSTM network for different FFT sizes at different input SNR levels.

Input Hid. 1 Hid. 2 Hid. 3 Hid. 4 Output
Feedforward 5125 512 512 512 512 1025

LSTM 1025 256 256 256 256 1025
BLSTM 1025 256 256 N/A N/A 1025

Table 1: Layer sizes for different network configurations using 2048-point FFT. Sizes were chosen such that all architectures had approxi-
mately the same number of parameters.
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(a) SDR (b) �STOI

Figure 4: Metrics of separated speech comparing different network structures with FFT size of 2048 at different input SNR levels.

(“dense”) architecture, as shown in Figure 4(a). We can also in-
terpret this result in terms of the amount of temporal context the
network has available. Since the LSTM and BLSTM perform si-
milarly, this could mean that future context is less important in
terms of SDR. The recurrent architectures, however, exploit signi-
ficantly more context than the feedforward architecture has avai-
lable. In terms of the STOI shown in Figure 4(b), the BLSTM
architecture performs best and the forward-only LSTM performs
worst, demonstrating the importance of future context for intelli-
gibility. Although the BLSTM architecture exhibits strong perfor-
mance, it requires offline access for the backward pass over the
data. A low-latency implementation becomes possible if BLSTM
works on blocks of the audio signal or if a lookahead layer [19] is
added to the forward-only LSTM architecture.

4. AMBIENCE PRESERVATION

The speech separation network trained on clean speech mixed
with mic rustle seeks to optimally recover clean speech. In many
real-life scenarios, input speech is corrupted with both mic rus-
tle and some stationary (or quasi-stationary) noise (Figure 5(a)).
In such cases our net trained for speech isolation produces ex-
cessive gating, i.e., attenuates stationary noise between sentences
(Figure 5(b)). This can cause the separated speech to sound un-
natural or overly processed, which was confirmed by our informal
listening tests. The algorithm proposed in this section mitigates
the problem by estimating the stationary noise floor and limiting
the amount of spectral attenuation m̂t to ensure that the resulting
signal ŝt does not have excessive gating (Figure 5(c)).

Because the algorithm adapts to the noise floor, it can be used
for signals with low or high SNR. Its application is optional and
often makes sense in the context of post-production, where preser-
vation of the stationary noise floor (“room tone”) is desirable.

4.1. Noise estimation

A simple adaptation algorithm is used to detect the quasi-stationary
noise floor in speech. It operates on a magnitude spectrogram yt

of the input signal and computes magnitude estimates of the noise

floor n̂t by applying a series of three filters: a Hann filter H , a sli-
ding minimum filter M , and an asymmetric 1st order attack/decay
filter E [20].

n̂t = E(M(H(yt))) (13)

The filters are independently applied to each frequency bin of
the spectrogram along the time axis. The purpose of filter E is to
quickly react to decays in the signal energy and slowly react to on-
sets of the signal energy. Its upward integration time (attack time)
is set to 10000 ms, while its downward integration time (decay
time) is set to 100 ms. The purpose of filter M is to keep noise
floor estimates steady during speech utterances. Its window size is
set to 2000 ms. The purpose of filter H is to prevent filter M from
becoming trapped in spectrogram zeros. Its radius is set to 10 ms.

4.2. Limiting of attenuation

Gating is created when the resulting signal energy ŝt = m̂t � yt

falls below the noise floor n̂t. To prevent this, we are limiting the
spectral mask m̂t as follows:

m̂+
t = min

�
1, max

�
m̂t,

n̂t

yt

��
. (14)

Our noise floor estimate n̂t is quasi-stationary (slowly chan-
ging in time), so its distribution does not match the distribution of
a typical noise power spectrum, which is random. When a quasi-
stationary constraint (14) is applied to the mask and then to the
signal (2), parts of the output signal obtain this unnatural distri-
bution too. To improve naturalness of the distribution, we are ap-
plying a time-frequency smoothing to the mask m̂+

t using a “DFT
thresholding” algorithm from [21]. This edge-adaptive smoothing
also reduces “musical noise” artifacts resulting from processing
the STFT spectrum. The updated processing formulas with smoo-
thing of the mask are as follows:

m̂++
t = Smooth

�
m̂+

t

�
, (15)

ŝt = m̂++
t � yt. (16)
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(a) Speech with rustle (b) De-rustle, formula (2) (c) De-rustle, formula (16)

Figure 5: Comparison of rustle attenuation without (b) and with (c) ambience preservation. Additional audio examples are available at
http://www.izotope.com/tech/aes_rustle

5. CONCLUSIONS AND FUTURE WORK

In this paper we have described an approach for lavalier microp-
hone rustle removal using deep neural networks, while maintaining
natural sounding audio quality by supplementing the network out-
put with spectral smoothing and stationary noise floor estimation.
We also found a spectral resolution of around 20 Hz (FFT size of
2048 at 48 kHz) and bidirectional recurrent network architectures
to provide the best performance for this specific speech separation
application.

Bidirectional recurrent architectures (e.g., BLSTM) exhibited
the overall best performance, but investigating low-latency bidi-
rectional approximations for rustle removal is an important area
for additional study. Exploring complex ratio masks [6] or time-
domain Wavenet architectures [22] are other potentially interesting
areas of future work.
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ABSTRACT

Here we present a micro-controlled digital effect unit for guitars.
Different from other undergraduate projects, we used high-quality
16-bit Analog-to-Digital (A/D) and Digital-to-Analog (D/A) con-
verters operating at 48kHz that respectively transfer data to and
from a micro-controller through serial peripheral interfaces (SPIs).
We discuss the design decisions for interconnecting all these com-
ponents, the project of anti-aliasing (low-pass) filters, and addi-
tional features useful for players. Finally, we show some results
obtained from this device, and discuss future improvements.

1. INTRODUCTION

Analog guitar effects became very popular from 70’s to 90’s as an
artifact that musicians could imprint their own personality touch
in their sounds [1]. Once that the micro-controllers become pop-
ular among engineers, new and combined effects could be added
into the so called digital effect units, which allow a single device
to have multiple effects. Nowadays, powerful micro-controllers
(with embedded DSP units) can execute sophisticated signal pro-
cessing algorithms, creating configurable digital audio effect units.

Most of available micro-controlled boards for education pur-
pose come with A/D converters (ADCs) operating at reasonable
sampling rates but coding amplitudes at 12 bits. Usually they do
not have any D/A converter (DAC) on-board. Since their use is
focused on control applications, they usually come with PWM cir-
cuits, which are not suitable for audio applications.

Reasonable audio devices require sampling rates of 48kHz
and sample resolution of 16bits/sample if we consider studio-
quality recordings. Therefore, academic audio projects require the
development of custom boards using a micro-controller and an ex-
ternal D/A converter at least, assuming that the micro-controller
has an audio-oriented A/D converter.

As an undergraduate project, we envision a programmable dig-
ital effect unit that can be useful for students interested on signal
and systems and digital signal processing: they will be able to de-
velop their algorithms on tools like Matlab or Octave and convert
them in compiled codes to be uploaded into these devices, obtain-
ing real-time processing (at maximum of 48kHz). To achieve this
goal, we conceived a device using three evaluation boards from
Texas Instruments (TI), respectively dealing with the algorithms
(a micro-controller) and with the A/D and D/A conversions. Our
primary application is applying distortion effects over electric gui-
tar sounds in real-time, although it can promptly adapted to other
instruments.

Similar work was made by Young and Chih [2] using 16-bit
converters with 48kHz but with a different micro-controller. In

⇤ This work was part the author’s undergraduate project.

addition, Hasnain and Saleem [3] used another approach to their
work on using re-programmable Matlab Simulink blocks of codes
in order to generate the audio effects.

Here we will present the design aspects of an academic-orien-
ted device, including the project of some analog filters and am-
plifier for signal conditioning (particularly avoid signal aliasing).
Thus this paper is organized as follow: first we will describe the
electronic boards and other components that we used to mount
the device, particularly focusing on their connectivity. Next, we
will present the design of low-pass filters for anti-aliasing purpose
and D/A conversion, and linear amplifiers for signal condition, fol-
lowed by details of how to implement signal processing algorithms
(focusing on time CPU interruptions). Finally some results are
presented from real use of the device (capture from digital oscillo-
scopes) along with conclusions and suggestions of improvements.

2. MATERIALS AND METHODS

Figure 1 presents a block diagram of the proposed device: The
electric guitar signal is linearly amplified and filtered by a low-
pass filter (LPF) to eliminate aliasing artifacts of the signal before
it is sampled. After this signal conditioning, it is sampled by the
external ADC in order to be properly read by the micro-controller.

Figure 1: Project’s Block Diagram

After digitally processed by the micro-controller, the signal
passes through the external DAC and filtered by a low-pass filter
(LPF) in order to be played. An additional HPF is used to remove
the signal DC component since DAC generates analog signals with
a fixed offset level equals to 2V.

Each component will be described in next sections.

2.1. Digital Processing Unit

Here we used the TI LaunchPad development kit (TIVA) that comes
with the micro-controller TM4C1294NCPDT [4] shown in Fig-
ure 2. Such a kit has easy access to the micro-controller ports and
comes with DIP switches and LEDs that can be programmed (we
used them to allow its users to respectively choose a digital ef-
fect and to have a feedback of their choices). A motivation to use
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this kit is that it has connectors to attach expansion boards named
as BoosterPacks (both the A/D and D/A used here are expansion
boards sold by TI).

It also has a Ethernet connector that can be used for data trans-
fer that later will be used for direct-to-computer music recording
and remote board configuration.

Figure 2: TI’s development kit for TM4C1294NCPDT (EK-
TM4C1294XL)

All codes were implemented, debugged, and uploaded to the
kit in TI integrated development environment (Code Composer
Studio - CCS).

2.2. External A/D and D/A Converters

Although the kit used here has a A/D converter, it only supports a
bit depth of 12bits/sample, not meeting our requirements. There-
fore we used an external A/D converter (ADC161S626) provided
by TI [5] as an electronic board kit (a BoosterPack) that can eas-
ily be attached to the micro-controller board. Such an expansion
board has an operational amplifier to offset the signal to a mid
voltage reference. Its analog-to-digital conversion uses successive
approximation register (SAR) architecture. The expansion board
is shown in Figure 3.

Figure 3: ADC in TI’s BoosterPack kit (ADC161S626EVM)

After the signal is processed by the micro-controller, it is con-
verted back into audio, from a digital form to a voltage signal.
Another expansion board is used for this purpose once the micro-
controller’s kit does not have any digital-to-analog converter (DAC)
in its circuitry. Since we required a DAC with 16-bit conversion
resolution as a project specification, we chose DAC161S055, also
provided by TI [6] in a BoosterPack (Figure 4). It has a resis-
tor matrix topology and internal registers to setup its operational
mode.

In this project, the DAC was configured to operate in write-
through mode, which means it updates the voltage output as soon
as data transfer is completed (other offered modes would require
a delay between these two conversion steps). Therefore, we in-
creased the available processing time between two successive sam-
pling steps (time to execute the effects).

Figure 4: DAC in TI’s BoosterPack kit (DAC161S055EVM)

While ADC samples are coded in two-complement binary rep-
resentation (with the most significant bit for the math sign) in order
to represent both positive and negative amplitudes, DAC samples
represents only positive values since it produces only positive ana-
log signals (a reference voltage is used to correctly understand the
output signal). Therefore a simple integer math was required in
order to obtain right conversions.

2.3. Analog Filters and Amplifier

Both filters and amplifier were based on operational amplifiers (op-
amp) due to their simplicity. In both cases we powered the op-
amps with 5V because this voltage was supplied by the USB port
of the micro-controller board. In case of the amplifier, we added a
biased voltage of 2.5V (a DC level) to the input signal since ADC
and DAC require positive voltages. Consequently the outputs of all
amplifiers bounce around ±2.5V and the saturation is achieved for
voltages exceeding 0 to 5V limits. To do that, the following circuit
was implemented (Figure 5), where carefully chosen resistors and
capacitors amplify only the AC part of the signal, ignoring its DC
level.
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Figure 5: Amplifier circuit

The two LPFs in Figure 1 correspond to fourth order active
low-pass filters - using two Sallen-Key topologies (quality factor
Q = 0.5 and cut frequency fc = 24, 405.14Hz) in cascade - were
built to work as anti-aliasing filters (the value of fc is due to the
use of electrical components that were commercially available).
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Its resulting cutoff frequency was set to approximately 24kHz fol-
lowing Nyquist theorem [7].

TI OPA344 was the op-amp chosen for both amplifiers and
LPFs, which is a low power single-supply rail-to-rail op-amp el-
igible for audio applications (also it comes in dual in-line pack-
age - DIP - which is suitable for breadboard testing and building
academic circuits without any specific tool like the ones for SMD
packages).

A passive HPF with a low cutoff frequency was designed to
remove the DC signal component. A common RC passive topol-
ogy was chosen with a resistor (22k�) and a capacitor (10µF),
resulting in a cutoff frequency of 0.72Hz.

Figures 6 and 7 shows, respectively, the frequency response of
both LP and HP filters.
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Figure 6: Active Low-pass Filter Frequency Response
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Figure 7: Passive High-pass Filter Frequency Response

2.4. Electrical Connections

Both converters use a synchronous serial interface (SSI) to com-
municate with the micro-controller. In such a data bus, a master
device manages the communication while the slave ones answer
back. Here we set the micro-controller as the master device and
both converters as slave ones. To properly work four pins of mas-
ter and slave devices should be used: the chip select pin (CS) to
select the correct peripheral to send/receive data (one of the con-
verters), the serial clock pin (SCL) to synchronize the data transfer,
the synchronous serial transmitter (SSTx), and the synchronous
serial receiver (SSRx) pins to send/receive bit streams between
the devices. An interconnection diagram for SSI used here is il-
lustrated in Figure 8. Programmatic, both ADC and DAC have
internal FIFO queues to send and receive bit-oriented streams of
data or commands.

The SSI clocks (or bit rate) for both ADC and DAC devices
were set at their maximum values, 5MHz and 20MHz respec-
tively. It was set higher than the required frequency for convert-
ing bits to voltage and vice-versa (24 bits/sample �48.000 sam-
ples/sec) in order to leave enough time for audio signal processing.

Figure 8: Diagram of electrical interconnection between the
micro-controller and both A/D and D/A converteres (Synchronous
Serial Interface (SSI) Diagram)

Electrical wires connect the analog filters (LPFs and HPFs)
and amplifiers to the input of ADC board and output of the DAC
board. We used a 6.3mm female J1 connector to plug an electric
guitar in, and the same kind of connector is used to plug in an
external speaker or a sound mixer.

2.5. Implementing Digital Distortions

Basically the distortion routines are implemented as a sequential
procedure of acquiring digital samples from the ADC, processing
them according to a predefined audio effect, and converting the
result into an analog signal. Considering the sampling rate used
here (48kHz), we coded these routines as part of a micro-controller
timer interruption in order to minimize jitter effects on the output
signal. Alternatively we considered to implement direct memory
access (DMA) data transfer to speed up the process but we felt that
our current implementation with timer interruptions was efficient
enough for running some the digital distortions we describe here.

Therefore, each time this interruption is triggered, it executes
the following steps:

1. Read a sample from ADC (waiting until the ADC release a
16-bit sample);

2. Process the sample;
3. Send the processed sample to the DAC (waiting until it fin-

ishes the conversion);

Naturally, the period between the execution of two successive
timer interruptions was (1/48000)sec. There are different but al-
most fixed �t’s for running different audio effects, however the
time interval between executions is constant (it means there should
be low variable delays between input and output signals in current
implementation).

The audio distortions are selected by user when he/she presses
an specific button. It generates an interruption that alter a global
counter/variable, which is used by the timer interruption code to
sequentially select an audio distortion.

Prior to this endless procedure (meaning that our ADC and
DAC never stop acquiring and generating audio signals), both micro-
controller and external devices are properly configured.

We implemented four different audio effects: distortion (or
saturation), delay, loop, and tremolo. The first one (the simplest
effect) is the distortion. It adds harmonics to the output sound
that make the sound look like an electric guitar played in a rock
concert with its amplifiers saturating the sound levels. This effect
basically clips the sound wave (regardless positive or negative am-
plitudes) and the amount of clipping defines how much “fuzzy”
will the output sound be. The Algorithm 1 shows the basic op-
eration of this effect: an if-then-else statement compares the input
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value from ADC to the distortion limit set previously, and if the ab-
solute magnitude of the sample is greater than the distortion limit
value, then the output value will be the distortion limit, otherwise
will be the value received at first.

Input: ith sample from ADC: sample_to_adc
Output: ith sample to DAC: sample_to_dac
if sample_to_adc >= distortion_limit then

sample_to_dac = distortion_limit
else if sample_to_adc <= -distortion_limit then

sample_to_dac = -distortion_limit
else

sample_to_dac = sample_to_adc
end

Algorithm 1: Distortion implementation

The delay effect simply delays the sound signal by a fixed
amount of time. It requires storing a quantity of samples in a vec-
tor/array. Here we used 1sec delay, which requires storing 48, 000
samples. To avoid moving data in order to store new samples, we
logically implemented a circular buffer with a single variable to
control the access to it. Algorithm 2 shows this implementation.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
sample_to_dac = sound_array [i ]
sound_array [i ] = sample_from_adc
i ++
i = i % 48000

Algorithm 2: Delay implementation

The loop effect replays a pre-recorded signal in loop fashion,
basically giving a base sound for musical arrangements. To do
that, first an array of fixed size (here we used a size equivalent to
1sec) receives all samples from ADC (up to 48000 samples). Once
the buffer is full, our routine starts to send all these stored samples
to DAC indefinitely.

The user can set another pre-recorded signal by pressing a
button which triggers an interruption where a variable called is-
Recording is set in order to enable the recording mode of Algo-
rithm 2.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
if isRecording then

sound_array [i ] = sample_from_adc
i ++
if i = imax then

i = 0
isRecording = false

end
else

sample_to_dac = sound_array [i ]
i ++
i = i % 48000

end
Algorithm 3: Loop implementation (Both i and isRecording are
set by an interruption triggered by a button pressed)

The last effect is tremolo: it modulates the ADC signal ac-
cording to a preset signal. Analog tremolos are implemented by

a low-frequency oscillator (LFO) - whose frequency ranges from
0.5 to 10Hz - to vary the sound amplitude. Here we digitally im-
plemented it using a 10000-samples array containing a 4.8Hz si-
nusoidal signal with amplitude equals to 0.25 and an offset of 0.75
(these values affect the way the input signal is altered). This array
was generated in MATLAB and hardcoded in the tremolo routine.

The implementation consists of multiplying samples of this
array by the samples from ADC. Therefore the amplitude of the
input signals are attenuated to a maximum of 50% according to
the preset sinusoidal signal used.

Input: ith sample from ADC: sample_from_adc
Output: ith sample to DAC: sample_to_dac
sample_to_dac = tremolo_array [i ] �
sample_from_adc

i ++
i = i % 10000

Algorithm 4: Tremolo implementation

3. RESULTS

The resulting device is depicted in Figure 9. To demonstrate its
usefulness, we first present the A/D and D/A conversions carried
out by our prototype with no digital distortions and no analog fil-
tering been applied to the signal except by the analog amplifica-
tion. Two sinusoidal (narrow-band) signals were separately ap-
plied to the prototype input jack and the DAC output pin (therefore
using no output LP and HP filters) was connected to an oscillo-
scope. Figures 10 and 11 shows this output signals for a 1kHz and
5kHz sinusoidal signals.

Figure 9: Picture of the device

The difference on voltage scale of each channel occurred be-
cause each converter had different numeric ranges: ADC works
with 15-bit values plus one bit for signal (the most significant one)
in two’s complement notation, while DAC uses all 16-bits to rep-
resent positive output values. That led to an output value equals to
the half of an input value in this no-distortion scenario.

The stair effect on channel 2 was given by the zero-order holder
effect of DAC. Figure 11 shows that clearly. It also shows its influ-
ence on the signal frequency captured by the oscilloscope. Consid-
ering that we were focusing on building a guitar effect unit, such a
problem may not be a big deal since an in-tune guitar has frequen-
cies ranging from 80Hz up to 1200Hz and we were using high
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Figure 10: 1kHz test sinusoid wave: channel 1 and 2 registers the
input and output signals, respectively (this setting will be used in
all following figures)

clock rate to excite our DAC module. However, to confidently
cope with any input signal, we used low-pass filters (Section 2.3 to
finish the DA conversion, as shown in Figure 12. Note that these
kind of filter impose a delay (in case of a 5kHz sinusoidal signal,
it is about 52µs).

Figure 11: 5kHz test sinusoid wave

Figure 13 shows a guitar signal captured after directly con-
necting the guitar cable jack in an oscilloscope: its peak-to-peak
amplitude does not exceed 200mV. Although it varies according
to instrument technology, brand, and age, for example, the volt-
age amplitude never reaches 1V. Such voltage values demands a
pre-amplifier for using sound systems as usually digital effect units
requires. Our proposed amplifier at the input of the system allows
some adjustments before applying analog filters and digital effects
coded into the micro-controller.

To demonstrate the distortion effect, a sinusoid signal were ap-
plied: Figure 14 shows the resulting effect whose distortion_limit
was set to 3000 which is equivalent to 0.92V after the analog-to-
digital conversions.

For delay, loop, and tremolo effects, we played a few tones in
an electric guitar connected to our device, which is altered by such
effects. In all cases, the oscilloscope was set to capture 5sec of
input (channel 1) and output (channel 2) signals after triggered.

Figure 12: 5kHz test sinusoid wave after the output LP filter

Figure 13: Example of guitar signal

Figure 15 shows the delay effect: channel 2 shows the delayed
version of the input signal (delay of 1sec). In case of loop effect,
one second of an input signal was previously recorded by the de-
vice (not shown here). After that, Figure 16 shows that an input
signal captured by the device was ignored, and the recorded signal
was repetitively reproduced by the device as its output signal.

Finally, the tremolo effect altered the input signal (channel 1)
by modulating it with a sinusoidal signal. Channel 2 of Figure 17
shows the expected result. Due to the nature of the input signal,
this modulation is more evident at the middle of the oscilloscope
screen in this example.

4. CONCLUSIONS AND FUTURE IMPROVEMENTS

Here we present a digital audio effect for guitars that was imple-
mented with a micro-controller and external digital converters -
ADC and DAC - to operate at 48kHz. Additional circuitry for am-
plifiers and low pass filters were designed to cope with Nyquist
limits, and a few digital effects were implemented to demonstrate
the use of the unit. The use of timer interruptions to filter the in-
put signal, sample-by-sample, before sending it to DAC minimized
the jitter level. All the system requires a voltage source of +5V
(0.47W), which can be powered through the USB connector of the
micro-controller kit.
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Figure 14: Distortion result from a 1kHz sinusoid wave

Figure 15: Result (Channel 2) of applying the delay effect (1sec)
over a signal produced by a electric guitar (Channel 1)

Although the delays imposed by the analog LP filters, this aca-
demic prototype of a digital effect unit worked fine. Other effects
can be readily implemented in order to have near real-time digital
effects. Our next steps are:

• Add digital dithering to improve sound quality, specially for
live guitar sounds;

• Reduce the jitter caused by lengthy complex digital filters
by using two different timer interrupts (respectively for ADC
and DAC procedures) and respective data buffers that oper-
ates in parallel;

• Create an internet (tcp/ip) server inside the micro-controller
that transfers all sampled data to a remote client applica-
tions, allowing to create a virtual mixer with multiple chan-
nels (limited by the computer client capacity);

• Create an internet (tcp/ip) server inside the micro-controller
that receives additional digital effects algorithms (and its
configurations) from remote client applications, which al-
lows the digital effect unit be remotely programmed.
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Figure 16: Result (Channel 2) produced by a previous recorded
sound from an electric guitar. The guitar keeps playing (Channel
1) but the loop, once recorded, wont change its output values

Figure 17: Result (Channel 2) of applying the tremolo effect over
a signal produced by a electric guitar (Channel 1)
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ABSTRACT

This paper proposes signal processing methods to extend a station-
ary part of an audio signal endlessly. A frequent occasion is that
there is not enough audio material to build a synthesizer, but an
example sound must be extended or modified for more variabil-
ity. Filtering of a white noise signal with a filter designed based on
high-order linear prediction or concatenation of the example signal
can produce convincing arbitrarily long sounds, such as ambient
noise or musical tones, and can be interpreted as a spectral freeze
technique without looping. It is shown that the random input sig-
nal will pump energy to the narrow resonances of the filter so that
lively and realistic variations in the sound are generated. For real-
time implementation, this paper proposes to replace white noise
with velvet noise, as this reduces the number of operations by 90%
or more, with respect to standard convolution, without affecting
the sound quality, or by FFT convolution, which can be simplified
to the randomization of spectral phase and only taking the inverse
FFT. Examples of producing endless airplane cabin noise and pi-
ano tones based on a short example recording are studied. The
proposed methods lead to a new way to generate audio material
for music, films, and gaming.

1. INTRODUCTION

Example-based synthesis refers to the generation of sounds similar
to a certain sound but not identical. In audio, example-based syn-
thesis solves a common problem, which we refer to as the small
data problem. It is the opposite of the big data problem in which
the amount of data is overwhelming and the challenge is how to
find some sense of it. In the small data problem in audio process-
ing, there may be only a few or even a single clean audio recording
representing desirable sounds. It is usually unacceptable to only
use that single sample in an application. For example, in various
simulators, such as flight simulators [1] and working machine sim-
ulators [2], there is a need to produce a variety of sounds based on
example recordings.

Previous related works have studied the synthesis of sound
textures to expand the duration of example sounds. For some
classes of sound, the concatenation and crossfading of samples can
be quite successful. Fröjd and Horner have investigated such meth-
ods, which are related to granular synthesis [3]. They show that
the method is particularly successful for the synthesis of seashore,
car racing, and traffic sounds. Schwarz et al. compared several
related approaches and showed that they perform slightly better
than randomly chopping the input audio file into short segments
[4]. Siddiq used a combination of granular synthesis and colored

� The work of Fabián Esqueda has been supported by the Aalto ELEC
Doctoral School.

noise synthesis to produce for example the sound of running water
based on modeling [5]. Both the grains and the spectrum of the
background noise were extracted from a recording. Charles has
also proposed a spectral freeze method, which uses a combination
of spectral bins from neighboring frames to reduce the repetitive
“frame effect” in the phase vocoder [6].

In this work, we use very high-order linear prediction (LP) to
extract spectral information from single audio samples. The use of
linear prediction has been common in audio processing for many
years [7,8], but usually low or moderate prediction orders are used,
such as about 10 for voice and between 10–100 for musical sounds.
The use of a very high filter order is often considered overmodel-
ing, which means that the predictive filter no longer approximates
the spectral envelope, but it also models spectral details, such as
single harmonics.

The idea and theory of utilizing higher-order LP is presented
in Jackson et al. [9] and in Kay [10], where they studied the ap-
plication of estimating the spectrum of sinusoidal signals in white
noise. More recently, van Waterschoot and Moonen [11], and Gia-
cobello et al. [12] have applied high-order linear predictors (order
of 1024) to model the spectrum of synthetic audio signals consist-
ing of a combination of harmonic sinusoids and white noise.

In this study we propose to use even higher orders than 1024 to
obtain sufficiently accurate information, because we want to model
multiple single resonances appearing in the example sounds. Ob-
taining high-order linear prediction filter estimates is easy in prac-
tice using Matlab, for instance. Matlab’s lpc function uses the
Levinson-Durbin recursion [13] to efficiently solve for the LP co-
efficients, and remarkably high prediction orders, such as 10,000
or more, are feasible. Previously, high-order linear prediction has
been used for synthesis of percussive sounds [14] and for mod-
eling of soundboard and soundbox responses of stringed musical
instruments [15, 16].

The computational cost of very high-order filtering used for
synthesis is not of concern in offline generation of samples to
be played back in a real-time application. However, in real-time
sound generation, computational costs should be minimized. We
show two ways to do so: one method replaces the white noise
with velvet noise, and this leads to a simplified implementation of
convolution. Another method uses the inverse FFT (fast Fourier
transform) algorithm and produces a long buffer of output signal
with one transformation. Neither of the methods use a high-order
IIR filter, but they need its impulse response or a segment of the
sound to be extended as the input signal.

This paper is organized as follows. Section 2 discusses the ba-
sic idea of analyzing a short sound example and producing a longer
similar sound with life-like quality using filtered white noise. Sec-
tion 3 discusses the use of velvet noise and Section 4 proposes
an FFT-based method as two alternatives for the real-time imple-

DAFX-1

DAFx-32
DAFx-32



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

1 2 3 4 5
Time (s)

-1

-0.5

0

0.5

1

(a) Original waveform

1 2 3 4 5
Time (s)

-1

-0.5

0

0.5

1

(b) Synthetic waveform

Figure 1: (a) Original airplane noise waveform and (b) a synthe-
sized signal obtained with the LP method (P = 10,000) from the
1-second segment indicated with blue markers in (a).

mentation of the endless sound generator. Section 5 concludes this
paper and gives ideas for further research on this topic.

2. EXTENDING STATIONARY SOUNDS

Various sounds, such as bus, road, traffic, and airplane cabin noises
can be quite stationary, especially in situations where a bus is driv-
ing at a constant speed or a plane is cruising at a high altitude.
Long sound samples like this are useful as background sounds in
movies and games. There is also a need for sounds of this type
when conducting listening tests evaluating audio samples in the
presence of noise, such for evaluating headphone reproduction in
heavy noise [17] or audio-on-audio interference in the presence of
road noise [18].

In listening tests, controlled and stationary noises are often
wanted, so that the noise signals themselves do not introduce any
unwanted or unexpected results to the listening test. For example,
if a short sample is looped, it may cause audible clicks each time
the sample ends and restarts, or can lead to a distracting frozen-
noise effect. Both irregularities can ruin a listening test. Another
problem is that a recorded sample may not have a sufficiently long
clean part in order to avoid looping problems. Noise recordings
often include additional non-stationary audio events, such as brak-
ing/accelerating, turbulence, or noises caused by people moving,
talking or coughing, which limit the length of the useful part of the
sample.

These problems can be avoided by using the proposed high-
order LP method. The idea is to use a short, clean stationary part
of a sample (e.g. 0.5 to 1 s) to calculate an LP filter that mod-
els the frequency characteristics of the given sample. Figure 1(a)
shows the waveform of a 5-second clip of airplane noise. The ver-
tical blue lines indicate the selected clean 1-second stationary part
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(a) LP order: 100

(b) LP order: 1k

(c) LP order: 10k

Figure 2: Impulse responses of different order LP filters: (a) 100,
(b) 1000, and (c) 10,000.

which was used in the calculation of the LP filter.
An arbitrarily long signal can be synthesized by filtering white

noise with the obtained LP filter. The resulting synthetic signal
does not suffer from looping problems or include any unwanted
non-stationary sound events which would degrade the quality of
the signal. Figure 1(b) shows the resulting synthetic airplane noise,
created by filtering 5 seconds of white noise with the LP synthesis
filter calculated from the 1-second sample shown in Fig. 1(a) using
prediction order of 10,000.

In this section, we study the synthesis of ambient noises and
musical sounds using this approach. Additionally, we discuss how
to change the pitch of the endless sounds.

2.1. Synthesis of Endless Stationary Audio Signals

All LP calculations in this work were done with Matlab using the
built-in lpc function, which calculates the linear prediction filter
coefficients by minimizing the prediction error in the least squares
sense using the Levinson-Durbin recursion [13]. The determined
FIR filter coefficients were then used as feedback coefficients to
create an all-pole IIR filter, which models the spectrum of the orig-
inal sample.

Figure 2 shows the calculated impulse responses of different
order LP filters, where (a) is of the order of 100, (b) 1000, and (c)
10,000. As expected, the length of the impulse response increases
with the LP filter order. The most interesting observation in Fig. 2
is the spiky structure of the impulse response in Fig. 2(c), where
the order of the LP filter is 10,000.

Figure 3(a) shows the magnitude responses of the 1-second
airplane noise sample (gray lines) from Fig. 1(a) and the magni-
tude response of different order (P ) LP filters (black curves), i.e.,
from left to right the orders of 100, 1000, and 10,000 correspond to
the impulse responses shown in Fig. 2. As can be seen in Fig. 3(a),
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(a) Original spectra and LP filter responses

(b) Filtered white noise

(c) Filtered velvet noise

Figure 3: Magnitude spectra of the original and synthesized airplane cabin noise. Subfigure (a) shows the magnitude spectra of an airplane
cabin noise (gray lines) and magnitude responses of LP filters of different order P = 100, 1000, and 10, 000 (black lines). Subfigures (b)
and (c) show spectra of synthetic airplane noises created with white noise and velvet noise, respectively, using different LP filter orders.

in order to model the low-frequency peaks of the original signal,
the order P must be quite high; P = 1000 is not large enough to
model the peak around 40 Hz, whereas P = 10, 000 is.

Notice that in this case the order of the LP filter is very high
and the filter is time-invariant, unlike in speech codecs in which
the LP coefficients are updated every 20 ms or so. Thus, the whole
synthesis of the sound can be conducted offline, using one large
all-pole filter.

The ability of the high-order LP to capture the spectral details
at low frequencies can be seen to help in the synthesis, as is shown
in Fig. 3(b). In this figure, the magnitude spectra of the extended
signals obtained by filtering a long white noise sequence with all-
pole filters of different order are compared. It can be observed
in Fig. 3(b) that using a low-order model (P = 100), spectral
details do not appear at low and mid frequencies. However, when
P = 10, 000, the spectrum of the extended signal contains spikes
even at low frequencies.

Surprisingly, although the LP filter is time-invariant, the re-
sulting sounds are very realistic and contain lively variations. The
explanation is that the white noise excites the sharp resonances of
the LP filter randomly in time, making their energy fluctuate. This
is illustrated in Figs. 4(a) and 4(b), which show the spectrograms
of the original and synthesized airplane noise signals, respectively.
As shown in the rightmost spectrogram, the signal amplitude at
the resonances, excited by the white noise, is not constant and

changes several dB over time. This can also be seen in Fig. 1(b),
which shows the waveform of the synthesized airplane noise that
is clearly fluctuating in time. In practice, the amplitude fluctua-
tions are generally larger in the synthetic signals than in the orig-
inal ones. This is not perceptually annoying, however, but rather
appears to contribute to the naturalness of the extended sounds.

Furthermore, the spiky structure seen in the impulse response
of the high-order LP filter, in Figure 2(c), creates natural sounding
reverberance to the synthesized sound. Note that this feature is not
found when the LP order is decreased to 1000, see Fig. 2(b), which
otherwise sounds realistic. This implies that a fairly high LP order
is required for best results.

The similarity between the magnitude response of the all-pole
filter and the magnitude spectrum of the original signal suggest that
it may be possible to use the original signal itself in the extension
process. This idea was tested and was found to work very well:
it is possible to use a short segment of the original signal, such as
0.5 s from a fairly stationary part, and use it as a filter for a white
noise input. The resulting extended sound is very similar to the
one obtained with high-order LP technique.

The extension technique can also be used to create tonal mu-
sical sounds using white noise as input. This has been tested with
several musical signals. Figure 5 compares the spectrum of a short
piano tone to that of a synthetic, extended version of the same sig-
nal. The LP filter order has been selected as 10,000 to capture the
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Figure 4: Spectrograms of (a) an original, and (b) LP modeled airplane noise (P = 10, 000), from 30 Hz to 200 Hz for a 1-second sample,
illustrating the fluctuation in low-frequency resonances.
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Figure 5: Magnitude spectrum of a short piano tone (blue), and
magnitude response of the LP filter (red) constructed based on
that. The order P of the LP filter is 10,000.

lowest harmonic peaks. It can be observed that the magnitude re-
sponse of the filter is very similar to the spectrum of the piano tone.
Listening confirms that the spectral details are preserved, and that
the synthetic tone sounds similar to the original one, except that it
is longer and that there are more amplitude fluctuations.

Instead of the standard LP method, it is possible to apply
Prony’s method or warped LP [19], for example, and hope to
obtain good results with a lower model order. However, as the
modeling and synthesis can be conducted offline, these options
are not considered here. Instead, we will present other ideas for
real-time processing in Sections 3 and 4.

The extension examples above are based on a mono signal.
Pseudo-stereo signals are easily generated by repeating the exten-
sion with another white noise sequence, which is played at the
other channel. This idea can be extended to more channels.

2.2. Pitch-Shifting Endless Sounds

It was found that the pitch of the extended signals can be changed
easily using resampling. This is equivalent to playing the filter’s
impulse response at a different rate, when the output sample rate
remains unchanged. A sampling-rate conversion technique can be

used for this purpose.
For increasing the pitch, the sample rate of the impulse re-

sponse must be lowered. Then, when the processed impulse re-
sponse is convolved with white noise at the original sample rate,
the pitch is increased. Similarly, the pitch of the extended sound
can be lowered by increasing its sample rate and playing it back at
the original rate.

This method does not require time-stretching, as the signal du-
ration does not depend on the impulse response length. Notice that
the impulse response will get shorter during downsampling and
longer during upsampling, however. To better retain the original
timbre, formant-preservation techniques can be used, but this topic
is not discussed further in this paper.

3. REAL-TIME SYNTHESIS WITH VELVET NOISE

A direct time-domain implementation of the filtering of white
noise with a very high-order all-pole filter is computationally
intensive and can lead to numerical problems. It is safer for
numerical reasons to evaluate the impulse response of the LP filter
and convolve white noise with it. However, the computational
complexity becomes even higher in this case, since there are
generally more samples in the impulse response than there are
LP prediction coefficients. The impulse response is often almost
as long as the original signal segment to be processed. It is also
possible to use the signal segment itself as the filter. To alleviate
the computational burden for real-time synthesis, we suggest to
use sparse white noise called velvet noise for synthesis.

Velvet noise refers to a sparse pseudo-random sequence con-
sisting of sample values +1, �1, and 0 only. Usually more than
90% of the sample values are zero, however. Velvet noise has been
originally proposed for artificial reverberation [20–23], where the
input signal is convolved with a velvet-noise sequence. This is
very efficient, because there are no multiplications, and the num-
ber of additions is greatly reduced in comparison to convolution
with regular (non-sparse) white noise. Recent work also proposed
the use of a short velvet-noise sequence for decorrelating audio
signals [24, 25].
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The convolution of an arbitrary input signal with a velvet-noise
sequence can be implemented with a multitap delay line, as show
in Fig. 6(a) [23]. The location and sign of each non-zero sample in
the velvet noise determines one output tap in the multi-tap delay
line. The sums of the signal samples at the locations of the positive
and negative impulses in the velvet noise can be computed sepa-
rately. Finally, the two sums are subtracted to obtain the output
sample.

In the endless sound application considered in this paper, the
role of the velvet noise is different than in the reverb or decorre-
lation application. Now, the velvet noise becomes the input sig-
nal, which is convolved with the short signal segment. The sig-
nal segment x(n) can be stored in a buffer (table), and the taps
of a multitap delay line, where the tap locations are determined
by the velvet-noise sequence, move along it. This is illustrated
in Fig. 6(b), which shows a time-varying multi-tap delay line in
which the taps (read pointers) march one sample to the right at
every sampling step. In this case, velvet noise can be generated in
real time: every time a new velvet-noise frame begins, two random
numbers are needed to determine the location and sign of the new
tap. The oldest tap that reaches the end of the delay line is deci-
mated. The computational efficiency of the proposed filtering of
the velvet noise sequence is very high, as it is comparable to that
of the standard velvet-noise convolution.

A velvet-noise signal with a density of 4410 samples per sec-
ond (i.e., one non-zero impulse in a range of 10 samples) was used
for testing this method. This corresponds to a 90% reduction in
operations. Since velvet-noise convolution does not require multi-
plications but only additions, a total reduction of 95% is obtained
w.r.t. standard convolution with white noise. In practice, the re-
quired velvet-noise density depends on the signal type. It is known
that a lower density can sound smooth when the velvet noise is
lowpass-filtered [20], which in this case corresponds to an input
signal of lowpass type.

Figure 3(c) shows the magnitude spectra of extended signals
obtained by filtering velvet noise, as described above. Compari-
son with Fig. 3(b) reveals that the results are very similar to those
obtained by filtering regular white noise, which requires about
20 times more operations. The endless sound synthesis based
on velvet-noise filtering can be executed very efficiently in real
time, and additional processing, such as gain control or filtering,
can be adjusted continuously. Below we propose another efficient
method, which is based on FFT techniques.

4. ENDLESS SOUND SYNTHESIS USING INVERSE FFT

We propose yet another interesting technique for creating virtually
endless sounds, which utilizes the concept of fast convolution [22,
26–28]. It is well known that frequency-domain convolution using
the FFT becomes more efficient than the time-domain convolution
when the convolved sequences are long. When two sequences of
length N are convolved, the direct time-domain convolution takes
approximately N2 multiplications and additions whereas the FFT
takes the order of N log(N) operations only [22, 29]. The dif-
ference in computational cost between these two implementations
becomes significant even at fair FFT lengths, such as a few thou-
sand samples.

The main point in the fast convolution is to utilize the con-
volution theorem [28, Ch. 11], which states that the time-domain
convolution of two signals is equivalent to the point-wise multipli-

(a)

(b)

Figure 6: (a) Convolution of an arbitrary signal x(n) with a
velvet-noise sequence s(n) corresponds to a multi-tap delay line
from which the output is obtained as the difference of two subsums.
(b) Convolution of a short signal segment x(n) with a velvet-noise
signal can be implemented as a multi-tap delay line with moving
output taps.

cation of their spectra:

v(n) � x(w) � V (f)X(f), (1)

where, in this application, v(n) is a white noise signal and x(n) is
the signal segment (or the impulse response of the LP filter), and
X(f) and V (f) are their Fourier transforms, respectively. Figure
7(a) shows a block diagram of the basic fast convolution method.
Notice that the output is obtained by using the inverse FFT (IFFT).

The frequency-domain signals X and V can be written as

X = Rxej�x , (2)
V = Rvej�v , (3)

where R and � are the magnitude and phase vectors of the two
signals, respectively. Further, the multiplication of the frequency-
domain signals can be written as

Y = V X = Rvej�v Rxej�x = RvRxej(�v+�x). (4)

By taking the IFFT of Y , one frame (N samples) of the convolved
time-domain signal y(n) is synthesized. As our aim is essentially
to create a synthesized sound similar to the original but longer, we
can apply zero padding to the short original sample, before taking
the FFT, and use a white noise sequence of the same length.

Additionally, as it is known that the white noise has ideally
a constant power spectrum and a random phase, the white noise
can be produced directly in the frequency domain (instead of first
creating it in the time domain and then transforming it to the fre-
quency domain with the FFT). It is helpful to assume that the mag-
nitude response of the short white noise sequence is flat, although
this is not exactly true for short random signals. Siddiq used a
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Figure 7: (a) Regular fast convolution and (b) the proposed IFFT-
based synthesis, where x is the signal segment to be extended, v is
a white noise sequence, Rx is the magnitude of spectrum X , and
�r is a randomized phase with values between �� and �.

similar approach to generate colored noise in granular texture syn-
thesis [5].

Now, when we look at the last product in Equation (4), we can
set the magnitude spectrum of the white noise to unity, so that the
magnitude response Rx is left unchanged. Furthermore, as adding
a random component to the original phase randomizes it, we may
as well delete the original phase and replace it with a random one,
resulting in

Rxej(�r+�x) � Rxej�r , (5)

where �r is the randomized phase. Thus, the whole process of
frequency-domain convolution is reduced to taking the FFT of the
original signal segment (or impulse response), replacing its phase
with random numbers while keeping the original magnitude, and
taking the IFFT, as shown in Figure 7(b).

Stricktly speaking, in Figure 7(b) the polar coordinate inputs
Rx and �r are transformed to Cartesian coordinates to construct Ŷ ,
an approximation of Y . By taking the IFFT, one frame of the time-
domain waveform ŷ(n) is obtained. Both signals Rx and �r can
be constructed offline, Rx is the magnitude of the original sample,
and �r is constructed as

�r = [0, r, 0, �r̃], (6)

where the two zeros in the phase vector are located at the DC and
the Nyquist frequency, r contains uniformly distributed random
values between �� and �, and r̃ is r with reversed elements. No-
tice that the sign of phase values r̃ must be opposite to those or
r, because they represent the negative frequencies. The length of
both r and r̃ is (N/2) � 1, where N is the FFT length. Parameter
N is chosen to be the same as the length of the zero-padded signal.

Note that with the technique described above and in Fig-
ure 7(b), Rx can be calculated directly as the FFT magnitude of
the original signal, without the need of LP estimation. In fact, a
high-order LP filter very closely imitates the magnitude spectrum
of the signal segment. Figure 8(b) gives an example in which the
same 1-second segment as in Fig. 1(a) has been employed. As can
be seen, the produced signal fluctuates in a similar way as the one
generated using filtering white noise with the all-pole filter.
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Figure 8: (a) Original airplane noise segment (cf. Fig. 1(a)), which
has been expanded with zero padding to a desired length. (b) Syn-
thesized waveform obtained with the IFFT technique of Fig. 7(b).

4.1. Concatenation Employing Circular Time

It is a remarkable fact that windowing or the overlap-add method
are not necessary with the proposed IFFT synthesis technique.
With this approach, copies of a long segment of the produced
random-phase signal can simply be concatenated without introduc-
ing discontinuities at the junction points. This is a consequence of
the fast convolution operation, where the time-domain represen-
tation is circular, and is therefore also called circular convolution
[13, 27].

When the extended segment is long enough, such as 4 seconds
or longer, it will be difficult to notice that it repeats 1. The best
option for endless sound synthesis thus appears to be to synthesize
one long extended signal segment using the IFFT and then repeat
it. However, if more than one extended segment is synthesized
from the same input signal and they are concatenated, hoping to
produce extra variation, they will usually produce clicks at the con-
nection points. In this case a crossfade method would be needed
to suppress the clicks. Naturally, this idea is not recommended, as
it is much easier to produce only a single segment using IFFT and
repeat it.

The next example illustrates the fact that the repetition of a
single segment works fine. We use a 4000-sample segment of a
piano tone as the input signal and apply the method of Fig. 7(b).
The IFFT length N is 4096. Figure 9(a) shows two concatenated
copies of this extended signal, leading to a signal of length 8192.
Figure 9(b) zooms to the joint of the two copies, showing that there
is no discontinuity, but that the end of the segment fits perfectly to
its beginning.

1However, it has been shown in laboratory experiments that people can
notice much longer repetitions in sound [30].
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Figure 9: Two concatenated copies of the same signal obtained
with the proposed IFFT method, first copy plotted with blue line
and the second with green line. Subfigure (a) shows the signals
in their full length, and (b) zooms to the point where the signals
are joined, illustrating the perfect fit of the junction point. The
dashed vertical line indicates the beginning of the second copy of
the signal.

4.2. Comparison of Methods

So far there are three principally different methods for creating
endless sounds: filtering of white noise with the LP-based all-pole
filter, filtering a signal segment with velvet noise, and IFFT syn-
thesis based on a signal segment. The filtering of regular white
noise is the basic method, which also leads to the largest compu-
tational load, whereas the IFFT method is the most efficient one.
Also the method based on filtering velvet noise is computation-
ally efficient, and as it produces the output signal one sample at a
time, it allows amplitude modulation or other modifications to be
executed during synthesis. The filtering methods are suitable for
low-latency application whereas the IFFT method is only suitable
for synthesizing the signal in advance.

As a test case, we measured the time it takes to produce 1
minute of sound from a short signal segment using Matlab. For
the first method, an LP filter of order 1000 was used, which pro-
duced an impulse response that could be truncated to the length
10,000 samples. The convolution of this filter impulse response
with 2,646,000 samples (60 � 44,100) of white noise took in av-
erage about 3.4 s. This is much less than 1 minute, so it should be
easy to run the synthesis in real time.

For comparison, the IFFT of the length 2,646,000 produced
the 1-minute segment of the extended signal at one go, and it took
in average 0.14 s to compute2. Remarkably, practically the same
result was obtained by producing 4.0 s of the extended signal with

2Matlab’s FFT algorithm is fastest when the length is a power of 2, but
2,646,000 is not.

the IFFT in just about 0.0005 s, and by repeating it 15 times (at no
extra cost!). As listeners do not generally notice the repetition over
several seconds and as there are no clicks at the connection points,
this produces equally good results as the longer IFFT synthesis.

5. CONCLUSION AND FUTURE WORK

This paper has discussed the use of linear prediction and the in-
verse FFT for solving the small data problem in sampling synthe-
sis. Useful methods were proposed to extend the duration of short
example sounds to an arbitrary length. The first method employs
high-order linear prediction to a selected short segment in the orig-
inal recording. Surprisingly, the impulse response of the filter can
be replaced with a short segment of the original sound signal.

A synthetic sound of arbitrary length may then be produced by
filtering white noise with a segment of the original sound. Lively
variations appear in the produced sound, as the random signal
pumps energy to the narrow resonances contained in the signal’s
spectrum. These variations are shown to be generally larger in
terms of amplitude variance than in the original sound, but they
help to make the extended sound appear natural and non-frozen.
Sound synthesis can take place offline so that during presentation
the generated signal is played back from computer memory, like in
sampling synthesis. In this case, the computational cost of running
a large all-pole filter or long convolution is of no concern.

Alternatively, we proposed to reduce the computational cost
for real-time synthesis by replacing the white noise signal with
velvet noise or by generating the noisy extended signal using the
inverse FFT from the original magnitude and a random phase spec-
trum. The IFFT-based method produces a long segment of the out-
put signal at one time. Another unexpected result is that the seg-
ment produced by the IFFT method can be repeated by concatenat-
ing copies of itself without the need of windowing or crossfading.
This property comes from the fact that the fast convolution, which
is the basis of the proposed IFFT synthesis method, implements a
circular convolution in the time domain.

Future work may consider the analysis of perceived differ-
ences in extended samples in comparison to the original recording.
It would be desirable to find a method to control the fluctuations
of resonances in the synthetic signal, although they are not annoy-
ing generally. It would also be of interest to consider formant-
preserving pitch-shifting techniques, which could be used to build
a sampling synthesizer based on the ideas proposed in this paper.

Audio examples related to this paper are available online at
http://research.spa.aalto.fi/publications/papers/dafx18-endless/.
The examples include synthetic signals obtained with different
LP orders and IFFT lengths, and various sound types, such as the
airplane cabin noise, the piano tone, a distorted guitar, and an
excerpt taken from a recording by the Beatles.
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ABSTRACT

A method for musical audio synthesis using autoencoding neural
networks is proposed. The autoencoder is trained to compress and
reconstruct magnitude short-time Fourier transform frames. The
autoencoder produces a spectrogram by activating its smallest hid-
den layer, and a phase response is calculated using real-time phase
gradient heap integration. Taking an inverse short-time Fourier
transform produces the audio signal. Our algorithm is light-weight
when compared to current state-of-the-art audio-producing ma-
chine learning algorithms. We outline our design process, produce
metrics, and detail an open-source Python implementation of our
model.

1. INTRODUCTION

There are many different methods of digital sound synthesis. Three
traditional methods are additive, subtractive, and frequency mod-
ulation (FM) synthesis. In additive synthesis, waveforms such as
sine, triangle, and sawtooth waves are generated and added to one
another to create a sound. The parameters of each waveform in
the sum are controlled by the musician. In subtractive synthesis,
a waveform such as a square wave is filtered to subtract and al-
ter harmonics. In this case, the parameters of the filter and input
waveform are controlled by the musician. Lastly, in FM synthesis
the timbre of a waveform is generated by one waveform modulat-
ing the frequency of another. In this method, musicians control
the parameters of both waveforms, and the manner in which one
modulates the other.

Recently, machine learning techniques have been applied to
musical audio sythesis. One version of Google’s Wavenet archi-
tecture uses convolutional neural networks (CNNs) trained on pi-
ano performance recordings to prooduce raw audio one sample at
a time [1]. The outputs of this neural network have been described
as sounding like a professional piano player striking random notes.
Another topology, presented by Dadabots, uses recurrent neural
networks (RNNs) trained to reproduce a given piece of music [2].
These RNNs can be given a random initialization and then left to
produce music in batches of raw audio samples. Another Google
project, Magenta [3], uses neural network autoencoders (autoen-
coders) to interpolate audio between different instrument’s tim-
bres. While all notable in scope and ability, these models require
immense computing power to train and thus strip musicians of full
control over the tools.

In this paper, we present a new method for sound synthesis
that incorporates deep autoencoders while remaining light-weight.
This method is based off techniques for constructing audio-handling
autoencoders outlined in [4]. We first train an autoencoder to en-
code and decode magnitude short-time Fourier transform (STFT)
frames generated by audio recorded from a subtractive synthesizer.

This training corpus consists of five-octave C Major scales on var-
ious synthesizer patches. Once training is complete, we bypass
the encoder and directly activate the smallest hidden layer of the
autoencoder. This activation produces a magnitude STFT frame
at the output. Once several frames are produced, phase gradient
integration is used to construct a phase response for the magnitude
STFT. Finally, an inverse STFT is performed to synthesize audio.
This model is easy to train when compared to other state-of-the-art
methods, allowing for musicians to have full control over the tool.

This paper presents improvements over the methods outlined
in [4]. First, this paper incorporates a phase construction method
not utilized in [4], which allows for music synthesis through ac-
tivating the autoencoder’s latent space. The method presented in
[4] requires an input time signal’s phase response to construct a
time signal at the output. Second, this work explores asymmet-
rical autoencoder design via input augmentation, which [4] did
not. Third, this work compares the performance of several cost
functions in training the autoencoder, whereas [4] only used mean
squared error (MSE).

We have coded an open-source implementation of our method
in Python, available at github.com/JTColonel/canne_synth.

2. AUTOENCODING NEURAL NETWORKS

2.1. Mathematical Formulation

An autoencoder is typically used for unsupervised learning of an
encoding scheme for a given input domain, and is comprised of an
encoder and a decoder [5]. For our purposes, the encoder is forced
to shrink the dimension of an input into a latent space using a dis-
crete number of values, or “neurons.” The decoder then expands
the dimension of the latent space to that of the input, in a manner
that reconstructs the original input.

We will first restrict our discussion to a single layer model
where the encoder maps an input vector x � Rd to the hidden
layer y � Re, where d > e. Then, the decoder maps y to x̂ � Rd.
In this formulation, the encoder maps x � y via

y = f(Wx + b) (1)

where W � R(e�d), b � Re, and f(· ) is an activation function
that imposes a non-linearity in the neural network. The decoder
has a similar formulation:

x̂ = f(Wouty + bout) (2)

with Wout � R(d�e), bout � Rd.
A multi-layer autoencoder acts in much the same way as a

single-layer autoencoder. The encoder contains n > 1 layers and
the decoder contains m > 1 layers. Using equation 1 for each
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mapping, the encoder maps x � x1 � . . . � xn. Treating xn as
y in equation 2, the decoder maps xn � xn+1 � . . . � xn+m =
x̂.

The autoencoder trains the weights of the W ’s and b’s to min-
imize some cost function. This cost function should minimize the
distance between input and output values.The choice of activation
functions f(· ) and cost functions relies on the domain of a given
task.

2.2. Learning Task Description

In our work we train a multi-layer autoencoder to learn represen-
tations of musical audio. Our aim is to train an autoencoder to
contain high level, descriptive audio features in a low dimensional
latent space that can be reasonably handled by a musician. As
in the formulation above, we impose dimension reduction at each
layer of the encoder until we reach the desired dimensionality.

The autoencoding neural network used here takes 2049 points
from a 4096-point magnitude STFT sn(m) as its target, where n
denotes the frame index of the STFT and m denotes the frequency
index. Each frame is normalized to [0, 1].

The cost function used in this work is spectral convergence
(SC) [6]:

C(�n) =

��M�1
m=0 (sn(m) � ŝn(m))2

�M�1
m=0 (sn(m))2

(3)

where �n is the autoencoder’s trainable weight variables,sn(m) is
the original magnitude STFT frame, ŝn(m) is the reconstructed
magnitude STFT frame, and M is the total number of frequency
bins in the STFT.

We fully discuss our decision to use SC in section 3.

2.3. Corpus

All topologies presented in this paper are trained using approxi-
mately 79,000 magnitude STFT frames, with an additional 6000
frames held out for testing and another 6000 for validation. This
makes the corpus 91,000 frames in total. The audio used to gener-
ate these frames is composed of five octave C Major scales recorded
from a MicroKORG synthesizer/vocoder across 80 patches. 70
patches make up the training set, 5 patches make up the testing set,
and 5 patches make up the validation set. These patches ensured
that different timbres were present in the corpus. To ensure the
integrity of the testing and validation sets, the dataset was split on
the “clip” level. This means that the frames in each of the three sets
were generated from distinct passages in the recording, which pre-
vents duplicate or nearly duplicate frames from appearing across
the three sets.

By restricting the corpus to single notes played on a MicroKORG,
the autoencoder needs only to learn higher level features of har-
monic synthesizer content. These tones often have time variant
timbres and effects, such as echo and overdrive. Thus the au-
toencoder is also tasked with learning high level representations
of these effects. We have made our corpus available as both .wav
files and as a .npy record. Furthermore, we provide a script that
creates new corpora, formatted for training our autoencoder, given
a .wav file.

3. NEURAL NETWORK CONSTRUCTION

3.1. Topology

A fully-connected, feed-forward neural network acts as our au-
toencoder. Refer to Figure 1 for an explicit diagram of the net-
work architecture. Our decisions regarding activation functions,
input augmentation, and additive biases are discussed below.

3.2. ReLU Activation Function

In order for training to converge, the rectified linear unit (ReLU)
was chosen as the activation function for each layer of the autoen-
coder [7]. The ReLU is formulated as

f(x) =

�
0 , x < 0
x , x � 0

(4)

This activation function has the benefit of having a gradient of
either zero or one, thus avoiding the vanishing gradient problem
[8].

Following [4], we found that using additive bias terms b in
Equation 1 created a noise floor within the autoencoder, thus we
chose to leave them out in the interest of musical applications.

3.3. Spectral Convergence Cost Function with L2 Penalty

As mentioned above SC (Eqn. 3) was chosen as the cost function
for this autoencoder instead of mean squared error (MSE)

C(�n) =
1
M

M�1�

m=0

(sn(m) � ŝn(m))2 (5)

or mean absolute error (MAE)

C(�n) =
1
M

M�1�

m=0

|sn(m) � ŝn(m)| (6)

The advantages of using SC as a cost function are twofold. First,
its numerator penalizes the autoencoder in much the same way
mean squared error (MSE) does. That is to say, reconstructed
frames dissimilar from their input are penalized on a sample-by-
sample basis, and the squared sum of these deviations dictates
magnitude of the cost.

The second advantage, and the primary reason SC was cho-
sen over MSE, is that its denominator penalizes the autoencoder in
proportion to the total spectral power of the input signal. Because
the training corpus used here is comprised of “simple” harmonic
content (i.e. not chords, vocals, percussion, etc.), much of a given
input’s frequency bins will have zero or close to zero amplitude.
SC’s normalizing factor gives the autoencoder less leeway in re-
constructing harmonically simple inputs than MSE or MAE. Refer
to Figure 2 for diagrams demonstrating the reconstructive capabil-
ities each cost function produces.

As mentioned in [4], we found that the autoencoder would
not always converge when using SC by itself as the cost function.
Thus, we added an L2 penalty to the cost function

C(�n) =

��M�1
m=0 (sn(m) � ŝn(m))2

�M�1
m=0 (sn(m))2

+ �l2��n�2 (7)

DAFX-2

DAFx-41
DAFx-41



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Figure 1: Autoencoder Topology used. Each layer is fully-connected and feed-forward. The value above each layer denotes the width of
the hidden layer.

Figure 2: Sample input and recosntruction using three different cost functions: SC (left), MSE (center), and MAE (right)

where �l2 is a tuneable hyperparameter and ��n�2 is the Euclidean
norm of the autoencoder’s weights [9]. This normalization tech-
nique encourages the autoencoder to use smaller weights in train-
ing, which we found to improve convergence. We set �l2 to 10�20.
This value of �l2 is large enough to prevent runaway weights while
still allowing the SC term to dominate in the loss evaluation.

3.4. Input Augmentation

Despite these design choices, we still found the performance of
the autoencoder to be subpar. To help the autoencoder enrich its
encodings, we augmented its input with higher-order information.
We tried augmenting the input with different permutations of the
input magnitude spectrum’s first-order difference,

x1[n] = x[n + 1] � x[n] (8)

second-order difference,

x2[n] = x1[n + 1] � x1[n] (9)

and Mel-Frequency Cepstral Coefficients (MFCCs).
MFCCs have seen widespread use in automatic speech recog-

nition, and can be thought of as the "spectrum of the spectrum." In
our application, a 512 band mel-scaled log-transform of sn(m) is
taken. Then, a 256-point discrete-cosine transform is performed.
The resulting aplitudes of this signal are the MFCCs. Typically
the first few cepstral coefficients are orders of magnitude larger

than the rest, and we found this to impede training. Thus before
appending the MFCCs to our input, we throw out the first five cep-
stral values and normalize the rest to [-1,1].

3.5. Training Implementation

All audio processing was handled by the librosa Python library
[10]. In this application, librosa was used to read .wav files sam-
pled at 44.1kHz, perform STFTs of length 4096 with centered
Hann window, hop length 1024 (25%), and write 16-bit PCM .wav
files with sampling frequency 44.1kHz from reconstructed magni-
tude STFT frames.

The neural network framework was handled using TensorFlow
[11]. All training used the Adam method for stochastic gradient
descent with mini-batch size of 200 [12] for 300 epochs. ALl mod-
els were trained on an NVIDIA GeForce GTX Titan X GPU. A
checkpoint file containing the trained weights of each autoencoder
topology was saved once training was finished.

3.6. Task Performance/Evaluation

Table 1 shows the SC loss on the validation set after training. For
reference, an autoencoder that estimates all zeros for any given
input has a SC loss of 0.843.

As demonstrated, the appended inputs to the autoencoder im-
prove over the model with no appendings. Our results show that
while autoencoders are capable of constructing high level features
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Figure 3: Sample input and reconstruction for the first-order appended model (left) and mfcc appended model (right)

Table 1: Autoencoder validation set SC loss and Training Time

Input Append Validation SC Training Time
No Append 0.257 25 minutes

1st Order Diff 0.217 51 minutes
2nd Order Diff 0.245 46 minutes

1st and 2nd Order Diff 0.242 69 minutes
MFCCs 0.236 52 minutes

from data unsupervised, providing the autoencoder with common-
knowledge descriptive features of an input signal can improve its
performance.

The model trained by augmenting the input with the signal’s
1st order difference (1st-order-appended model) outperformed ev-
ery other model. Compared to the 1st-order-appended model, the
MFCC trained model often inferred overtonal activity not present
in the original signal (Figure 3). While it performs worse on the
task than the 1st-order-append model, the MFCC trained model
presents a different sound palette that is valid for music synthesis.
Options for training the model with different appending schemes
are available in our implementation.

4. AUDIO SYNTHESIS

4.1. Spectrogram Generation

The training scheme outline above forces the autoencoder to con-
struct a latent space contained in R8 that contains representations
of synthesizer-based musical audio. Thus a musician can use the
autoencoder to generate spectrograms by removing the encoder
and directly activating the 8 neuron hidden layer. However, these
spectrograms come with no phase information. Thus to obtain a
time signal, phase information must be generated as well.

4.2. Phase Generation with RTPGHI

Real-time phase gradient heap integration (RTPGHI) [13] is used
to generate the phase for the spectrogram. While the full theoret-
ical treatment of this algorithm is outside the scope of this paper,
we present the following synopsis.

The scaled discrete STFT phase gradient �� = (��, �t) can
be approximated by first finding the phase derivative in the time
direction �̃t,n

�̃t,n(m) =
aM
2�

(slog,n(m + 1) � slog,n(m � 1)) + 2�am/M

(10)
where slog,n(m) = log(sn(m)) and �̃t,n(0, n) = �̃t,n(M/2, n) =
0. Because a Hann window of length 4098 is used to generate the
STFT frames, � = 0.25645�40982. Then, the phase derivative in
the frequency direction is calculated using a first order difference
approximation to estimate the phase �̃n(m) using the following
algorithm

�̃n(m) � �̃n�1(m) +
1
2
(�̃t,n�1(m) + �̃t,n(m)) (11)

An inverse STFT (ISTFT) is then taken using the generated
spectrogram and phase to produce a time signal.

An issue arises when using RTPGHI with this autoencoder ar-
chitecture. A spectrogram generated from a constant activation of
the hidden layer contains constant magnitudes for each frequency
value. This leads to the phase gradient not updating properly due
to the 0 derivative between frames. To avoid this, uniform random
noise drawn from [0.999,1.001] is multiplied to each magnitude
value in each frame. By multiplying this noise rather than adding
it, we avoid adding spectral power to empty frequency bins and
creating a noise floor in the signal.

5. PYTHON IMPLEMENTATION

5.1. CANNe

We realized a software implementation of our autoencoder syn-
thesizer, “CANNe (Cooper’s Autoencoding Neural Network)” in
Python using TensorFlow, librosa, pygame, soundfile, and Qt 4.0.
Tensorflow handles the neural network infrastructure, librosa and
soundfile handle audio processing, pygame allows for audio play-
back in Python, and Qt handles the GUI.

Figure 4 shows a mock-up of the CANNe GUI. A musician
controls the eight Latent Control values to generate a tone. The
Frequency Shift control performs a circular shift on the generated
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Latent Control

Figure 4: Mock-up GUI for CANNe.

magnitude spectrum, thus effectively acting as a pitch shift. It is
possible, though, for very high frequency content to roll into the
lowest frequency values, and vice-versa.

6. CONCLUSIONS

We present a novel method for musical audio synthesis based on
activating the smallest hidden layer of an autoencoding neural net-
work. By training the autoencoder to encode and decode magni-
tude short-time Fourier transform frames, the autoencoder is forced
to learn high-level, descriptive features of audio. Real-time phase
gradient heap integration is used to calculate a phase response for
the generated magnitude response, thus making an inverse STFT
possible and generating a time signal. We have implemented our
architecture and algorithm in Python and host the open-source
code at github.com/JTColonel/canne_synth.
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ABSTRACT

In this transformation we present a rhythmically constrained au-
dio style transfer technique for automatic mixing and mashing of
two audio inputs. In this transformation the rhythmic and timbral
features of both input signals are combined together through the
use of an audio style transfer process that transforms the files so
that they adhere to a larger metrical structure of the chosen input.
This is accomplished by finding beat boundaries of both inputs and
performing the transformation on beat-length audio segments. In
order for the system to perform a mashup between two signals,
we reformulate the previously used audio style transfer loss terms
into three loss functions and enable them to be independent of the
input. We measure and compare rhythmic similarities of the trans-
formed and input audio signals using their rhythmic envelopes to
investigate the influence of the tested transformation objectives.

1. INTRODUCTION

In the field of digital audio effects processing, creative transforma-
tions of musical audio refer to methods for automated manipula-
tions of temporally-relevant sounds in time. These systems can be
seen as part of a larger set of support systems to guide users when
they lack inspiration, technical knowledge, musical capability as it
relates to melody, harmony, rhythm, structure or style [1]. In re-
cent years, the use of powerful machine learning algorithms, such
as convolutional neural networks (CNN), have become an essential
component in the development of such intelligent musical expert
agents. A step in this direction has recently emerged as a research
topic of audio style transfer.

1.1. Background

Audio style transfer (AST) methods use machine learning algo-
rithms to modify the timbral characteristics of musical audio sig-
nals. AST was first attempted in [2, 3], which directly extended
an algorithm proposed for images in [4]. In AST, a new output
is synthesised by minimising the content loss with respect to the
content-contributing audio input and the style loss with respect to
one or more audio examples of a given style. The content loss
is based on comparing the network activations of features derived
from an audio spectrogram. The style loss matches the statistics of
the Gram matrix (i.e., inner product between neural feature maps)
activations in the higher levels of the network. In [5], the authors
argue that content may refer to the underlying structure of the in-
put music (e.g., note pitches, rhythm) and style can refer to timbres
of instruments or genres.

Definitions and challenges of style transfer for music are pre-
sented in [6]. The appropriateness of the Gram matrix as a rep-
resentation for style remains unclear for both music and images.

This challenge is furthered by the ambiguous meaning of the term
style, which is related to nearly all aspects of music. It has been
suggested that the Gram matrix corresponds to a representation of
musical timbre [5, 7]. To test the possibilities of creating rhyth-
mically focused transformations varied according to different loss
formulations we explore the use of the Gram matrix further and
report on the suitability and shortcomings of this approach.

Approaches to AST can be divided into two categories:
(1) time-frequency domain (i.e., spectrogram) based, where log-
magnitudes of a short-time Fourier transform (STFT) are used as
inputs to a CNN that performs the style transformation followed
by a process of phase reconstruction; and (2) time-domain (i.e.,
raw audio) based, where the audio samples are directly optimised,
removing the need for additional phase reconstruction.

The majority of AST research performs timbral transforma-
tion in the time-frequency domain, while preserving the rhyth-
mic characteristics of the content recording. Grinstein et al. [5]
introduced a spectral filtering method based on a sound texture
model to improve the transformation of timbre from style directly
onto a new audio initialised as content sound. The authors ex-
perimented with different pre-trained neural networks to aid their
transformation. Similarly, Wyse [8] explored the effects of pre-
trained weights from a network trained on an audio classification
dataset for AST. The presented system appears to generate a more
integrated transformation of content and style with the included
pre-trained network. In [7] the authors provide an additional loss
term that constrains the temporal envelope of the newly generated
spectrogram to match that of the style recording. The motivation
for the additional loss function was to better portray the temporal
dynamics of the style recording and diminish the impact of the con-
tent recording. Audio style transfer was also used in the attempt to
change the style of prosodic speech by [9]. The authors report suc-
cess in transferring low-level textural features of the content but
difficulty in transferring the high-level prosody such as emotion or
accent of the style voice recording.

In addition to the above spectrogram based methods, AST
systems have been proposed that can change rhythmic patterns
of the input by applying the transformation directly on the raw
audio. Mital [10] combines information from multiple discrete
Fourier transform parts and presents them as different concate-
nated batches (layers) of a convolutional filter. Concatenated real,
imaginary, and magnitude features are presented as producing the
best results. Barry and Kim [11] implemented a parallel architec-
ture that adds deep specialised networks with reduced frequency
channels projected onto constant-Q transform basis, for key invari-
ance capabilities, and Mel basis for representing longer rhythmic
patterns. Their approach allows for longer temporal memory over
the input features.

While the above methods are capable of timbral transforma-
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Figure 1: Audio style transfer with rhythmic constraints in three stages: Segmentation, Feature Representation and Optimisation. A noise
signal ⌥ is iteratively transformed to represent the timbral and rhythmic characteristics of a user-defined mix between two input audio
recordings A and B. Solid lines divide the three stages; dotted lines represent convolution, dashed lines represent style Gram computation
and the vertical solid-dashed line represents a scaled exponential linear unit (SeLU) activation layer.

tions, these modifications are not temporally restrictive and there-
fore do not constrain the elements in a metrically relevant man-
ner. Alternatively, there have been several signal processing ap-
proaches to rhythmic transformations, including: percussive swing
modification in polyphonic audio recordings [12]; rhythmic pat-
tern manipulation of a drum loop to match that of another [13]; the
rhythmic modification of an input polyphonic recording given the
intra-measure structure of a model recording [14] and multi-song
music mashup creation [15].

1.2. Motivation

In this paper we propose a system that extends the AST method to
preserve the meter and the rhythmic structure of the chosen mu-
sical signal, while maintaining stylistic elements of both inputs.
Our aim in the following is to transform two recordings such that
their timbral and rhythmic patterns are merged together, with the
presence of each being user-defined. To do this, we alter the orig-
inal AST formulation to optimise the style representations of the
input recordings simultaneously. To improve the creative applica-
tion of this approach we constrain the transformation to act only
on beat-length segments and test it on a small corpus of drum per-
formances. This approach ensures that the transformation adheres
to a larger rhythmic structure of the recordings with opportunities
to generate new music that is both creative and realistic, as well
as to uncover musical relationships of familiar audio samples that
might otherwise have never been conceptualised.

The remainder of this paper is structured as follows: Section 2
presents our proposed method for AST with rhythmic constraints.
Section 3 presents experiments undertaken and the results with dis-
cussion. We conclude with suggestions for future work in Section
4.

2. METHOD

Figure 1 presents an overview of our proposed system for AST.
The system extends work by [11],1 in which a noise signal Y is
iteratively transformed to embody the timbral characteristics of a
target associated with two audio recordings (↵ and �). In [11],
the content refers to a network projection of input audio and style
refers to a statistical representation of the feature map generated
from previous layers of the network (as discussed in Section 2.3.1).
We add to this kind of transformation through the integration of
rhythmic constraints and with the addition of interchangeable loss
terms with regards to both inputs.

The proposed model consists of three stages: (1) segmenta-
tion, where the two audio files (↵ and �) are divided into beat-
length segments (A and B respectively); (2) feature representa-
tion, in which feature representations (Z, M and X) of A, B and
Y are created using a CNN; and (3) optimisation in which Y is iter-
atively transformed to simultaneously match loss functions related
to the feature representations of A and B. The resultant transfor-
mation ⌥ is a concatenation of the transformed beat-length seg-
ments Y .

2.1. Segmentation

Our motivation for the inclusion of segmentation in AST is to di-
vide the inputs so that they adhere to a larger metrical structure
during the transformation, while reducing the computation cost.
In our experience, musically-interesting and rhythmically-stable
transformations may be obtained when assessing beat-length audio
segments. In order for input audio files to be processed by the pro-
posed system, beat and downbeat positions must be first extracted.
We compute segment boundaries using a state-of-the-art beat and
downbeat tracking algorithm [16] included in the madmom Python

1https://github.com/anonymousiclr2018/
Style-Transfer-for-Musical-Audio
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library.2 We then use the detected beat positions, starting from the
first downbeat, as segment boundaries for A and B and generate
the new noise segment Y using the same length.

2.2. Feature Representation

The aim of the feature representation stage is to project the input
audio segments onto neural feature maps, which results in the cre-
ation of content and style matrices.

2.2.1. Content

To create the content matrices, the same two-stage process is per-
formed in separate network branches for A, B and Y , where the
weights of signal Y are initialised with random noise and matrices
A and B contain input audio data as in [11]. First, feature maps are
created by projecting the audio onto STFT bases. Then, the feature
maps are projected further onto a larger number of channels as in
[2, 5, 10, 11] to create the content representation.

The input audio (A, B and Y ) is segmented into T frames
using a Hanning window of n samples (n = 2048) with a n

4 hop-
size. A frequency projection of each of the frames is then cre-
ated with a single CNN layer that uses filters initialised with real
and imaginary parts of the discrete Fourier transform resulting in
a Tx n

2 spectrogram. We convert the created spectrogram to a log-
magnitude representation. This transformation is represented in
CNN Block 1 in Figure 1, where the filter size is nx1x1x n

2 with
strides of 1x n

4 x1x1.
CNN Block 2 (Figure 1) depicts neural feature computation

from the STFT projections that becomes the content and can be
understood as the low-level features of the input. The CNN ar-
chitecture consists of a single convolutional layer with a filter size
of 1xHxFxQ, where H is the number of time frames convolved
with the filter, F is the number of frequency bins and Q repre-
sents the number of frequency channels that the input spectrogram
will be projected onto. The filter size used in this implementa-
tion is 1x16x n

2 x2n. We use a temporal receptive field (i.e., a con-
textual window modeled by each hidden state of the network) of
16 frames (~370ms) to capture acoustic information about instru-
ments from a context longer than half beat length at 120 beats per
minute (BPM). Each network is followed by a scaled exponen-
tial linear unit (SeLU) [17] activation layer, represented as vertical
solid-dashed line in Figure 1, in place of standard rectified linear
units (ReLU), as in [11]. This is done to increase the quality of the
synthesised audio and reduce convergence time of the optimisation
algorithm. For the rest of the paper, the content matrices for A, B
and Y are termed Z, M and X respectively.

2.2.2. Style

Style can be understood as high-level information of the input neu-
ral features. To obtain a representation of the style of an input
spectrogram, a Gram matrix G is used as in [4]. This feature space
is designed to capture texture or intra-feature map statistics. For
each content matrix (Z, M and X) G is calculated using the inner
product:

G[X]ij =
�

k

XikXjk. (1)

2https://github.com/CPJKU/madmom

2.3. Optimisation

2.3.1. Content and Style Loss Functions

In order to control the contributions of content and style from the
two inputs, the total loss L is expressed as a sum of content `C and
style `S loss functions for the input audio files A and B:

L = �`A
C + �`B

C + ✓`A
S + �`B

S , (2)

where �, �, ✓ and � are proportion parameters that add up to 1
and help configure loss preferences between the input recordings.
The individual ` terms can be added and changed according to the
transformation objective. The content loss `C is a squared error
loss between the frame indices i and channels j of the transform
content matrix X and the input audio content matrices (Z or M ):

`A
C =

1
2

�

i,j

(Xij � Zij)
2, (3)

`B
C =

1
2

�

i,j

(Xij � Mij)
2. (4)

The style loss `S is the sum of the squared difference between
the transformed Gram matrix G[X] and the input Gram matrices
(G[Z] or G[M ]):

`A
S =

1
Q2

�

i,j

(G[X]ij � G[Z]ij)
2, (5)

`B
S =

1
Q2

�

i,j

(G[X]ij � G[M ]ij)
2. (6)

The motivation for using the style loss as formulated above was to
preserve the statistics about the convolutional representation over
the entire input, while losing local information about where exactly
different elements are.

2.3.2. Training

We use different combinations of style and content loss functions
to shape the output of the transformation (Section 3.3). Following
[11], we normalise the magnitudes of the gradients of loss terms to
1 to moderate the imbalances in weighting of either function. We
use the limited-memory BFGS [18] gradient descent-based opti-
misation algorithm for its appropriateness in non-linear problems
related to neural style transfer [4, 19]. Once initialised, the fea-
ture map representations of content and style from inputs A and B
do not change throughout the training stage. In each gradient step
the content and style activations are back-propagated all the way to
the network output Y . Hence, only weights originating from Y are
being manipulated during the optimisation process, while all fea-
ture representations remain unchanged for inputs A and B. The
optimisation of the concerned weights is stopped after 500 itera-
tions. An NVIDIA Tesla M40 computing processor was used for
this project with an average of 3 seconds per algorithm iteration.

2.4. Implementation

Our system is implemented using the Tensorflow Python library.3

The processing branches of A, B and Y are part of the same CNN
in one Tensorflow computation graph. This means that the neural
representations of the input time-domain audio Y can be optimised
simultaneously in one stage.

3https://www.tensorflow.org/
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Table 1: Mean cosine similarities from 15 transformed target au-
dio pairs. The cosine similarities are calculated between rhythmic
envelopes extracted from full ↵, � and ⌥ audio files for loss func-
tions L1, L2 and L3. Mean cosine similarity calculated from all
↵ and � rhythmic envelopes in the experiment is 0.58.

L1 L2 L3

⌥ to input ↵ 0.32 0.60 0.43
⌥ to input � 0.37 0.60 0.52

3. EXPERIMENTS

3.1. Experimental Setup

We test the rhythmic modification characteristic of our AST ap-
proach by assessing the rhythmic similarity of the transformed out-
put to the input audio for three loss term combinations. To achieve
this comparison, we generate rhythmic envelopes from the newly
created audio files ⌥ and compare them to those of ↵ and �.

3.2. Dataset

For this experiment we created 30 drum loops (mono .wav sam-
pled at 22.05 kHz with 16-bit resolution) of 4 measures in length,
which differ in rhythmic patterns consisting of various kick and
snare drums. All transformation examples are created from 15
pairs of input drum loops to reduce computation cost. All drum
loops have a fixed-tempo set to 120 BPM in 4

4 meter. Our motiva-
tion for using a fixed-tempo of 120 BPM was to test how our trans-
formation performs on already beat-synchronised inputs essential
in the processes of mixing and mashing audio recordings together.
The chosen tempo is typical for many genres in popular music as
well, as it is the default tempo in various digital audio workstations
used in music production. The drum loops used in our tests were
generated with twelve different pattern styles defined by the Logic
X Drummer virtual instrument.4

3.3. Rhythmic Similarity

To test the rhythmic constraints imposed by different transforma-
tion objectives within the AST technique, we compare the rhyth-
mic similarity [15] of pairs of transformations. The rhythmic en-
velopes are calculated from the spectral difference function [20]
of new audio ⌥ with inputs ↵ or �. We calculate the rhythmic
envelopes as the sum over frequency bins from the first-order dif-
ference between each adjacent magnitude spectra. The STFT pa-
rameters from Section 2.2 are used. The resulting rhythmic en-
velopes were normalised to range from 0 to 1. To determine the
rhythmic similarity D between every pair of rhythmic envelopes
R we calculate the cosine similarity as:

D�,� =
R� · R�

�R���R�� , (7)

where ! can represent envelope of either ↵ or �. Thus, the rhyth-
mic similarity will be close to unity for very similar patterns and
nearer to zero for dissimilar patterns. The mean of all D values
is calculated across 15 transformation audio pairs per loss term
formulation.

4https://support.apple.com/kb/PH13070

Figure 2: Example transformations generated from three loss
terms L1, L2 and L3 from input audio signals ↵ and �.

We test our approach with three objectives associated with
combinations of loss terms with all proportion parameters �, �, ✓
and � set to be equal:

Objective L1: `A
S + `B

C . In this objective we test the ability
of our system to move acoustic events to create a rhythmically
new performance that is more similar to � through the low-level
information from the content loss.

Objective L2: `A
S + `B

S . In this objective we test a transfor-
mation that solely uses the style feature representations to mix
high-level characteristics of both recordings. This transformation
is akin to a mashup of both audio inputs.

Objective L3: `A
S + `B

S + `B
C . This objective reinforces the

mashup transformation with more low-level information from �.

3.4. Results and Discussion

The overall similarity results are summarised in Table 1. The co-
sine similarities of the transformations ⌥ compared with input �
are higher for objectives L1 (0.37) and L3 (0.52), where the B
content loss (`B

C ) was used. When the B content loss was not used
(L2) the transformation similarities to ↵ and � are both 0.60. We
believe this is due to both style losses having the same weight-
ing, resulting in an equal mix of both inputs that creates a kind of
rhythmic and timbral mashup. This is in agreement with the mean
similarities of the ↵ and � together (0.58). In addition, when larger
proportions of the content loss are used the transformations are ex-
pected to be more similar to the corresponding content loss of the
chosen input.

Figure 2 shows transformed waveforms of inputs ↵ and � us-
ing the three different loss term combinations. In L1 the rhythmic
pattern of ↵ is recreated at different metrical positions that match
the beat pattern of � (e.g., on beat 4 of the second measure). On
beat 2 of the first measure the event from � does not appear in the
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resulting transformation, while in objectives L2 and L3 the event
is included. Similarly, the transformation in beat 4 of the first mea-
sure from L1 removes an event that is present in objectives L2 and
L3 as an instrument from �. In this case a kick from ↵ was trans-
formed into a snare from �. The difference between the L2 and L3

transformations show the effect of the added content loss from B
in that drum events that correspond to silences become attenuated
in the resulting mashup of both recordings (e.g., beat 3 of the first
measure).

Experimental transformations along with other examples are
presented using the web-based audio player by [21] and can be
found on the supporting website for this project.5 The resultant
audio examples acquired from loss terms L1, L2 and L3 are ac-
companied by transformation outputs from publicly available al-
gorithms [11, 10, 2]. Our rhythmically-constrained transformation
differs in that it is capable of generating new rhythmic patterns
from both inputs while preserving the beat pattern of the chosen
recording. Challenges faced by all AST transformations are the
loss of phase information and the addition of noise, potentially
due to the high-level representation of the style loss (i.e., Gram
matrix).

As in other AST methods to date, we have used the Gram
matrix as a representation for style, yet it remains questionable
whether this feature representation is suitable for transformations
based on high-level musical information. Briot and Pachet suggest
that this technique presents challenges for audio due to anisotropy
of the content representation [22]. Anisotropy signifies depen-
dence on directions and here it refers to the nature of the audio
spectrogram. In this time-frequency representation the dimensions
do not correlate together in the same way a pixel would in an im-
age. A pixel almost always corresponds to one object whereas in
music multiple sources overlap causing inherent issues when using
the Gram matrix to transform local changes in timbres.

3.5. Attempted Rhythmic Loss Terms

In addition to segmenting the audio and experimenting with differ-
ent combinations of the existing loss terms, we also tested two new
loss terms which aimed to aid the rhythmic aspects of AST. Both
terms were formulated to minimise the cosine distance between
rhythmic envelopes of the chosen input and the transformation. In
the first loss term, each rhythmic envelope was calculated as the
sum over frequency bins of the two spectrograms (i.e., feature rep-
resentations from CNN Block 1 in Figure 1). In the second term,
we created a new network branch for the chosen input where the
resulting STFT projection was filtered with the first-order differ-
ence between each adjacent log-magnitude spectra to then create a
detection function focused more on percussive events. The second
loss term was formulated to minimise the cosine distance between
rhythmic envelopes of the filtered input spectrogram and the trans-
formation. Through informal listening we found that neither term
improved the transformation in conjunction with L1 and L2 loss
terms. The first loss term was causing generated drum events to
lose their transient information, whereas the second term removed
events created in the silent sections of the rhythmic envelope, while
increasing amplitudes of drum event transients.

5https://maciek-tomczak.github.io/maciek.
github.io/Audio-Style-Transfer-with-Rhythmic-Constraints

3.6. Additional Audio Inputs

In our rhythmic extension of AST we are able to create transfor-
mations using an arbitrary number of input recordings. In a music
composition scenario, once the desired individual recordings are
found, it is possible to create their combined transformation. One
such purpose would be to mix multiple individual drum recordings
together such as hi-hats, kicks and snares with the aim of creat-
ing their new rhythmic and timbral interpretation. However, with
additional audio input signals the transformation becomes more
difficult to control.

4. CONCLUSIONS AND FUTURE WORK

In this work we present a rhythmically constrained audio style
transfer technique that explores different loss formulations. Our
method utilises a time-domain approach to AST that acts on beat
length segments of the input music signals. By constraining the
transformation to shorter analysis segments that follow the metri-
cal structure of the chosen input recording, we show that the result-
ing transformations sound rhythmically coherent, while reducing
the computation cost. In the transformation the two input files are
mixed together and allow the user to adjust the parameters of each
loss term to experiment with the desired objective. The resulting
transformation can be formulated as to replicate the exact spectral
information of the input or to create a mashup.

Our attempt to measure the transformation similarities com-
pared to their corresponding inputs shows differences in their
rhythmic envelopes. From informal listening it can be heard that
the beat detection does not need to be accurate for the transforma-
tion to produce rhythmically valid examples, however both inputs
should have at least some rhythmic agreement when the content
loss is used. In the case of the loss formulation that uses only the
information about content and style of the inputs, the transforma-
tions are more different from both input files.

In future work, we intend to explore transformation objectives
related to additional instrumentation and time scales, as well as,
improving the phase reconstruction inherent in this kind of sound
transformation.
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ABSTRACT

This paper investigates the applicability of different mathe-
matical models for the parametric synthesis of fundamental fre-
quency trajectories in glissando note transitions. Hyperbolic tan-
gent, cubic splines and Bézier curves were implemented in a real-
time synthesis system. Within a user study, test subjects were pre-
sented two-note sequences with glissando transitions, which had
to be re-synthesized using the three different trajectory models,
employing a pure sine wave synthesizer. Resulting modeling er-
rors and user feedback on the models were evaluated, indicating a
significant disadvantage of the hyperbolic tangent in the modeling
accuracy. Its reduced complexity and low number of parameters
were however not rated to increase the usability.

1. INTRODUCTION

Note transitions are an essential part of articulation and thus of ex-
pressive musical performances. On instruments with continuous
excitation and a continuous frequency scale, such as the violin or
the singing voice, glissando note transitions are thus of particular
interest. A so called Glissando or Portamento mode has thus been
implemented in many analog and digital synthesizers since their
early days. Most devices allow the tuning of the transition time,
some offer the selection of different trajectory functions. The com-
parison of different parametric models presented in this work is
considered a step towards an extension of this established concept.

The topic of modeling fundamental frequency trajectories has
been addressed in the disciplines of speech and music analysis /
synthesis in the past. The main features of these glissando tran-
sitions can be expressed in terms of the fundamental frequency
f0 and short-term energy trajectories (RMS). ’t Hart [1] compared
straight lines and parabolas for modeling the fundamental frequency
of speech syllables using modulated pulse trains. Simple straight-
line segments were indistinguishable from parabolic ones in a lis-
tening test. For modeling the prosody of speech utterances, Hirst
et al. [2] applied quadratic spline functions.

Battey [3] used third order Bézier splines to model trajectories
of f0, amplitude and spectral centroid for musicological analysis
but also referred to the application in expressive computer render-
ing. Barbot et al. [4] compared the modeling accuracy of cubic
B-splines and natural cubic splines for f0 trajectories of speech
syllables. Using 4 support points each, the B-splines achieved a
lower RMS error. B-Spline and spline models were compared by
Lolive et al. [5] for the use of modeling fundamental frequency in
speech synthesis systems. Within a sinusoidal modeling approach,
Hahn et al. [6] used B-splines to model the temporal trajectories
of partial parameters. Ardaillon et al. [7] evaluated a parametric

f0 model based on B-splines within a concatenative singing voice
synthesis system through listening tests.

Although the qualities of different trajectory models in terms
of modeling error and perception have been investigated thoroughly
in the past, little is known about the usability of these models
in real-time applications. The nature of parameters is individual
for each model and an increasing number of parameters might
decrease the intuitiveness. Modeling precision and usability are
hypothesized to be opposed. The simpler the model, the larger
the modeling error but the easier the control. This work thus fo-
cuses on the usability of trajectory models with parametric control
in a real-time application. Hyperbolic tangent, cubic splines and
Bézier curves will be compared in a user experiment. The hyper-
bolic tangent offers just one parameter, cubic splines have been
implemented with two and Bézier curves with three control pa-
rameters [8].

The remainder of this paper is organized as follows: In Sec-
tion 2 the implemented models will be introduced. Section 3 pre-
sents the user study, followed by the results in Section 4 and their
discussion in Section 5. A conclusion is presented in Section 6.

2. GLISSANDO MODELING

Glissando note transitions are the segment between two adjacent
notes of different pitch, in which the fundamental frequency tra-
jectory and the energy trajectory are continuous. The glissando
segment is defined as the region between the stationary segments
of the pitches f1 and f2, as shown in the idealized model in Fig. 1.
The idealized fundamental frequency trajectory (b) of these re-
gions is closely related to sigmoid curves whereas the idealized
energy trajectory (a) remains constant.

t

Energy

t1 t2

Glissando

(a)

t

f0

t1 t2

Glissando

f1

f2

(b)

Figure 1: Idealized transition model for glissando articulation

For the calculation of the actual trajectories used in the ex-
periment, an analysis of the fundamental frequency trajectory was
performed with a hopsize of Lhop = 256 samples, respectively
2.7 ms, using the YIN algorithm [9].
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The resulting trajectories were subsequently modeled using
hyperbolic tangent, cubic splines and Bézier curves. The funda-
mentals of these models and the resulting parameters will be out-
lined in the remainder of this section.

2.1. Hyperbolic Tangent

The hyperbolic tangent is defined as:

tanh(x) =
sinh(x)
cosh(x)

(1)

In order to make this basic function applicable for different
intervals �f = f2 �f1 and durations �t = t2 � t1, the following
parameters are added:

T (t) = c + d tanh

�
t � a

b

�
, t, a, b, c, d � R (2)

For a transition between two values f1 and f2 the parameters
c and d must be:

d =
|f1 � f2|

2
,

c = min(f1, f2) + d.
(3)

Parameter a is depending on the time values. For a transition be-
tween the first value t0 and the last value t1 parameter a must be:

a =
|t1 � t2|

2
. (4)

The resulting single parameter b, presented to the user in the
study, controls the slope of the function by time-scaling. In Figure
2, hyperbolic tangent curves are plotted with different values for b.
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b = 0.5

Figure 2: Hyperbolic tangent with different values for b

2.2. Cubic Splines

Splines are special functions for the piece wise interpolation by
polynomials. A cubic spline S with n points Pi = (xi, yi) is
defined as:

S(x) := ai + bi(x � xi) + ci(x � xi)
2 + di(x � xi)

3,

x � [xi, xi+1], ai, bi, ci.di � R, i = 0, 1, ..., n � 1.
(5)

Arbitrary points from the extracted f0-trajectories can be used
to get a polynomial representation of the curve. An equidistant 4-
point model is used in the experiment. The x-values of the control
points are thus fixed. In Figure 3, a natural cubic spline curve
is plotted with four points. The outer points P1 and P2 are fully
determined by the boundary conditions, so are the x-values for P3

and P4. Two remaining parameters – the y-values of P3 and P4

– are presented to the user in the experiment for controlling the
trajectory.
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Figure 3: Example of a natural cubic spline with four control
points

2.3. Bézier Curves

Bézier curves are controlled by a number of control points, of
which only the start and end point lie on the curve itself. A Bézier
curve K(x) is defined by sum of Bernstein polynomials Bn

i (x)
and the control points Pi:

K(x) =
n�

i=0

PiB
n
i (x), n � N (6)

For the application in the experiment the x-values of Pi have
been set to be equally spaced:

Pi,x =
i
n

, i = 0, 1, ..., n (7)

Figure 4 shows an example of a Bézier curve with 5 control points.
Since the outer points are fully determined by the boundary condi-
tions (f1 and f2) and the x-values are predefined, the user is pre-
sented the three y-values of the inner control points as parameters
in the experiment.
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Figure 4: Bézier curve with five control points and control polygon
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2.4. Modeling Accuracy

For evaluating the numerical modeling qualities, all 96 two-note
sequences from the TU-Note Violin Sample Library [10, 11] with
glissando transitions were used. This selection contains upward
and downward glissandi at different positions and dynamics. The
mean absolute error was applied to evaluate the deviation between
original trajectories xi and model estimates x̃i of length N, x̃i �
R, n � N:

�̄x :=
1
N

N�1�

i=0

|xi � x̃i|. (8)

Using �̄x, the best possible fit was calculated for all models,
also evaluating different orders for splines and Bézier curves. The
best parameter settings were found by calculating the model pa-
rameters related to a curve intersecting the original trajectory at
the x-values of the control points. For the hyperbolic tangent this
resulted in a modeling error of �̄x = 0.083. For the splines, an
increase of the number of interpolation points lead to a monotonic
decrease in modeling error (Table 1). For Bézier curves, a mini-
mum error �̄x = 0.0311 was reached with 7 interpolation points
(Table 2). A further increase lead to an increase of the error, which
is likely to be caused by the fixed x-values of the control points
and the method for finding the best parameter set. The numbers of
control points chosen for the experiment are marked bold in Table
1 and 2.

Table 1: Minimum of mean absolute error for different spline or-
ders

control
points

mean of nor-
malized �̄x

mean of �̄x

[Hz]

4 0.0387 7.24
5 0.0272 5.04
6 0.0205 3.66
7 0.0163 2.93
8 0.0145 2.59
9 0.0119 2.16
10 0.0109 1.98
11 0.0096 1.72
12 0.0094 1.67

Table 2: Minimum of mean absolute error for different Bézier or-
ders

control
points

mean of nor-
malized �̄x

mean of �̄x

[Hz]

4 0.0539 10.21
5 0.0394 7.26
6 0.0358 6.61
7 0.0311 5.39
8 0.0325 5.74
9 0.0377 6.63
10 0.0379 6.67
11 0.0594 10.22
12 0.0805 13.73

3. USER STUDY

A user study was conducted to compare the usability of the three
proposed trajectory models. Using a within-subject design, partic-
ipants had to apply the three different models to reproduce seven
sequences of two notes which are connected with a glissando. Er-
rors between original and reproduction were evaluated alongside
additional user feedback to obtain information on the real-time us-
ability of the three models. The Bézier model was presented to
the user with one tuning parameter, splines were used with two
and Bézier curves with three parameters, respectively four and five
support points.

3.1. Test System

The synthesis engine with the real-time trajectory modeling was
programmed in C++, using the JACK API [12]. The runtime sys-
tem was a Raspberry Pi 3 Model B Rev 1.2, running Raspbian
GNU/Linux 9.1. A Behringer U-Control UCA222 audio interface
was used with a processing block size of 128 samples at a sam-
pling rate of 48 kHz. A Logilink USB to MIDI Adapter was used
for the MIDI input with a Swissonic ControlKey 49. Faders were
routed to the parameters of the trajectory models to allow control
by the participants. A pure sinusoidal synthesizer with fixed am-
plitude was implemented within the test system. A control surface
for the user study which managed the handling of the trials, the in-
put of the user data and configured the synthesis engine via MIDI
was programmed in Pure Data [13].

Table 3: Stimuli employed in the seven tasks of the user study,
stemming from the TU-Note Violin Library [10]

Item note 1 note 2 length direction
TwoNote_DPA_18 A3 D4 380 ms up
TwoNote_DPA_19 D4 A3 320 ms down
TwoNote_DPA_65 E5 B4 400 ms down
TwoNote_DPA_66 B4 E5 485 ms up
TwoNote_DPA_113 D4 G4 300 ms up
TwoNote_DPA_137 A4 D5 700 ms up
TwoNote_DPA_186 E6 B5 550 ms down
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Figure 5: Fundamental frequency trajectories for upward glissando
stimuli

3.2. Stimuli for Reproduction Tasks

Stimuli for the reproduction tasks were generated using the TU-
Note Violin Sample Library [11, 10], which features two-note se-
quences with annotated glissando transitions. Four upward and
three downward two-note sequences, listed in Table 3, were se-
lected with different note frequencies, in order to cover the range
of the instrument. The fundamental frequency trajectories of these
seven sequences were extracted and are visualized in Figure 5 and
Figure 6. These trajectories were then used to drive a simple si-
nusoidal synthesizer with a fixed amplitude, in order to exclude
influences from features other than the fundamental frequency.

3.3. Participants

15 participants were recruited through the mailing list for students
of the audio communication group at TU Berlin. 14 of them were
male and one was female. Participants’ mean age was 27.4 years
with a standard deviation of 5.6 years. The majority of the par-
ticipants were musically skilled: 60 % played an instrument on a
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Figure 6: Fundamental frequency trajectories for downward glis-
sando stimuli

regular basis for more than 6 years and also 66.67 % had ear train-
ing for more than one year.

3.4. Procedure

After an introduction to the test system and a free play period with
all three trajectory models, each participant went through 21 exper-
imental trials: Each of the 7 task stimuli had to be re-synthesized
by the users using each of the three models in a fully randomized
order. In every trial, the task stimulus could be played back as
often as desired. Additional information on the current trial was
shown on the graphical user interface, which included a number
referring to the currently active trajectory model (1,2,3) and the
starting and the ending note of the sequence.

Participants were then instructed to reproduce the sequence
using the MIDI keyboard and the real-time synthesis engine. The
length of the glissando was fixed for each stimulus, but the pa-
rameters of each model could be adjusted. Once the participants
were satisfied with their settings, three questions about the just em-
ployed model and its parameters had to be answered using vertical
continuous sliders (ranging from 0-100) on the graphical user in-
terface. In the study the questions were in German, hence a trans-
lated version is shown in Table 4.

4. RESULTS

Since the resulting data is not normal distributed and the amount
of 15 participants may be considered small, the non-parametric
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Table 4: Rating scales asked after each single task

Question 0 100

Parameter changes were ... not audible clearly audi-
ble

The model allowed an easy ad-
justment of the stimulus

completely
disagree

completely
agree

The number of parameters in
this model is ... too low too high

Friedman test has been chosen to evaluate each dependent vari-
able, separately. The independent factor is the trajectory model
with three levels. The dependent variables are the mean absolute
modeling error in the reproduction of the task stimulus �̄x as well
as the scores from the three rating scales. All dependent variables
have been averaged across the seven presented tasks.

4.1. Modeling Error

Box plots in Figure 7 show a higher modeling error for the hyper-
bolic tangent than for splines and Bézier curves. The results show
a statistically significant difference in modeling error depending
on the trajectory model, �2 = 7.600, p = 0.000. A post hoc
analysis was conducted using Wilcoxon signed-rank tests. Bonfer-
roni correction resulted in a significance level of p < 0.017. Me-
dian (IQR) modeling errors for the hyperbolic tangent, Spline and
Bézier model were .3377 (.3270 to .3621), .1230 (.0957 to .2042)
and .1266 (.0782 to .1722), respectively. There was no significant
difference between the Bézier and the Spline model (Z = -.795 , p
= .427). The Hyperbolic tangent model, however, showed a signif-
icantly higher modeling error than the the Spline (Z = -3.408, p =
.001) and the Bézier model (Z = -3.408, p = 0.001).

tanh Spline Bézier
0

0.2

0.4

0.6

�̄ x

Figure 7: Boxplots for modeling error �̄x, averaged across tasks

4.2. Audibility of Parameter Changes

Results of the question whether parameter changes are audible are
shown in Figure 8 as box plots, indicating a slightly better audibil-
ity for the hyperbolic tangent. Results of the Friedman test show
a statistically significant difference in the audibility of parameter
changes depending on the trajectory model, �2 = 6.218, p =
.045. Again, Wilcoxon signed-rank tests were used for a post hoc
analysis with a Bonferroni correction, resulting in a significance
level of p < 0.017. Median (IQR) of the rated audibility for the hy-
perbolic tangent, Spline and Bézier model were 86.1446 (77.9786
to 98.1354), 66.5328 (56.5978 to 87.6363) and 72.8342(56.3110 to
85.2744), respectively. The post hoc analysis, however, showed no

significant difference between any of the models, neither between
Bézier and the Spline model (Z = -.031 , p = .975) nor between
Spline and hyperbolic tangent (Z = -2.166, p = .030) or Bézier and
hyperbolic tangent (Z = -2.271, p = .023).
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Figure 8: Box plots for question audibility of parameter changes

4.3. Ease of Adjustment

Figure 9 shows box plots for the responses to the question refer-
ring to the ease of adjustment. The Friedman Test showed no sig-
nificant influence of the trajectory model on the perceived ease of
adjustment, �2 = 2.533, p = .282. Median (IQR) of the ease of
adjustment for hyperbolic tangent, spline and Bézier model were
72.2318 (48.9673 to 93.2301), 77.3379 (57.8026 to 88.1813) and
71.7154 (45.1807 to 79.8336). No significant difference between
any of the models, neither between Bézier and the Spline model (Z
= -.909 , p = .363) nor between Spline and hyperbolic tangent (Z
= -.057, p = .955) nor between Bézier and hyperbolic tangent (Z =
-.795, p = .427).
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Figure 9: Box plots for the question ease of adjustment

4.4. Number of Parameters

Box plots for the question regarding the number of parameters are
shown in Figure 10. There was a statistically significant difference
in the rating whether the number of parameters was too low (0) or
too high (100), depending on the number of provided parameters,
�2 = 26.271, p = .000. Median (IQR) of the response to the
question for for hyperbolic tangent, spline and Bézier model were
29.1165 (19.8795 to 46.4429), 49.1968 (47.9920 to 50.4016) and
65.3758 (54.9340 to 67.6133). Results show a significant differ-
ence between one and two parameters (Z = -3.045 , p = .002) one
and three parameters (Z = -3.408, p = .001) as well as two and
three parameters (Z = -3.408, p = .001).
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Figure 10: Box plots for question Number of parameters

5. DISCUSSION

The results show that the hyperbolic tangent leads to a larger mod-
eling error than cubic splines and Bézier curves in the user experi-
ment. Hence, the hyperbolic tangent is less suitable for synthesiz-
ing the glissando transitions presented in the sequences, regarding
the mean absolute error. This relation could also be observed for
the best model fits in the automated evaluation in Section 2.4, al-
though the user experiment resulted in higher error rates.

Further, the results show a significant preference of two pa-
rameters, since this number is rated as neither too high, nor too
low. This relation is presumably independent of the trajectory
models and probably of a basic psychological nature, since two
was the mean number of parameters presented to the users. Since
the hyperbolic tangent was used with one, splines with two and
Bézier with three parameters, these findings can not be interpreted,
independently.

It would be conceivable that the hyperbolic tangent was easier
to adjust by the participants. The ease of adjustment, however, was
not influenced by the model or by the number of parameters. This
justifies the use of more complex models and rejects the initial
hypothesis that they could be more difficult to use.

6. CONCLUSION

The presented study could deliver first insights on the usability of
hyperbolic tangent, cubic splines and Bézier curves for glissando
modeling in a real-time scenario. Using the hyperbolic tangent
resulted in the largest modeling errors, whereas an increased num-
ber of parameters for the other models did not reduce the usability.
Thus, the use of such models can be considered justified.

Several aspects of this study could be subject to further, more
detailed experiments. It would be of interest to investigate the fac-
tor number of parameters independently of the trajectory model.
For reasons of feasibility, these aspects have been mixed in this
study.

Since the errors for the seven trajectory types in the tasks have
been averaged, the individual features of the glissandi were not
evaluated. Studies using the glissando type (up, down) as indepen-
dent variable might reveal more differences between the trajectory
models.

Future research should incorporate other instruments, addi-
tional musicians and different musical content. The glissando tran-
sitions of the violin in this user study were of rather smooth na-
ture. They contained no overshoots, unlike for example the singing
voice, which might be easier to synthesize with Bézier curves. Dif-
ferent instruments may require other models.

Finally, the mean absolute error may not the ideal measure
to evaluate the performance. It was nevertheless chosen as a first
step towards a procedure. In fact, the perceived modeling accuracy
is a more important factor in musical re-synthesis tasks. Thus, a
combination of the presented study with a listening test can deliver
further results.
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ABSTRACT

Automatic drum transcription, a subtask of the more general auto-
matic music transcription, deals with extracting drum instrument
note onsets from an audio source. Recently, progress in transcrip-
tion performance has been made using non-negative matrix fac-
torization as well as deep learning methods. However, these works
primarily focus on transcribing three drum instruments only: snare
drum, bass drum, and hi-hat. Yet, for many applications, the abil-
ity to transcribe more drum instruments which make up standard
drum kits used in western popular music would be desirable. In
this work, convolutional and convolutional recurrent neural net-
works are trained to transcribe a wider range of drum instruments.
First, the shortcomings of publicly available datasets in this con-
text are discussed. To overcome these limitations, a larger syn-
thetic dataset is introduced. Then, methods to train models using
the new dataset focusing on generalization to real world data are
investigated. Finally, the trained models are evaluated on publicly
available datasets and results are discussed. The contributions of
this work comprise: (i.) a large-scale synthetic dataset for drum
transcription, (ii.) first steps towards an automatic drum transcrip-
tion system that supports a larger range of instruments by eval-
uating and discussing training setups and the impact of datasets
in this context, and (iii.) a publicly available set of trained mod-
els for drum transcription. Additional materials are available at
http://ifs.tuwien.ac.at/~vogl/dafx2018.

1. INTRODUCTION

Automatic drum transcription (ADT) focuses on extracting a sym-
bolic notation for the onsets of drum instruments from an audio
source. As a subtask of automatic music transcription, ADT has
a wide variety of applications, both in an academic as well as in
a commercial context. While state-of-the-art approaches achieve
reasonable performance on publicly available datasets, there are
still several open problems for this task. In prior work [1] we iden-
tify additional information—such as bar boundaries, local tempo,
or dynamics—required for a complete transcript and propose a
system trained to detect beats alongside drums. While this adds
some of the missing information, further work in this direction is
still required.

Another major shortcoming of current approaches is the lim-
itation to only three drum instruments. The focus on snare drum
(SD), bass drum (BD), and hi-hat (HH) is motivated by the facts
that these are the instruments (i.) most commonly used and thus
with the highest number of onsets in the publicly available datasets;
and (ii.) which often define the main rhythmical theme. Neverthe-
less, for many applications it is desirable to be able to transcribe a
wider variety of the drum instruments which are part of a standard

drum kit in western popular music, e.g., for extracting full tran-
scripts for further processing in music production or educational
scenarios. One of the main issues with building and evaluating
such a system is the relative underrepresentation of these classes
in available datasets (see section 2).

In this work we focus on increasing the number of instru-
ments to be transcribed. More precisely, instead of three instru-
ment classes, we aim at transcribing drums at a finer level of granu-
larity as well as additional types of drums, leading to classification
schemas consisting of eight and 18 different instruments (see ta-
ble 1). In order to make training for a large number of instruments
feasible, we opt for a single model to simultaneously transcribe all
instruments of interest, based on convolutional and convolutional
recurrent neural networks. Especially in the case of deep learn-
ing, a considerable amount of processing power is needed to train
the models. Although other approaches train separate models for
each instrument in the three-instrument-scenario [2, 3], for 18 in-
struments it is more feasible to train a single model in a multi-task
fashion (cf. [4]). To account for the need of large volumes of data
in order to train the chosen network architectures, a large synthetic
dataset is introduced, consisting of 4197 tracks and an overall du-
ration of about 259h.

The remainder of this paper is organized as follows. In sec-
tion 2 we discuss related work, followed by a description of our
proposed method in section 3. Section 4 provides a review of ex-
isting datasets used for evaluation, as well as a description of the
new, large synthetic dataset. Sections 5 and 6 describe the con-
ducted experiments and discuss the results, respectively. Finally,
we draw conclusions in section 7.

2. RELATED WORK

There has been a considerable amount of work published on ADT
in recent years, e.g., [5, 6, 7, 8, 9]. In the past, different combi-
nations of signal processing and information retrieval techniques
haven been applied to ADT. For example: onset detection in com-
bination with (i.) bandpass filtering [10, 11], and (ii.) instrument
classification [5, 6, 7]; as well as probabilistic models [8, 12].
Another group of methods focus on extracting an onset-pseudo-
probability function (activation function) for each instrument un-
der observation. These methods utilize source separation tech-
niques like Independent Subspace Analysis (ISA) [13], Prior Sub-
space Analysis (PSA) [14], and Non-Negative Independent Com-
ponent Analysis (NNICA) [15]. More recently, these approaches
have been further developed using Non-Negative Matrix Factor-
ization (NMF) variants as well as deep learning [1, 3, 16, 17].

The work of Wu et al. [18] provides a comprehensive overview
of the publications for this task, and additionally performs in-depth
evaluation of current state-of-the-art methods. Due to the large
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Table 1: Classes used in the different drum instrument classifica-
tion systems. Labels map to General MIDI drum instruments: e.g.
bass drum: 35, 36; side stick: 37; etc. The mapping is available on
the accompanying website.

number of classes instrument name3 8 18
BD BD BD bass drum
SD SD SD snare drum

SS side stick
CLP hand clap

TT
HT high tom
MT mid tom
LT low tom

HH HH
CHH closed hi-hat
PHH pedal hi-hat
OHH open hi-hat
TB tambourine

RD RD ride cymbal

BE RB ride bell
CB cowbell

CY CRC crash cymbal
SPC splash cymbal
CHC Chinese cymbal

CL CL clave/sticks

number of works and given the space limitations, in the remainder
of this section, we will focus on work that is directly relevant with
respect to the current state of the art and methods focusing on more
than three drum instrument classes.

As mentioned, the state of the art for this task is currently de-
fined by end-to-end activation function based methods. In this con-
text, end-to-end implies using only one processing step to extract
the activation function for each instrument under observation from
a digital representation of the audio signal (usually spectrogram
representations). Activation functions can be interpreted as proba-
bility estimates for a certain instrument onset at each point in time.
To obtain the positions of the most probable instrument onsets,
simple peak picking [19, 20, 1, 3, 2, 16, 15] or a language-model-
style decision process like dynamic Bayesian networks [21] can be
used. These methods can be further divided into NMF based and
deep neural network (DNN) based approaches.

Wu et al. [16] introduce partially fixed NMF (PFNMF) and
further modifications to extract the drum instrument onset times
from an audio signal. Dittmar et al. [17] use another modification
of NMF, namely semi adaptive NMF (SANMF) to transcribe drum
solo tracks in real time, while requiring samples of the individual
drum instruments for training. More recently, recurrent neural net-
works (RNNs) have successfully been used to extract the activation
functions for drum instruments [19, 20, 2]. It has also been shown
that convolutional (CNNs) [1, 3] and convolutional recurrent neu-
ral networks (CRNNs) [1] have the potential to even surpass the
performance of RNNs.

The majority of works on ADT, especially the more recent
ones, focus solely on transcribing three drum instrument (SD, BD,
HH) [9, 19, 20, 1, 2, 3, 16, 8, 17, 7, 8]. In some works multi-
ple drum instruments are grouped into categories for transcription
[5] and efforts have been made to classify special drum playing
techniques within instrument groups [22]. However, only little
work exists which approach the problem of transcribing more than

Figure 1: Overview of implemented ADT system using DNNs.

three individual drum instruments [15], furthermore, such a sys-
tem has—to our knowledge—never been evaluated on currently
available public drum transcription datasets.

In [6], a set of MIDI drum loops rendered with different drum
samples are used to create synthetic data in the context of ADT.
Using synthetic data was a necessity in the early years of music in-
formation retrieval (MIR), but due to the continuous efforts of cre-
ating datasets, this has declined in recent years. However, machine
learning methods like deep learning, often requirer large amounts
of data, and manual annotation in large volumes is unfeasible for
many MIR tasks. In other fields like speech recognition or im-
age processing, creating annotations is easier, and large amounts
of data are commonly available. Using data augmentation can, to
a certain degree, be used to overcome lack of data, as has been
demonstrated in the context of ADT [20]. In [23] an approach to
resynthesizes solo tracks using automatically annotated f0 trajec-
tories, to create perfect annotations, is introduced. This approach
could be applicable for ADT, once a satisfactory model for the full
range of drum instruments is available. At the moment such anno-
tations would be limited to the three drum instrument classes used
in state-of-the-art methods.

3. METHOD

In this work, we use an approach similar to the ones introduced in
[2] and [19], for drum transcription. As mentioned in the introduc-
tion, a single model trained in a multi-task fashion will be used.
Creating individual models for each instrument is an option [2, 3],
however, in the context of this work it has two downsides: First,
training time will scale linearly with the amount of models, which
is problematic when increasing the number of instruments under
observation. Second, training multi-task models in the context
of ADT can improve the performance [1]. Other state-of-the-art
methods based on NMF [16, 17] are less suitable for a multi-task
approach, since the performance of NMF methods is prone to de-
grade for basis matrices with higher rank.

Thus, the method proposed in [1] seems most promising for
the goal of this work. We will only use CNNs and CRNNs, since
simple RNNs do not have any advantage in this context. The im-
plemented ADT system consists of three stages: a signal prepro-
cessing stage, a DNN activation function extraction stage, and a
peak picking post processing stage, identifying the note onset. The
system overview is visualized in figure 1, and the single stages will
be discussed in detail in the following subsections.

3.1. Preprocessing

During signal preprocessing, a logarithmic magnitude spectrogram
is calculated using a window size of 2048 samples (@44.1kHz in-
put audio frame rate) and choosing 441 samples as hop size for a

DAFx-58
DAFx-58



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Figure 2: Architecture comparison between the CNN and CRNN
used for activation function extraction.

100Hz target frame rate of the spectrogram. The frequency bins
are transformed to a logarithmic scale using triangular filters in
a range from 20 to 20,000 Hz, using 12 frequency bins per oc-
tave. Finally, the positive first-order-differential over time of this
spectrogram is calculated and stacked on top of the original spec-
trogram. The resulting feature vectors have a length of 168 values
(2x84 frequency bins).

3.2. Activation Function Extraction

The activation function extraction stage is realized using one of
two different DNNs architectures. Figure 2 visualizes and com-
pares the two implemented architectures. The convolutional parts
are equivalent for both architectures, however, the dense output
layers are different: while for the CNN two normal dense layers
are used (ReLUs), in case of the CRNN two bidirectional RNN
layers consisting of gated recurrent units (GRUs) [24] are used. As
already noted in [1], GRUs exhibit similar capabilities as LSTMs
[25], while being more easy to train.

The combination of convolutional layers which focus on local
spectral features, and recurrent layers which model mid- and long-
term relationships, has been found to be one of the best performing
models for ADT [1].

3.3. Peak Picking

To identify the drum instrument onsets, a standard peak picking
method introduced for onset detection in [26] is used. A peak at
point n in the activation function fa(n) must be the maximum
value within a window of size m+1 (i.e.: fa(n) = max(fa(n�
m), · · · , fa(n))), and exceeding the mean value plus a threshold
� within a window of size a + 1 (i.e.: fa(n) � mean(fa(n �
a), · · · , fa(n))+ �). Additionally, a peak must have at least a dis-
tance of w + 1 to the last detected peak nlp (i.e.: n � nlp > w,).
The parameters for peak picking are the same as used in [1]: m =
a = w = 2. The best threshold for peak picking is determined on
the validation set. As observed in [3, 20, 1], appropriately trained
DNNs produce spiky activation functions, therefore, low thresh-
olds (0.1� 0.2) give best results.

3.4. Training and Evaluation

Training of the models is performed using Adam optimization [27]
with mini-batches of size 100 and 8 for the CNNs and CRNNs re-
spectively. The training instances for the CNN have a spectral con-
text of 25 samples. In case of the CRNN, the training sequences
consist of 400 instances with a spectral context of 13 samples. The
DNNs are trained using a fixed learning rate (lr = 0.001) with
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Figure 3: Label distributions of the different datasets used in this
work.

additional refinement if no improvement on the validation set is
achieved for 10 epochs. During refinement the learning rate is re-
duced (lr = lr · 0.2) and training continues using the parameters
of the best performing model so far.

A three-fold cross-validation strategy is employed, using two
splits during training, while 15% of the training data is separated
and used for validation after each epoch (0.5% in case of the large
datasets, to reduce validation time). Testing is done on the third,
during training unseen, split. Whenever available, drum solo ver-
sions of the tracks are used as additional training material, but
not for testing/evaluation. The solo versions are always put into
the same splits as their mixed counterparts, to counter overfitting.
This setup is consistently used through all experiments, when-
ever datasets are mixed or cross-validated, corresponding splits are
used.

For audio preprocessing, peak picking, and calculation of eval-
uation metrics, the madmom1 python framework was used. DNN
training was performed using Theano2 and Lasagne3. For a more
details on C(R)NN training and a comparison of their working
principles in the context of ADT, we kindly refer the reader to our
previous work [1] due to space limitations and a different focus of
this work.

4. DATASETS

There are a number of publicly available datasets for ADT with
varying size, degree of detail, and number of classes regarding the
drum instrument annotations. As noted in the introduction, current
state-of-the-art approaches limit the instruments under observation
to the three most common ones (SD, BD, HH). This is done by
ignoring other instruments like tom-toms and cymbals, as well as

1https://github.com/CPJKU/madmom
2https://github.com/Theano/Theano
3https://github.com/Lasagne/Lasagne
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Table 2: F-measure (mean/sum) results of implemented ADT
methods on public datasets for different class systems. The first
line indicates state-of-the-art F-measure results in previous work
using CNN and CRNN ADT systems in a three-class scenario.

CL model ENST MDB RBMA13
3 SotA [1] — / 0.78 — / — — / 0.67

3 CNN 0.75 / 0.77 0.65 / 0.72 0.53 / 0.63
CRNN 0.74 / 0.76 0.64 / 0.70 0.55 / 0.64

8 CNN 0.59 / 0.63 0.68 / 0.65 0.55 / 0.44
CRNN 0.65 / 0.70 0.68 / 0.63 0.55 / 0.50

18 CNN 0.69 / 0.49 0.76 / 0.47 0.62 / 0.31
CRNN 0.75 / 0.67 0.77 / 0.55 0.64 / 0.39

grouping different play styles like closed, opened, and pedal hi-
hat strokes. In order to investigate ways of generating a model
which is capable to transcribe more than these three instruments,
two classification systems, i.e., a medium and a large one, for drum
instruments of a standard drum kit are defined. Table 1 shows the
two sets of classes, which contain eight and 18 labels respectively,
alongside with the classic three-class set used in state-of-the-art
works and the mapping used between these classes.

In the following we discuss publicly available ADT datasets
and their limitations, leading to the description of the large volume
synthetic dataset introduced for training of our models.

4.1. ENST Drums (ENST)

The ENST Drums4 dataset published by Gillet and Richard [28]
in 2005, is commonly used in ADT evaluations. The freely avail-
able part of the dataset consists of single track audio recordings
and mixes, performed by three drummers on different drum kits.
It contains recordings of single strokes for each instrument, short
sequences of drum patterns, as well as drum tracks with additional
accompaniment (minus-one tracks). The annotations contain la-
bels for 20 different instrument classes.

For evaluation, the wet mixes (contain standard post-processing
like compression and equalizing) of the minus-one tracks were
used. They make up 64 tracks of 61s average duration and a total
duration of 1h. The rest of the dataset (single strokes, patterns)
was used as additional training data.

4.2. MDB-Drums (MDB)

The MDB-Drums dataset5 was published in [29] and provides drum
annotations for 23 tracks of the Medley DB dataset6 [30]. The
tracks are available as drum solo tracks with additional accompa-
niment. Again, only the full mixes are used for evaluation, while
the drum solo tracks are used as additional training data. There are
two levels of drum instrument annotations, the second providing
multiple drum instruments and additional drum playing technique
details in 21 classes. Tracks have an average duration of 54 sec-
onds and the total duration is 20m 42s.

4http://perso.telecom-paristech.fr/~grichard/
ENST-drums/

5https://github.com/CarlSouthall/MDBDrums
6http://medleydb.weebly.com/

Table 3: F-measure results (mean/sum) of the implemented net-
works on synthetic datasets.

CL model MIDI MIDI 1% MIDI bal.

3 CNN 0.74 / 0.84 0.70 / 0.79 — / —
CRNN 0.74 / 0.84 0.68 / 0.77 — / —

8 CNN 0.64 / 0.63 0.63 / 0.69 0.54 / 0.58
CRNN 0.74 / 0.82 0.69 / 0.73 0.58 / 0.70

18 CNN 0.66 / 0.39 0.65 / 0.39 0.59 / 0.18
CRNN 0.73 / 0.70 0.69 / 0.62 0.63 / 0.52

4.3. RBMA13 (RBMA13)

The RBMA13 datasets7 was published alongside [1]. It consists
of 30 tracks of the freely available 2013 Red Bull Music Academy
Various Assets sampler.8 The tracks’ genres and drum sounds of
this set are more diverse compared to the previous sets, making
it a particularly difficult set. It provides annotations for 23 drum
instruments as well as beat and downbeats. Tracks in this set have
an average duration of 3m 50s and a total of 1h 43m.

4.4. Limitations of current datasets

A major problem of publicly available ADT datasets in the context
of deep learning is the volume of data. To be able to train DNNs
efficiently, usually large amounts of diverse data are used (e.g. in
speech and image processing). One way to counter the lack of data
is to use data augmentation (as done in [20] for ADT). However,
data augmentation is only helpful to a certain degree, depending
on the applicable augmentation methods and the diversity of the
original data.

Given the nature of drum rhythms found in western popular
music, another issue of ADT datasets is the uneven distribution
of onsets between instrument classes. In case of the available
datasets, this imbalance can be observed in figure 3. While it is
advantageous for the model to adapt to this bias, in terms of over-
all performance, this often results in the trained models to never
predict onsets for sparse classes. This is due to the number of po-
tential false negatives being negligible, compared to the amount of
false positives produced in the early stages of training. To counter
a related effect on slightly imbalanced classes (BD, SD, HH in the
three-class scenario), a weighting of the loss functions for the dif-
ferent classes can be helpful [20]. Nevertheless, a loss function
weighting cannot compensate for the problem in the case of very
sparse classes.

Since manual annotation for ADT is a very resource intensive
task, a feasible approach to tackle these problems is to create a
synthetic dataset using the combination of symbolic tracks, e.g.
MIDI tracks, drum synthesizers and/or sampler software.

4.5. Synthetic dataset (MIDI)

For generating the synthetic dataset, a similar approach as in [6]
was employed. Since the focus of this work is the transcription
of multiple drum instruments from polyphonic music, full MIDI
tracks of western popular music were used instead of MIDI drum
loops. First, every MIDI track from a freely available online col-
lection9 was split into a drum and accompaniment track. Using

7http://ifs.tuwien.ac.at/~vogl/datasets/
8https://rbma.bandcamp.com/album/
9http://www.midiworld.com
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Figure 4: Instrument class details for evaluation results on MIDI
and MIDI bal. for 8 and 18 instrument classes using the CRNN.
First value (SUM) represents the overall sum F-measure results.

timidity++10, the drum tracks were rendered utilizing 57 different
drum SoundFonts11. The used SoundFonts were collected from
different online sources, and great care was taken to manually
check and correct the instrument mappings and overall suitabil-
ity. They cover a wide range of drum sounds from electronic drum
machines (e.g. TR808), acoustic kits, and commonly used com-
binations. The SoundFonts were divided into three groups for the
three evaluation splits, to counter overfitting to drum kits. The
accompaniment tracks were rendered using a full General MIDI
SoundFont. Using the MIDI tracks, drum annotations as well as
beat and downbeat annotations were generated. After removing
broken MIDI files, very short (< 30s) as well as very long (> 15m)
tracks, the set contains 4197 tracks with an average duration of 3m
41s and a total duration of about 259h. As with the other datasets,
we only use the mixes for evaluation, while the drum solo tracks
are used as additional train-only data.

Figure 3 shows that the general trend of the drum instrument
class distribution is similar to the smaller datasets. This is not sur-
prising since the music is of the same broad origin (western pop-
ular music). Since one of the goals of creating this dataset was
to achieve a more balanced distribution, some additional process-
ing is necessary. Due to the fact that we can easily manipulate the
source MIDI drum files, we can change a certain amount of in-
struments for several tracks to artificially balance the classes. We
did this for the 18 classes as well as for the 8 classes and gen-
erated two more synthetic datasets consisting of the same tracks,
but with drum instruments changes so that the classes are balanced
within their respective drum instrument class system. This was
done in a way to switch instruments which have a similar expected
usage frequency within a track, while keeping musicality in mind.
Ideal candidates for this are CHH and RD: exchanging them makes
sense from a musical standpoint, as well in terms of usage fre-
quency. On the other hand, BD and CRC are close in expected
usage frequency but switching them can be questionable from a
musical standpoint, depending on the music genre. A full list of
performed switches for the balanced versions can be found on the
accompanying webpage.

10http://timidity.sourceforge.net/
11https://en.wikipedia.org/wiki/SoundFont

Table 4: F-measure results (mean/sum) for the CRNN model on
public datasets when trained on different dataset combinations.
The top part shows results for the 8 class scenario, while the bot-
tom part shows results for the 18 class scenario. Whenever the
MIDI set is mixed with real world datasets, only the 1% subset is
used, to keep a balance between different data types.

8 instrument classes
train set ENST MDB RBMA13
all 0.61 / 0.64 0.68 / 0.64 0.57 / 0.52
MIDI 0.65 / 0.68 0.70 / 0.61 0.57 / 0.51
MIDI bal. 0.61 / 0.57 0.66 / 0.52 0.56 / 0.47
all+MIDI 0.58 / 0.62 0.67 / 0.57 0.57 / 0.52
all+MIDI bal. 0.61 / 0.64 0.68 / 0.56 0.56 / 0.51
pt MIDI 0.64 / 0.69 0.72 / 0.68 0.58 / 0.56
pt MIDI bal. 0.61 / 0.63 0.72 / 0.67 0.58 / 0.56

18 instrument classes
train set ENST MDB RBMA13
all 0.71 / 0.58 0.77 / 0.55 0.63 / 0.41
MIDI 0.73 / 0.61 0.77 / 0.53 0.64 / 0.39
MIDI bal. 0.70 / 0.52 0.76 / 0.45 0.63 / 0.35
all+MIDI 0.73 / 0.62 0.77 / 0.54 0.64 / 0.41
all+MIDI bal. 0.72 / 0.57 0.76 / 0.47 0.64 / 0.37
pt MIDI 0.74 / 0.67 0.78 / 0.60 0.64 / 0.47
pt MIDI bal. 0.74 / 0.65 0.78 / 0.58 0.64 / 0.45

A downside of this approach is that the instrument switches
may create artificial drum patterns which are atypical for western
popular music. This can be problematic if the recurrent parts of the
used CRNN architecture start to learn structures of typical drum
patterns. Since these effects are difficult to measure and in order
to be able to build a large, balanced dataset, this consequence was
considered acceptable.

5. EXPERIMENTS

The first set of experiments evaluates the implemented ADT meth-
ods on the available public datasets, using the classic three drum
instrument class labels, as well as the two new drum classification
schemas with 8 and 18 classes, as a baseline. As evaluation mea-
sure primarily the F-measure of the individual drum instrument
onsets is used. To calculate the overall F-measure over all instru-
ments and all tracks of a dataset, two methods are used: First, the
mean over all instruments’ F-measure (=F-measure of track), as
well as the mean over all tracks’ F-measure is calculated (mean).
Second, all false positives, false negatives, and true positives for
all instruments and tracks are used to calculate a global F-measure
(sum). These two values give insight into different aspects. While
the mean value is more conservative for only slightly imbalanced
classes, it is problematic when applied to sets containing only
sparsely populated classes. In this case, some tracks may have
zero occurrences of an instrument, thus resulting in a F-measure
of 1.0 when no instrument is detected by the ADT system. In that
case, the overall mean F-measure value for this instrument is close
to 1.0 if it only occurs in a small fraction of tracks and the system
never predicts it. On the other hand, the sum value will give a F-
measure close to zero if the system never predicts an instrument,
even for sparse classes—which is more desirable in this context.

The second set of experiments evaluates the performance of
the ADT methods on the synthetic datasets, as well as a 1% subset
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Figure 5: This figure shows F-measure results for each instrument, for both the 8 class (top) as well as the 18 class (bottom) scenarios,
exemplary for the ENST dataset. Figures for other sets are found on the accompanying webpage (see sec. 7). The color of bars indicates the
dataset or combinations trained on: all—three public datasets; MIDI—synthetic dataset; MIDI bal.—synthetic set with balanced classes;
all+MIDI—three public datasets plus 1% split of synthetic dataset; all+MIDI bal.—three public datasets plus the 1% split of the balanced
synthetic dataset; pt MIDI and pt MIDI bal.—pre-trained on the MIDI and MIDI bal. datasets respectively and fine tuned on all. The first
set of bars on the left (SUM) shows the overall sum F-measure value.

for each of the instrument classification schemas. This will give
insight in how the systems perform on the synthetic dataset and
how relevant the data volume is for each of the schemas.

In the final set of experiments, models trained with different
combinations of synthetic and real data will be evaluated. The
evaluation will show how well models trained on synthetic data
can generalize on real world data. Mixing the real world datasets
with the symbolic data is a first, simple approach of leveraging a
balanced dataset to improve detection performance of underrep-
resented drum instrument classes in currently available datasets.
To be able to compare the results, models are trained on all of the
public datasets (all), the full synthetic dataset (MIDI), the balanced
versions of the synthetic dataset (MIDI bal.), a mix of the public
datasets and the 1% subset of the synthetic dataset (all+MIDI), and
a mix of the public datasets and a 1% subset of the balanced syn-
thetic datasets (all+MIDI bal.). Additionally, models pre-trained
on the MIDI and MIDI bal. datasets with additional refinement
on the all dataset were included. We only compare a mix of the
smaller public datasets to the other sets, since models trained on
only one small dataset have the tendency to overfit, and thus gen-
eralize not well—which makes comparison problematic.

6. RESULTS AND DISCUSSION

The results of the first set of experiments is visualized in Table 2,
which shows the 3-fold cross-validation results for models trained
on public datasets with 3, 8, and 18 labels. The resulting F-measure
values are not surprising: for the 3-class scenario the values are
close to the reported values in the related work. Differences are
due to slightly different models and hyper-parameter settings for
training. As expected, especially the sum values drop for the cases
of 8 and 18 classes. It can be observed, that the CRNN performs
best for all sets in 18 class scenario and for two out of three sets
for the eight class scenario.

Table 3 shows the results for models trained on synthetic data-
sets with 3, 8, and 18 labels. As expected, there is a tendency for
the models trained on the 1% subset to perform worse, especially

for the CRNN. However, this effect is not as severe as suspected.
This might be due to the fact that, while different drum kits were
used, the synthetic set is still quite uniform, given its size. The
overall results for the balanced sets are worse than for the normal
set. This is expected, since the difficulty of the balanced sets is
much greater than for the imbalanced one (sparse classes can be
ignored by the models without much penalty). Figure 4 shows a
comparison of F-measure values for individual instruments classes
when training on MIDI and MIDI bal. sets. The plot shows, that
performance for underrepresented classes improves for the bal-
anced set, which was the goal of balancing the set. A downside
is that the performance for classes which have a higher frequency
of occurrence in the MIDI dataset decreases in most cases, which
contributes to the overall decrease. However, this effect is less se-
vere in the 8 class case.

A general trend which can be observed, especially in the sce-
narios with more instrument class labels, is that CRNNs consis-
tently outperform CNNs. Since this is true for all other experi-
ments as well, and for reasons of clarity, we will limit the results
for the next plots and tables to those of the CRNN model.

Table 4 shows the F-measure results for the CRNN model
trained on different dataset combinations and evaluated on public
datasets. In figure 5, a detailed look in the context of cross-datasets
evaluation on instrument class basis for the ENST dataset is pro-
vided. As mentioned in section 5, results for models trained on
only one public dataset are not included in this chart. While the
performance for those is higher, they are slightly overfitted to the
individual datasets and do not generalize well to other datasets,
therefore a comparison would not be meaningful. Although an
overall big performance improvement for previously underrepre-
sented classes can not be observed, several interesting things are
visible: (i.) both the models trained solely on the MIDI and the
MIDI bal. datasets generalize surprisingly well to the real world
dataset; (ii.) in some cases, performance improvements for un-
derrepresented classes can be observed (e.g. for 18 classes: LT,
MT, RD, CRC, CHC), when using the synthetic data; (iii.) bal-
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Figure 6: Left column shows matrices for MIDI set, right col-
umn shows matrices for MIDI bal. set, both for the 18 classes sce-
nario. From top to bottom, the matrices display: classic confu-
sions (fn/fp), masking by true positives (fn/tp), and positive mask-
ing (excitement—fp/tp).

ancing the instruments, while effective within the evaluation for
the synthetic dataset, seems not to have a positive effect in the
cross-dataset scenario and when mixing dataset; and (iv.) using
pre-training on the MIDI set with refinement on the all set, seems
to produce models which are better suited to detect underrepre-
sented classes while still performing well on other classes.

To gain more insight into which errors the systems make when
classifying within the 8 and 18 class systems, three sets of pseudo
confusion matrices were created. We term them pseudo confu-
sion matrices because one onset instance can have multiple classes,
which is usually not the case for classification problems. These
three pseudo confusion matrices indicate how often (i.) a false pos-
itive for another instrument was found for false negatives (classic
confusions); (ii.) a true positive for another instrument was found
for false negatives (onset masked or hidden); and (iii) a true posi-
tive for another instrument was found for a false positive (positive
masking or excitement). Figure 6 shows examples of these matri-
ces for the MIDI and MIDI bal. sets in the 18 class scenario. The
images lead to intuitive conclusions: similar sounding instruments

may get confused (BD/LT, CHH/PHH), instruments with energy
over a wide frequency range mask more delicate instruments as
well as similar sounds (HT/BD, CLP/SD), and similar sounding
instruments lead to false positives (LT/MT/HT, RB/RD). Many of
these errors may very well be made by human transcribers as well.
This also strengthens the assumption that instrument mappings are
not well defined: boundaries of the frequency range between bass
drum, low, mid and high toms are not well defined, the distinc-
tion between certain cymbals is sometimes difficult even for hu-
mans, and different hi-hat sounds are sometimes only distinguish-
able given more context, like genre or long term relations within
the piece.

To further improve performance, an ensemble of models trained
on different datasets (synthetic and real, including balanced vari-
ants) can be used. However, experience shows that while these
systems often perform best in real world scenarios and in competi-
tions (e.g. MIREX), they give not so much insight in an evaluation
scenario.

7. CONCLUSION

In this work we discussed a shortcoming of current state-of-the
art automatic drum transcription systems: the limitation to three
drum instruments. While this choice makes sense in the context
of currently available datasets, some real world applications re-
quire transcription of more instrument classes. To approach this
shortcoming, we introduced a new and publicly available large
scale synthetic dataset with balanced instrument distribution and
showed that models trained on this dataset generalize well to real
world data. We further showed that balancing can improve perfor-
mance for usually underrepresented classes in certain cases, while
overall performance may decline. An analysis of mistakes made
by such systems was provided and further steps into this directions
were discussed. The dataset, trained models and further material
are available on the accompanying webpage.12
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ABSTRACT

Extraction of stationary and transient components from audio has
many potential applications to audio effects for audio content pro-
duction. In this paper we explore stationary/transient separation
using convolutional autoencoders. We propose two novel unsuper-
vised algorithms for individual and and joint separation. We de-
scribe our implementation and show examples. Our results show
promise for the use of convolutional autoencoders in the extraction
of sparse components from audio spectrograms, particularly using
monophonic sounds.

1. INTRODUCTION

The problem of identifying transients in audio signals (especially
musical audio) has received significant attention in the phase
vocoder literature, given the difficulties posed by transients to sinu-
soidal models. As a consequence, a number of sines + transients +
noise models were proposed [1, 2]. Transient and stationary com-
ponents can in fact be related with general signal models prevalent
in audio effects [3].

These models are often applied to monophonic sounds, but
their application to broad polyphonic signals remains challenging.
Meanwhile, researchers focusing on separation of polyphonic sig-
nals into their component sources have developed a similar sep-
aration task, often dubbed harmonic-percussive source separation
(HPSS). This name obviously assumes the presence of harmonic
and percussive components in audio. However, techniques em-
ployed for this task often do not actually take into account har-
monicity of musical tones and instead focus on other aspects of
typically harmonic components of polyphonic signals. Most algo-
rithms are based, in one way or another, on the observation that
percussive and harmonic components tend to form straight verti-
cal and horizontal lines in the spectrogram. This property can be
called the anisotropic smoothness [4]. Several works have been de-
veloped to exploit this using non-negative factorization algorithms
[5, 6]. A very popular approach is to simply use a combination of
two median filters [7].

Separation of audio into stationary and transient components,
that is, without modeling sinusoids, was proposed in a recent study
[8]. This perspective allows the application of ideas based on
anisotropic smoothness to digital audio effects. In this sense, this
task remains in an abstract domain related to signal models, which
makes quantitative evaluation elusive.

In this paper, we propose two algorithms for tran-
sient/stationary separation using convolutional autoencoders
(CAE). Autoencoders are neural network algorithms that pur-
posely realize imperfect replicas of input signals based on some

constraints. Thanks to current neural network programming li-
braries, such constraints can be specified directly into cost func-
tions, without having to worry about their derivative. This pro-
vides a promising framework for experimenting with digital audio
effects. In this paper we explore their use for transient/stationary
separation by implementing anisotropic smoothness constraints
from the HPSS literature in the cost functions.

2. CONVOLUTIONAL AUTOENCODERS

Autoencoders are neural network algorithms that try to reconstruct
the input from a typically lower dimension hidden representation.
The encoder is typically the combination of an affine transform
with weights W and biases b with some non-linear activation �:

h = �(Wx + b). (1)

Here, h is a hidden representation of x with dimensionality
determined by the weight matrix. The decoder then performs the
inverse operation to obtain a reconstruction y:

y = �(W �h + b�). (2)

This is typically accomplished using some variant of stochas-
tic gradient descent (SGD) that learns the parameters W , b, W �

and b� to minimize the some distance metric between x and y. Au-
toencoders have been extensively used in machine learning, usu-
ally not for the reconstruction itself but for learning useful features
from data. The parameters that produce the hidden representa-
tion h are then used in other neural networks for e.g. image clas-
sification. In order to avoid that the algorithm learns to exactly
copy the input to the output, which would not yeld useful features,
the main strategies are choosing a lower dimensionality for h or
adding some sparsity constraint to the cost function.

An analogy of traditional autoencoders with non-negative fac-
torization (NMF) algorithms used for audio separation was pro-
posed in [9] but evaluated only for the supervised case. Supervised
neural networks used in separation of musical audio [10] can be
seen as supervised autoencoders, in the sense that the output is the
same shape as the input.

Traditional autoencoders, however, process data in one dimen-
sion and thus cannot be used to learn time-frequency patterns. The
usual solution of stacking several spectral frames quickly degener-
ates into prohibitive computational costs.

Convolutional neural networks (CNNs) have become the stan-
dard algorithm for image classification and object recognition.
They have also been shown to work for speech recognition [11]
and audio classification [12]. In CNNs, the weights are typically
square convolution kernels that are shared, i.e. each kernel is
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convolved with the whole image. The resulting representation is
downsampled with respect to the input image size (which can be
further downsampled with pooling operations), but typically com-
posed by multiple channels corresponding to each learnable ker-
nel.

Convolutional autoencoders (CAEs) arose in this context, al-
lowing the use of 2D convolution operations for learning features.
In a CAE, the operation in Equation 1 is rewritten as :

hi = �(X � W i + bi), (3)

where � represents a 2D convolution operation. Here the in-
put X is a matrix. The hidden representation is now a tensor,
h � Rd,m,n, with d determined by the number of kernels (hence
the index i for each convolution). In addition to the size of the in-
put and the kernel, dimensions m and n can be affected by several
parameters of the convolution, such as input padding and stride.
Thus, h can be in all a higher-dimensional representation than the
input, but the information has to be transmitted through the convo-
lution with small (typically 5x5) kernels.

While these are conventional convolution layers used in
CNNs, the particularity of CAEs is to introduce an upsampling
convolution that allows restoring the original size in the decoder:

Y = �(hi � W �i + b�i). (4)

This operation is informally called "deconvolution" [13], or
more technically fractionally strided convolution [14], and it in-
volves padding and re-shaping the kernels into a convolution ma-
trix of a size that allows recovering the original size through con-
volution with the hidden representation. One interesting property
of this architecture is that it can be used for images (in our case
magnitude spectrograms) of arbitrary size.

Supervised networks with deconvolution decoders have re-
cently started to appear in the source separation literature [15, 16].
In this paper, we explore the use of this architecture in an unsu-
pervised setting for stationary / transient separation of audio. It is
common in AEs and CAEs to implement restrictions in the loss
function, in addition to the output being similar to the input. This
feature can thus be used to devise new audio effects. In the case
of CAEs, the loss function can take into account both the time and
frequency dimensions and promote vertical or horizontal lines as
commonly done for HPSS.

3. TRANSIENT / STATIONARY AUDIO SEPARATION

In this section we describe different loss functions that can be used
to train a CAE. As noted, our approach consists of using the net-
work to process a magnitude spectrogram. We define X to be such
spectrogram (e.g. it has been obtained from some complex spec-
trogram C), and assume it to be a sum of two components:

X = Xt + Xs. (5)

Here Xt represents the time-frequency bins associated with
transients, and Xs the ones associated with stationary components.
We regard this as a useful abstraction and not as a physical mix-
ture, beyond the fact that musical sounds typically contain tran-
sients and steady tones. It is often useful to distinguish a noise
component that is not associated with transients. While we do not
model this component directly, we observe in Section 3.1 that a ba-
sic CAE can be used to remove background noise. In Section 3.2
we show a model that can be used to individually estimate Xt or

Xs. This allows using a different time-frequency grid that may be
more appropriate for each situation. In this case, a corresponding
complex estimate can be recovered using the original phase, e.g.
for a complex STFT:

Ĉ = X̂e�j , (6)
where X̂ can either be X̂t or X̂s, and � is the phase of the

original spectrogram.
On the other hand, for ensuring that X is recovered by the sum

of both estimates, it may be convenient to estimate a soft mask, i.e:

Mt =
X̂t

X̂t + X̂s

, (7)

Ms =
X̂s

X̂t + X̂s

, (8)

using a common transform for both components. Ĉ is then
obtained as Mt�C or Ms�C, where � denotes the element-wise
product. In Section 3.3 we describe a model for jointly obtaining
X̂t and X̂s from the same spectrogram.

3.1. Basic CAE

A basic CAE implementation simply tries to recover the input. A
suitable loss function would then be the mean square error (MSE)
between the input X and the output Y :

LMSE =
1

TF

�
(X � Y )2, (9)

where T and F are the dimensions of the spectrogram. The
goal of the algorithm is then to find an optimal set of kernels
that allow this reconstruction through 2D convolutions. Using this
function implies the danger of simply copying the input. It is easy
to see that a convolution kernel with a single active weight would
accomplish that. One common solution is to add a sparsity con-
straint on the hidden representation. However, here we are inter-
ested in the output (i.e. transient or stationary components) being
sparser than the input. Promoting a sparse hidden representation
does not directly accomplish that, because the decoder can try to
learn to re-create the (non-sparse) input from the sparse hidden
representation. Hence, we add a sparse penalty to the output di-
rectly:

L = LMSE + �1||Y ||1, (10)
where ||�||1 denotes the L1 norm. The parameter �1 then con-

trols the sparsity of the output spectrogram. In early experiments
with this model, we observed it may have interesting applications
to denoising and dereverberation. In this sense, traditional autoen-
coders have been applied to speech enhancement [17]. It can also
be used to implement more experimental effects. However our
main goal in this work is the transient/stationary decomposition.

3.2. Individual extraction

Estimation of transient or stationary components from the input
signal can be promoted by adding more terms to the loss function.
We regard the difference across either the time or the frequency
axis as a cost for estimating transient or stationary components
respectively:

df =

�
t,f (Y (t, f) � Y (t, f � 1))2

||Y ||22 , (11)

DAFX-2

DAFx-66
DAFx-66



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

dt =

�
t,f (Y (t, f) � Y (t � 1, f))2

||Y ||22 , (12)

where || � ||2 denotes the L2 norm, and t and f are time and
frequency indices. The loss for estimating either the transient or
the stationary components is then computed by adding respectively

df

dt+� or dt
df +� (where � is a small number to prevent division by

0) to LMSE :

LS = LMSE + �1||Y ||1 + �2
df

dt + �
, (13)

LT = LMSE + �1||Y ||1 + �2
dt

df + �
, (14)

Parameters �1 and �2 can here be mapped to user interface
parameters: the first one defines the level of sparsity (i.e. how
much magnitude will be lost in the process) and the second biases
it towards the desired component.

3.3. Joint extraction

Estimating both transient and stationary components simultane-
ously has the potential advantage of allowing a more discrimina-
tive model that can use the input data to provide two estimates.
The estimates can then be used to construct time-frequency masks
as described in Equations 8 and 7. Here, the output of the autoen-
coder is a tensor Y � R2,M,N where M and N correspond to the
original spectrogram size. For simplicity of notation, we denote
Yt � RT,F and Ys � RT,F as the outputs of the CAE for transient
and stationary components respectively. The MSE loss then needs
to be rewritten as:

LMSE =
1

TF

�
(X � (Yt + Ys))

2. (15)

The terms df and dt can now be computed separately for Yt

and Y s respectively. The loss function for the CAE is then:

LST = LMSE + �1||Y ||1 + �2
dt1

df1 + �
+ �3

df2

dt2 + �
, (16)

where dt1 / df1 are computed from Ys as in Equations 11 and
12, and dt2 / df2 are equally computed from Yt .

4. IMPLEMENTATION

In order to test the proposed approach, we implemented the CAE
models described in Sections 3.1, 3.2 and 3.3, respectively denoted
here as cae1, cae2 and cae3. The implementation was based on
the pytorch library.1 Figure 1 shows the layout that is common
to the three models. We used 5x5 convolution kernels, which are
widely used for images and have also been used for audio classifi-
cation [12]. All networks were devised with 4 convolution kernels
and one single hidden representation of 4 channels. Inputs to all
convolutions were padded with 2 bins on each side and dimen-
sion. This means there was really no downsampling neither pool-
ing, and the hidden representations had the same dimension of the
input, which helped recovering the fine details of the input. Both
the encoder and the decoder used Rectified Linear Units (ReLU)
as activation functions. Initialization for weights connected to Re-
LUs is conventionally implemented as specified in [18]. However,

1http://pytorch.org/

we found that for this unsupervised setting, results could be un-
stable due to random initialization. On one hand, different initial
balances between the components of the loss function could lead
the network to fall into a local minimum. On the other, the network
could end in a slightly different state for the same number of iter-
ations even when converging to a stable solution. In order to make
the networks predictable, we used a basic CAE trained to optimize
only LMSE to pre-initialize the weights. The proposed models
were then used to fine tune the weights with the additional loss
components. This had the side effect of choosing a random seed.
It has been shown that pre-training is robust to changes in the ran-
dom seed [19]. We verified that, for different pre-trained networks,
our models would always converge to a stable solution. However,
thinking about the use of the algorithm in an interactive effects pro-
cessor, the predictability resulting from the use of a fixed random
seed was also beneficial. All models were trained using the ADAM
[20] variant of stochastic gradient descent (SGD). Like in [9], each
spectrogram was used as a single batch, both for pre-training and
fine tuning. For the pre-training, we used two different datasets,
one composed of monophonic loops and one with polyphonic mu-
sic signals. For dealing with monophonic sounds, the pre-training
dataset was obtained by randomly sampling 100 loop sounds from
the collection bundled with Apple’s Logic Pro software. For deal-
ing with polyphonic mixtures, the pre-training dataset was created
by extracting one minute from each song in the test set (50 songs)
of the DSD100 dataset.2 For both the training and pre-training
stages, the weight_decay parameter, available in pytorch, was
used. This corresponds to an l2 regularization in the weights,
which is omitted in the formulation for clarity. A value of 0.01
was used for cae1 and cae2, while for cae3 a higher value of 0.5
helped prevent the weights getting biased towards one of the two
outputs. All networks were trained for 100 epochs. Spectrograms
were computed using 20 ms windows with 15 ms overlap except
when noted. The code for the implementation can be obtained
from https://github.com/flucoma/DAFX-2018.

5x5
Convolution

ReLU

5x5
Deconvolution

ReLU

input

output

hidden 
representation

Figure 1: Convolutional autoencoder network structure

2https://github.com/faroit/dsdtools
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(a) Original drum loop sound (b) Drum loop processed by cae1

(c) Drum loop with thresholded magnitude (d) Drum loop remixed with cae1 variations
Figure 2: Using cae 1 on a drum loop

5. EXAMPLE RESULTS

In this section we show examples of the use of cae1, cae2 and
cae3 as described in the previous sections. We first show a cre-
ative application of cae1 with a drum loop, then we analyze the
separation into steady and transient components of cae2 and cae3
using a monophonic and a poyphonic sample. All audio exam-
ples can be listened in the companion web page for this paper:
http://www.flucoma.org/DAFX-2018/.

The original drum loop is shown in Figure 2a. A sparse version
obtained with cae1 is shown in Figure 2b. A lot of the resonance
of the drums has been lost. For comparison, Figure 2c shows a ver-
sion of the original with the same number of zero entries (around
94%) as the processed version (i.e. magnitude bins were sorted
and zeroed below a threshold to obtain the same number of zeros).
It seems that cae1 focuses more on the harmonics of the drums.
We found this effect can be used for creative processing to obtain
multiple variations of the same sample. As an example, Figure 2d
shows an example where multiple copies using different values of
�1 at different window and hop sizes have been mixed with the
original.

We now focus on transient/stationary separation using cae2
and cae3. Figure 3 is a monophonic fragment of a glockenspiel

melody from Freesound.org3. The original sound includes signif-
icant background noise. Figures 4a and 4b show the magnitude
spectrograms of the separation with cae2. The background noise
has been eliminated, and the stationary and transient components
are clearly separated. When listening to the sounds, it can be noted

3https://freesound.org/people/bbatv/sounds/
332932/

Figure 3: Original glockenspiel sound
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(a) Separation of glockenspiel transients with cae2. (b) Separation of glockenspiel stationary components with cae2.

(c) Separation of glockenspiel transients with cae3. (d) Separation of glockenspiel stationary components with cae3.
Figure 4: Using cae2 and cae3 on a glockenspiel sound

Figure 5: Original polyphonic mixture

that the transients still retain some of the pitch information but the
duration is very short. In the stationary components, the attack has
been clearly removed. The parameter values for the transient esti-
mation were �1 = 8e-4, �2 = 300. For the stationary estimation,
the values were �1 = 4e-5, �2 = 10. Figures 4c and 4d show the
results with cae3. The spectrograms look also sparse, but the sta-
tionary components seem to show a stronger attack, which can be

attributed to the use of the soft mask. When listening to the audio
it can be noted that the attack is in fact very soft. In this case, the
parameters were tuned to �1 = 5e-5, �2 = 0.2, �3 = 0.3.

For both models, the strategy was to set first the target level of
sparsity with �1 and then adjust the rest of parameters. However,
we noted that the competition of both estimates in cae3 makes it
more difficult to find appropriate values for the parameters.

Figures 5, 6a, 6b, 6c and 6d correspond to a hip hop music
excerpt4. The separation is obviously more difficult. For both
networks, the separation of transients produces noticeable musi-
cal noise. They are still good indicators of the downbeat of the
rhythm. The stationary components in cae2 are biased towards
the bass, which is salient and perhaps the only instrument pro-
ducing steady tones. Contrastingly for cae3 the stationary part is
remarkably more simlar to the mix, but with smoothed transients,
which could be attributed to the joint estimation. The parameters
for cae2 were �1 = 1e-4, �2 = 100 and �1 = 4e-5, �2 = 50
for transient and stationary components, and �1 = 1e-4, �2 = 2,
�3 = 6 for the joint model cae3.

4The excerpt was extracted from Attention by Catburglaz, http://
catburglaz.com
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(a) Separation of transients in polyphonic mixture with cae2. (b) Separation of stationary components in polyphonic mixture with
cae2.

(c) Separation of transients in polyphonic mixture with cae3. (d) Separation of stationary components in polyphonic mixture with
cae3.

Figure 6: Using cae2 and cae3 with a polyphonic mixture

6. CONCLUSIONS

In this paper, we have explored the use of unsupervised convolu-
tional autoencoders for audio transformation in the time-frequency
domain. Specifically, we have shown that by programming cus-
tom loss functions they can be tuned to separate stationary and
transient components. The results are encouraging, especially for
monophonic sounds, while polyphonic mixtures are still challeng-
ing. One interesting aspect of this work is the possibility to control
the learning process, producing different levels of sparseness and
different qualities of transients and stationary components. This
brings more flexibilty than HPSS approaches such as median fil-
tering. Such flexibility is of particular interest to us as it presents
opportunities for creative exploration: being able to tune proces-
sors by ear to fit aesthetically with the materials and the context in
which they are used is a very important aspect of artistic interfaces.
For future work, we plan to work on more useful mappings of the
loss functions to user interface parameters.
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ABSTRACT

Current datasets for automatic drum transcription (ADT) are small
and limited due to the tedious task of annotating onset events.
While some of these datasets contain large vocabularies of percus-
sive instrument classes (e.g. ~20 classes), many of these classes
occur very infrequently in the data. This paucity of data makes
it difficult to train models that support such large vocabularies.
Therefore, data-driven drum transcription models often focus on
a small number of percussive instrument classes (e.g. 3 classes).
In this paper, we propose to support large-vocabulary drum tran-
scription by generating a large synthetic dataset (210,000 eight
second examples) of audio examples for which we have ground-
truth transcriptions. Using this synthetic dataset along with exist-
ing drum transcription datasets, we train convolutional-recurrent
neural networks (CRNNs) in a multi-task framework to support
large-vocabulary ADT. We find that training on both the synthetic
and real music drum transcription datasets together improves per-
formance on not only large-vocabulary ADT, but also beat / down-
beat detection small-vocabulary ADT.

1. INTRODUCTION

Automatic Drum Transcription (ADT) is the task of creating a
symbolic score of the percussion instrument events within an audio
recording of a musical piece. It is a subtask within Automatic Mu-
sic Transcription (AMT), which aims to create a symbolic score of
all the events within a musical piece. With accurate AMT, tens of
millions of musical recordings could be indexed, compared, rec-
ommended, mined, and studied at scale using familiar musical
concepts like pitch, harmony, rhythm, meter, and tempo. Accu-
rate ADT could also aid in the development of generative rhythm
models, descriptive models of rhythmic style, and intelligent digi-
tal audio effects that are informed by transcription and style.

ADT researchers typically simplify this problem by focusing
solely on detecting the onset time and instrument class of all the
notes sounded by percussion instruments in the signal. And very
often, they simplify it even further by limiting the problem to only
the notes sounded by the bass drum (BD), snare drum (SD), and hi-
hat (HH) [1, 2, 3, 4, 5, 6]—a limit that greatly decreasing the utility
of these systems. This is due to the tedious and time consuming
nature of annotating recordings, which results in ADT datasets that
are small and limited, often consisting of just a couple of hours of
audio [1, 7, 8, 9]. In addition, while some datasets have annota-
tions of a large number of percussion instrument classes [8, 7], oth-
ers are limited to the BD, SD, and HH classes [9, 1], and datasets
that do have larger vocabularies have minimal examples of these
extended classes. The recent successful ADT algorithms have used
deep learning architectures incorporating forms of recurrent neural

networks [5, 4, 1, 2]. While powerful, these models require train-
ing on many audio examples in order to generalize well, making it
even more difficult to expand the vocabulary of ADT.

Our goal is to learn ADT models that support a large vocab-
ulary of percussion sounds. To address this, we generated a syn-
thetic dataset that is 126 times larger than four of the most popular
drum transcription datasets combined. We constructed this dataset
using a large collection of MIDI drum loops, a large collection
of drum hit recordings, and non-rhythmic harmonic backgrounds.
We then trained and evaluated a multi-task convolutional-recurrent
neural network (CRNN) drum transcription model using both the
synthetic data and existing real music datasets. However, there is a
risk in training with synthetic data—it may not be reflective of the
same distribution as “real music”, and therefore it may not gen-
eralize to it. Despite this, our intuition behind synthesizing and
training with such a dataset is that it would expose the model to a
wide variety of plausible percussion timbres and rhythmic varia-
tions allowing it to generalize to more unseen data.

In this work, we investigate the utility of synthetic data for
ADT. Furthermore, to make full use of the real music datasets on
the ADT task, our model follows a multi-task learning paradigm.
However, both data synthesis and multi-task learning are methods
to mitigate the problem of data paucity. Therefore, we also in-
vestigate the utility of multi-task learning in ADT when used in
combination with synthetic training data.

2. RELATED WORK

As in many domains, there has been a recent shift to solving au-
tomatic drum transcription (ADT) with deep learning [1, 2, 5, 4].
Earlier approaches to ADT often fell into one of three categories
defined by Gillet and Richard: segment and classify, match and
adapt, separate and detect [6]. These approaches often combined
multiple machine learning techniques such as support vector ma-
chines (SVM), hidden markov models (HMM), and non-negative
matrix factorization (NMF) [10, 11]. While these models could
perform well on solo drums [11], they often failed in the presence
of polyphonic music [12]. Recent approaches that use deep learn-
ing incorporate variants of recurrent neural networks (RNNs) and
are more robust than their predecessors in the presence of poly-
phonic music [1, 2, 4, 5]. However, deep architectures require
many audio examples to generalize, and therefore due to the lim-
ited amount of annotated data, these recent approaches have lim-
ited their vocabulary of drum voices to the commonly occurring
bass drum (BD), snare drum (SD), and hi-hat (HH). Recently, Wu
and Lerch proposed to address data paucity in ADT with a student-
teacher learning paradigm that utilizes unlabeled audio data. How-
ever, they still limited their work to BD, SD, and HH.

The field of computer vision also has many tasks which do
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not have enough annotated data to adequately train deep learning
models. Some researchers have addressed this problem by gener-
ating synthetic datasets with 3D-modeling [13, 14]. Ros et al [13]
addressed the problem of urban scene segmentation by generating
images from synthetic worlds using a game development platform.
They trained their models on a combination of real and synthetic
data. Peng et al [14] addressed the problem of object detection us-
ing crowdsourced 3D CAD models to generate images. By using
synthetic data, they were able to explicitly teach the model to learn
invariances to specific transformations.

In machine listening, several researchers have used synthetic
data to train models, including for percussion informatics tasks.
Van Steelant et al [15] synthesized data using MIDI files and drum
sample libraries for the percussive sound classification task. Helen
and Virtanen [10] similarly synthesized data for the drum source
separation task. Thompson et al [16] synthesized drum patterns
for tackling the ADT task using a bar-level classification approach
with mel-frequeny cepstral coefficients (MFCCs) and an SVM.
While their method used a vocabulary of 6 percussion voices, it
had difficulty detecting these voices in the presence of equally
mixed polyphonic accompaniment (f-measure 0.48).

Recently, models incorporating deep multi-task learning [17]
have achieved state-of-the-art performance on multiple music in-
formation retrieval tasks [1, 18]. McFee and Bello [18] used a
structured representation of chord qualities along with a multi-
task model for large-vocabulary chord recognition. Vogl et al [1]
jointly trained a multi-task CRNN for ADT and beat tracking.
While they obtained state-of-the-art results, they found minimal
improvement jointly training the beat detection task, but they did
see improvement when incorporating oracle beat features. Since
they had a minimal amount of data with annotated beats, increas-
ing the amount of training data may be helpful in this scenario. In
this work, we build upon the results of Vogl et al and use a similar
CRNN model for multi-task learning, but we train our model with
an abundance of synthetic data.

3. METHODS

3.1. Task Definition

In this work, we define “small-vocabulary” drum transcription as
the task of transcribing the onsets of 3 percussion voices: bass
drum (BD), snare drum (SD), and hi-hat (HH). We define “large-
vocabulary” drum transcription as the task of transcribing the on-
sets of the following 14 percussion voices which are commonly
found in drum sample libraries: bass drum, snare, snare (rim), low
tom, mid tom, high tom, open hi-hat, closed hi-hat, ride cymbal,
crash cymbal, conga, hand clap, clave, and bell.

3.2. Drum Transcription Datasets

To combat the problem of data paucity in large-vocabulary ADT,
we use a combination of existing real music datasets (3.69 hours
of data) along with a new synthetic dataset of 210k eight-second
audio examples (467 hours). The tasks for which these datasets
have annotations varies. Some have 3-voice drum annotations and
others have annotations for more voices that must be mapped to
our 14-voice task. Some of the datasets also have beat annotations.
See Table 1 for details about the datasets.

Table 1: Summary information on the datasets used in this work.

RBMA
[1]

IDMT
SMT [8]

ENST
[9]

MDB
[7]

SDDS
(3.2.1)

Hours 1.67 0.51 1.28 0.23 467
Solo Drums No No Yes No No
Onsets 24k 9k 25k 8k 14853k
14-voice No No Yes Yes Yes
3-voice Yes Yes Yes Yes Yes
Beat Yes No No No Yes

3.2.1. Synthetic Drum Dataset (SDDS)

To generate synthetic data, we rendered 60k audio examples from
a collection of MIDI drum loops using randomly selected drum
samples from a sample library. These examples were then aug-
mented by adding harmonic background noise, stochastic noise,
and small pitch shifts, bringing the total number of audio exam-
ples to 210k.

The examples were constructed in the following manner. From
a release of eight sample libraries1, we collected all of the one-shot
drum samples that were labeled as bass drum, snare, snare (rim),
tom, open hi-hat, closed hi-hat, ride cymbal, crash cymbal, conga,
hand clap, clave, and bell. These samples were a mixture of both
electronic- and acoustic-sounding drums. We did not have con-
sistent specific tom labels, so we split the tom recordings based
on the sum of their median pitch [19] rank and median spectral
centroid rank into low toms (0–25 percentile), mid toms (35–65
percentile), and high toms (75–100 percentile). The largest, most
diverse of the sample libraries2 was set aside as the test/validate
set, and the remaining libraries were used for the train set. The
exception to this statement is the ride cymbals—the test set did not
have any recordings labeled as ride cymbals. To compensate, we
divided the ride cymbals between the two sets. All of the drum
hit recordings were resampled to 44.1 kHz and peak RMS normal-
ized. The pitch, spectral centroid, and RMS energy were computed
on frames of size 1024 with 50% overlap. This overall process re-
sulted in 3758 recordings in the train set and 2053 recordings in
the test/validate set.

Next, 60k (50k train / 5k validate / 5k test) MIDI drum loops
were sampled from the freely available Drum Percussion Midi
Archive (800k)3—an archive of 800k MIDI drum loops scraped
from public web sites, much like how the content of the Lakh MIDI
dataset was acquired [20]. We sampled these loops by randomly
selecting one measure from a random MIDI file in the collection
with the constraints that the measure was less than 3 seconds long
and contained at least 3 percussion instruments. The measure was
then looped and processed to be 8 seconds in duration with the
first downbeat occurring at a random offset from the beginning of
the file. Each MIDI loop was then rendered to audio by creating
a separate “track” for each percussion voice, randomly selecting a
drum sample for each percussion voice, and placing them in the
track “monophonically” (i.e. drum hits for the same voice never
overlapped) at each note onset time. The training set loops were
rendered with the training set of drum samples, and both the vali-
date and test loops were rendered with the testing/validation set of

1http://musician.givegetwin.com/drum-heaven/
2Wave Alchemy - Drum Tools 01 Deluxe
3https://goo.gl/GhV7pc
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Figure 1: Distribution of drum onsets in both the Real mu-
sic (i.e., RBMA13, ENST-Drums, IDMT-SMT, MDB-Drums) and
Synth (i.e., SDDS) dataset groups. Note the log-scale of the x-axis.

drum samples. When rendering the loops, we scaled the amplitude
of each drum sample by MIDI velocity as recommended in [21]:

r = 10rdB/20 (1)

b =
vmax

(vmax � 1)
p
r
� 1

vmax � 1
(2)

m =
1� b
vmax

(3)

a =

(
(mv + b)2 if v > 0

0 otherwise
(4)

where v is the note’s MIDI velocity in the range [0, vmax] with
vmax = 127, rdB is the output amplitude range in dB (set to 60
dB), and a is the resulting amplitude. All percussion voice tracks
were mixed together with equal weights.

To generate non-rhythmic background accompaniment with-
out discernible onsets, we selected 20 recordings (10 train, 10
test) containing harmonic instruments from MedleyDB [22]. Each
recording was “smeared” in time by processing it with the Pysox
[23] reverberator both forward and backward with randomly se-
lected reverberation settings in a range to produce long-tail rever-
beration. This was repeated 12 times for each recording, each time
pitched up an additional semitone, to produce 120 training back-
grounds and 120 test/validate backgrounds. All files were trimmed
to 30 seconds.

Using the MUDA data augmentation library [24], we then aug-
mented the rendered training set of drum loops by a factor of four
by varying both the background and the pitch, each with two vari-
ants. The goal of augmentation was to help the model learn in-
variances to different backgrounds and small changes in pitch. For
each file, we selected two random 8 s background segments with
random mixing coefficients in the range [0.01, 0.5], and we se-
lected two random semitone pitch shifts sampled from N(0, 0.05).
Lastly, to add robustness to noise, we also added white noise with
a random mixing coefficient in the range [0.01, 0.1]. We repeated
this process for the training and validation sets, but we only used
one variant of each augmentation step, which resulted in only one
processed recording per drum loop. The unprocessed drum loops
were discarded. The augmentation process increased the size of

the training set from 50k to 200k, while both the testing and val-
idation sets remained at 5k. We will refer to this dataset as the
Synthetic Drum Dataset (SDDS).

3.2.2. Real Music Datasets

We also trained and evaluated on four standard drum transcription
datasets: RBMA13 [1], IDMT-SMT [8], ENST-Drums [9], and
MDB-Drums [7].

RBMA13 [1] is a dataset of 27 fully-produced music tracks in
the genres of electronic dance music (EDM), singer-songwriter,
and fusion-jazz. It contains both annotated drum onsets and beat /
downbeats. While there are several classes of percussion sounds in
the recordings, only the BD, SD, and HH are annotated. We used
the dataset’s 3 predefined cross-validation splits.

IDMT-SMT [8] is a dataset of solo drum recordings consist-
ing of BD, SD, and HH sounds from acoustic drum kits (10 dif-
ferent kits), drum synthesizers, and drum sample libraries. The
dataset contains both recordings of isolated, single drum sounds
and also recordings of rhythmic patterns using multiple drums. In
this work, we only used the recordings of the rhythmic patterns.
We randomly split the dataset into 3 cross-validation splits.

ENST-Drums [9] is a dataset of recordings from 3 drummers
with different drum kits. It contains drum onset annotations for
20 different classes of percussion sounds. Of these 20 classes,
we mapped 11 down to 10 of the classes in our vocabulary. The
9 remaining classes that were out of our vocabulary (e.g., brush
sweep, Chinese ride cymbal) were ignored. While the dataset also
contains many solo drum recordings, we only used the subset of
recordings with accompaniment. The accompaniment and drums
were summed together to create polyphonic mixtures. We used the
splits of the drummers for our 3 cross-validation splits.

MDB-Drums [7] is a set of 23 fully-produced music tracks
from the MedleyDB dataset [22]. It contains 6 classes of percus-
sion sounds (bass drum, snare drum, hi-hat, tom, cymbal, other)
with 21 subclasses (e.g., snare drum: drag, open hi-hat). Of these
21 subclasses, we mapped 17 down to 9 of the classes in our vocab-
ulary and ignored the remaining 4 classes. We used the dataset’s
three predefined cross-validation splits.

3.3. Multi-Task Model

In this work, we used a convolutional-recurrent neural network
(CRNN) model, very similar to the current state-of-the-art ADT
model published in [1]. The model is constructed of 4 blocks of
components as described in Table 2 and visualized in Figure 2.

We want to fully utilize the ADT and beat annotations in the
real music datasets, but some datasets have 3-voice annotations
and others have a larger number of voices that we reduced to our
14-voice vocabulary. Rather than trying to map the 3-voice annota-
tions up to 14-voices and dealing with class assignment ambiguity,
we instead treat it as two separate tasks—3-voice transcription and
14-voice transcription—and map the 14-voice annotations down to
3-voices (i.e., grouping the specific snare and hi-hat annotations,
keeping bass drum as is, and ignoring the rest). To support all of
these tasks, we designed our model as a multi-task with different
outputs and losses for three tasks: 14-voice drum transcription,
3-voice drum transcription, and beat / downbeat detection.

The model receives two feature types as inputs in the input
block. The first is the log-magnitude, log-frequency short-time
Fourier transform (Logf-STFT). To compute this feature, we first
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Activations
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Figure 2: High-level architecture of multi-task convolutional-recurrent neural network model. See Table 2 for details.

Table 2: Detailed architecture of multi-task convolutional-
recurrent neural network model. Components that occur in par-
allel at the same model depth are presented in the same row. The
parentheses on the right-hand side of each cell indicate the output
size for that component.

In
Block

Logf-STFT (799, 64) Logf-Onset (799, 64)
BatchNorm (799, 64) BatchNorm (799, 64)

Stack (799, 64, 2)

CNN
Block

32 (3x3) Conv (799, 64, 32)
32 (3x3) Conv (799, 64, 32)

BatchNorm (799, 64, 32)
ReLU (799, 64, 32)

30% Dropout (799, 64, 32)
64 (3x3) Conv (799, 64, 64)
64 (3x3) Conv (799, 64, 64)

BatchNorm (799, 64, 64)
ReLU (799, 64, 64)

30% Dropout (799, 64, 64)
64 (1x64) Conv (799, 1, 64

BatchNorm (799, 1, 64)
ReLU (799, 1, 64)

RNN
Block

(-6:+6) Context Windowing (799, 832)
64 BLSTM (799, 128)
64 BLSTM (799, 128)
64 BLSTM (799, 128)

Out
Block

14 FC (799, 14) 3 FC (799, 3) 2 FC (799,2)
14-voice 3-voice Beats

R3 S R4 SR1 S R2 S

Figure 3: Round robin sampling for training. S is the synthetic
dataset and RN are the real datasets: 1:RBM-13, 2:IMDT-SMT,
3:ENST, 4:MDB

resample the audio to 22050 Hz and peak normalize it. We then
compute the linear-frequency STFT on 1024-sample frames with
a ~10 ms (221 sample) hop size. The magnitudes of the linearly-
spaced frequency bins are then grouped into log-spaced bins us-
ing triangular frequency-domain filters—8 octaves of 8 bins per
octave, starting at 40 Hz (i.e, 64 bins). We then log-scale these
features. The second input is a multi-band onset signal computed
from the Logf-STFT features before we log-scale magnitude. For
each frequency bin, we compute the difference function between
the current frame and the mean of the previous 22 frames. We then
half-wave rectify and log-scale the signal. In the model, these fea-
tures are batch-normalized [25] and concatenated on top of each
other, creating a 2-channel input to the CNN block.

The purpose of the CNN block is to model the timbral charac-
teristics of drum onsets. Described in detail in Table 2, this block
consists of 3 stacks of convolutions, batch-normalization, rectified
linear unit (ReLU) activations, and dropout [26] (rate = 0.3) lay-
ers. Each of the first two stacks uses 2 layers of 3⇥ 3 convolution
filters, padded so the output is the same size as the input. The final
stack uses one layer of 1⇥64 convolution filters (without padding)
and does not include dropout. This block maintains the temporal
resolution of the input.

The purpose of the RNN block is to model the temporal dy-
namics of drum onsets. This block consists of a stack of three bidi-
rectional long short-term memory (BLSTM) [27] components. To
more explicitly model the context, the input to the first BLSTM is
padded and each temporal frame is concatenated with the 6 previ-
ous and 6 subsequent frames.

Each output frame of the RNN block is fed into three task-
specific fully-connected (FC) layers in the output block: 14-voice
transcription, 3-voice transcription, and beat / downbeat detection.
In multi-task learning, this architecture is described as “hard pa-
rameter sharing” in which tasks share parameters for several lay-
ers followed by task-specific layers [17]. The model outputs and
training data are encoded as multi-label binary activations with the
same temporal resolution as the input (see Figure 2)—i.e, for each
temporal frame, a class (i.e, percussion voice or beat / downbeat)
bin is 1 if it contains an onset event, and 0 otherwise. The loss for
each output is computed using binary cross-entropy.

3.4. Training

For the experiments in this paper, our model was implemented in
Keras [28] and was trained on 8 s examples. We optimized using
Adam [29] with gradients clipped at 1.0, a learning rate of 0.001,
�1 = 0.9, �2 = 0.999, and decay = 0. We used batch sizes
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of 8 and an “epoch” size of 2000. We reduced the learning rate on
plateau (patience=5), and we trained for a maximum of 100 epochs
with early stopping set to a patience of 25 epochs.

3.4.1. Task weights

With multiple outputs and loss functions, the optimizer minimizes
a weighted combination of the losses:

L = �0L0 + �1L1 + �2L2 (5)

where �i are the loss weights. Tasks with sparse output targets can
achieve a low loss by simply predicting constant output. There-
fore, if losses are equally weighted, training heuristics such as
early-stopping and learning rate reduction will be dominated by
tasks with denser outputs. In our training data, the distribution of
the 14-voice transcription task is much sparser than the others, re-
sulting in a small loss. To remedy this, we weighted the tasks by
the inverse estimated entropy of their event activity distribution:

pi =
nevents

nclasses ⇥ ntimesteps
(6)

�i = (�pi log(pi)� (1� pi) log(1� pi))
�1 (7)

We estimated �i from the empirical distribution of events in the
training set for each task, and weighted the task losses 0.53, 0.16,
and 0.31 respectively for 14-voice transcription, 3-voice transcrip-
tion, and beat / downbeat detection.

In addition, a task loss was masked for training examples with-
out annotations for that particular task. This enables us to train a
multi-task model with incomplete data.

3.4.2. Sampling

To have a numerically stable loss when training with incomplete
data, the data has to be sampled such that all tasks are represented
in each batch. Therefore, a simple random sampling procedure is
not adequate. To accommodate this constraint, we utilize a round-
robin sampling procedure using Pescador [30] as shown in Fig-
ure 3. This sampling procedure cycles through the real music
datasets. Each time it samples from a real music dataset, it ran-
domly selects an 8 s time interval from the dataset. Each time it
samples from the synthetic music dataset, it randomly selects an 8
s example from the dataset. When training with both real and syn-
thetic data, every other sample is from the synthetic dataset. This
helps prevent overfitting due to the large quantity of synthetic data.
The round-robin sampling procedure ensure that all active datasets
will be present in a single batch, and therefore all tasks will be
present as well. However, since the datasets vary in size, exam-
ples in smaller datasets will be presented more frequently to the
model. This sampling procedure was used in both training and the
calculation of the validation loss. However, when testing, we did
not use this procedure—outputs were predicted for each example
once, using the entire duration of the signal, i.e., the full duration
of a music track rather than a 8 s time interval.

3.5. Experiments

To evaluate the effectiveness of our synthetic training data, we
trained our model with three variations of training data:

1. Real: the real music dataset group (RBMA13, IDMT-SMT,
ENST, MDB-Drums)

2. Synth: the synthetic dataset (SDDS)
3. Real + Synth: and the combination of both the real music

dataset group and the synthetic dataset.
To balance the task in each batch, we used the round robin sam-
pling scheme described in Section 3.4.2. When training with the
real music datasets, we used the cross-validation splits as noted in
Section 3.2.2 for training. To do so, we grouped the corresponding
splits of the datasets together, e.g. the first splits from each dataset
were grouped together when determining training and validation
sets. For validation and testing, we further partitioned the data,
using 25% of each split for validation and 75% for testing. In con-
trast, the synthetic dataset had one large training set and smaller
validation and test sets. For consistency with the Real and Real
+ Synth variants, training with the Synth variant was also repeated
three times with different random samples.

Furthermore, to investigate if the addition of large amounts of
synthetic data could benefit from a larger model, we also varied the
capacity of the model. We trained a “small” model as described in
Table 2, and we also trained a “large” model. In the large model,
convolution layers that originally had 32 filters were increased to
128 filters, and the number of units in the BLSTM components
was increased from 64 to 256.

As noted earlier, we trained our models with a multi-task learn-
ing paradigm to make use of the Real datasets that only have small-
vocabulary annotations. However, both data synthesis and multi-
task learning can be viewed as methods to mitigate the problem
of data paucity. To investigate how multi-task learning affects the
ADT task in combination with data synthesis, we also trained sin-
gle task models for comparison. These models used the small-
capacity configuration and were only trained on Real + Synth data.
We again evaluated them on Real and Synth data separately.

For each variation, we trained three models, one for each vali-
dation split. For each split, we selected the model with the lowest
validation loss for evaluation. To evaluate our model outputs, we
estimated the locations of onsets and beats from the output acti-
vations using the peak picking method described in [31], in which
an output activation sample is selected as a peak if it meets the
following criteria:

1. x(n) = max(x(n�mpre), . . . , x(n+mpost))

2. x(n) � mean (x(n� opre), . . . , x(n+ opost)) + �

3. n� nlastOnset > w

where x(n) is an output activation, n is the index of the current
sample, nlastOnset is the index of the last identified onset, � is
a threshold parameter, w is the minimum number of samples be-
tween onsets, and mpre, mpost, opre, opost are sample offset val-
ues that define the window over which the max and mean func-
tions are computed. We tuned peak parameters for each model and
task combination using a randomized search with 500 iterations
scored on the validation set.

The resulting models were separately evaluated on both the
test set of their corresponding split’s real music dataset group and
of the synthetic dataset. We used a 50 ms evaluation window in all
experiments.

4. RESULTS

Table 3 presents the results of the experiments described in Sec-
tion 3.5. Each value in the table is a mean metric (f-measure, pre-
cision, and recall) averaged over the test sets for the three cross-
validation splits. For the small capacity variants evaluated on the
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Table 3: Mean model performance (over CV splits) for all three tasks evaluated on both real music and synthetic datasets while varying the
distribution of training data, model capacity, and tasks. F: f-measure, P: precision, R: recall. Bold items indicate best performance per
column for each group of training variants. *Asterisk indicates best task performance on Real data across all variants.

Learning
Paradigm

Capacity Eval. Data Train. Data 14-voice Trans. 3-voice Trans. Beat Detect.
F P R F P R F P R

Multi-task

Small

Real
Real 0.58 0.55 0.61 0.69 0.64 0.74 0.62 0.68 0.58

Synth 0.43 0.45 0.42 0.61 0.57 0.67 0.61 0.59 0.64
Real + Synth 0.68 0.67 *0.70* *0.77* *0.77* 0.77 0.74 0.74 0.74

Synth
Real 0.47 0.51 0.43 0.61 0.60 0.62 0.58 0.56 0.60

Synth 0.74 0.76 0.72 0.85 0.84 0.86 0.70 0.68 0.75
Real + Synth 0.70 0.64 0.77 0.84 0.81 0.87 0.69 0.72 0.68

Large

Real
Real 0.63 0.63 0.63 0.72 0.69 0.76 0.57 0.59 0.55

Synth 0.44 0.42 0.45 0.62 0.58 0.68 0.63 0.58 0.69
Real + Synth 0.70 0.73 0.68 0.76 0.74 0.78 *0.75* *0.75* *0.75*

Synth
Real 0.48 0.51 0.46 0.63 0.64 0.63 0.60 0.55 0.65

Synth 0.77 0.78 0.77 0.87 0.86 0.87 0.75 0.68 0.84
Real + Synth 0.72 0.71 0.74 0.83 0.81 0.87 0.69 0.72 0.69

Single-task Small

Real Real + Synth *0.72* *0.74* 0.69 - - - - - -
Synth Real + Synth 0.69 0.68 0.71 - - - - - -
Real Real + Synth - - - *0.77* 0.74 *0.81* - - -

Synth Real + Synth - - - 0.82 0.78 0.87 - - -
Real Real + Synth - - - - - - 0.64 0.59 0.69

Synth Real + Synth - - - - - - 0.65 0.61 0.71

Real test set, the model trained on only Synth data performs worse
than the model trained on only Real data—e.g., f-measure 0.43 vs
0.58 for 14-voice transcription. This is true across all three tasks,
though the effect on beat detection is minimal. However, when
models are trained on both the Real and Synth data together, we
see a large improvement in performance on all three tasks—e.g.,
f-measure 0.68 for 14-voice transcription. This trend is present
in all three tasks. This implies that both Real and Synth are use-
ful and complementary when training ADT models. We speculate
that the Synth data teaches the model a wider variety of percus-
sion timbres, whereas the Real data teaches the model to ignore
instruments not relevant to the ADT task. This conjecture seems
to hold with respect to the models’ performance when evaluated
on the Synth data—the models trained on only the Synth perform
better or equal to the models trained on both Synth and Real data.

To further understand the models’ performance on the 14-voice
transcription task, we also evaluated class-specific performance
(see Figure 4). We find that when trained on only Real data, the
model only predicts 3 classes with f-measure performance above
0.5—bass drum (0.68), snare drum (0.61), and closed hi-hat (0.62).
Except for the open hi-hat (f-measure 0.11), the model fails to pre-
dict all other classes. When Synth data is added to the training
set, the f-measure performance improves for the bass drum (0.73),
snare drum (0.74), closed hi-hat (0.74), and open hi-hat (0.55).
The model now also has non-zero f-measure for several classes
on which the Real-trained model completely failed to predict—
e.g., crash cymbals (0.08), ride cymbals (0.45), low toms (0.09),
mid toms (0.05), high and toms (0.04). Unfortunately, the perfor-
mance on all of these classes is quite low with the exception of
the ride cymbals. Interestingly, the precision on the tom classes is
much higher than the recall—while this may have several causes,
one possible cause could be improperly tuned peak-picking pa-

rameters, indicating that we should investigate class-specific pa-
rameters. There are also several classes on which the model still
completely fails—snares (rim), congas, hand claps, bells, claves.
However, if we revisit the class distribution of drum onsets for the
Real data in Figure 1, we see that class performance is closely
correlated to the data’s class distribution. While this could be
caused by high-variance performance estimates due to the rarity
of these onset events in the evaluation data, if this were the case,
one might expect the model to have a high performance for at least
one such classes. For comparison, if we look at the model’s perfor-
mance when evaluated on Synth data, we see a significant increase
in performance for all of these classes except for the hand claps
and bells, which have the lowest representation in the Synth data.
Therefore while the Synth training data may expose the model to
a wider variety of timbres, we still need to expose the model to
classes of interest in a musical context with other instruments—
with its current architecture, the model does not seem to generalize
this ability across classes.

From Table 3, we also see that the large capacity models have
roughly the same performance as the small models (sometimes
slightly worse, sometimes slightly better) when evaluated on Real
data. Whereas, the large capacity models trained and evaluated on
Synth data see a small but consistent boost in performance from
the higher capacity. Therefore, while increasing model capacity
may help when training and evaluating on an abundance of syn-
thetic data from the same distribution, it does not seem to improve
model performance when evaluated on real music data.

Lastly, the models trained separately on the 14-voice and 3-
voice transcription tasks typically performed very similarly to their
multi-task counterparts (f-measure ±0.02) with the single-task 14-
voice model performing a bit better on the Real data (f-measure
0.72 vs 0.68). In contrast, the single-task beat detection model
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Figure 4: Mean model performance (over CV splits) for 14-voice transcription performance broken down by class. Top: Model trained
and evaluated on the real music datasets (RBM-13, IDMT-SMT, ENST, MDB). Middle: Model trained on both the real music dataset group
and synthetic dataset (SDDS), and evaluated on the real music datasets. Bottom: Trained on both the real music datasets and synthetic
dataset, and evaluated on the synthetic dataset.

performed worse than its multi-task counterpart when evaluated
on the Real data (f-measure 0.64 vs 0.74). Furthermore, we had
the least amount of annotated Real data for the beat detection task
(only RBMA-13 has beat / downbeat annotations). Thus, while
multi-task learning in conjunction with synthetic data does seem to
considerably aid on some tasks (e.g., beat / downbeat detection),
this is not true for all tasks, and for 14-voice drum transcription
it seems to actually hinder performance. These results seem to
indicate that the benefit of synthetic data possibly overwhelms the
benefit of multi-task learning for the ADT task.

5. CONCLUSION

In this work, we addressed the problem of data paucity for large-
vocabulary automatic drum transcription (ADT) by generating a
large synthetic dataset. We found that training with synthetic data
can improve performance not only on ADT but also on beat detec-
tion. Improvements were observed on both 3-voice and 14-voice
transcription tasks. On the 14-voice task, training with synthetic
data increased performance for five classes on which the model
without synthetic data training failed completely. Unfortunately,
there is still a lot of room for improvement for 14-voice drum tran-
scription. For synthetic data to help, it needs to be utilized in con-
junction with real music data. In fact, it seems that it may need
at least some minimum amount of annotated real music data in
each class of interest, a problem that is exacerbated by the class
imbalance in real music ADT training data. In our experiments
we did not investigate what this minimum threshold is. However,
these results imply that determining this minimum and focusing
efforts to annotate up to this minimum for classes of interest could
be a reasonable next step for improving large-vocabulary drum
transcription. Another reasonable next step could be to resyn-
thesize new percussion tracks with a variety of timbres for anno-

tated datasets that have separate accompaniment and percussion
tracks (e.g„ MDB-Drums). We also investigated the benefits of
multi-task learning for ADT in combination with training on syn-
thetic data. In our experiments, we trained both single task and
multi-task models, and we found that multi-task learning poten-
tially harmed the ADT task, but greatly benefited our auxiliary
beat / downbeat detection task.

While the distribution of the full SDDS dataset is prohibitive
due to its size, we have made both a small portion of the data avail-
able for download along with the trained multi-task and single-task
models with highest performance on the Real datasets. Further-
more, we have also released a Python package to generate a similar
dataset given collections of drum samples and MIDI files.4

In summary, data synthesis is a promising approach to combat
the problem of data paucity in ADT and to increase the vocabulary
size of ADT systems, but additional work is needed to investigate
how to further improve performance on rare percussion classes. In
addition, multi-task learning can also be a powerful tool to take
advantage of limited training data, but its benefit is not consistent
across tasks when combined with synthetic data. In future work,
we hope to further investigate when training on auxiliary tasks is
beneficial in music information retrieval.
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ABSTRACT

Automatic drum transcription (ADT) aims to detect drum events in
polyphonic music. This task is part of the more general problem of
transcribing a music signal in terms of its musical score and addi-
tionally can be very interesting for extracting high level informa-
tion e.g. tempo, downbeat, measure. This article has the objective
to investigate the use of Convolutional Neural Networks (CNN) in
the context of ADT. Two different strategies are compared. First
an approach based on a CNN based detection of drum only onsets
is combined with an algorithm using Non-negative Matrix Decon-
volution (NMD) for drum onset transcription. Then an approach
relying entirely on CNN for the detection of individual drum in-
struments is described. The question of which loss function is the
most adapted for this task is investigated together with the question
of the optimal input structure. All algorithms are evaluated using
the publicly available ENST Drum database, a widely used estab-
lished reference dataset, allowing easy comparison with other al-
gorithms. The comparison shows that the purely CNN based algo-
rithm significantly outperforms the NMD based approach, and that
the results are significantly better for the snare drum, but slightly
worse for both the bass drum and the hi-hat when compared to the
best results published so far and ones using also a neural network
model.

1. INTRODUCTION

Automatic music transcription is the task of describing a music
signal in a symbolic form - a score - that contains all of the neces-
sary information to replay the same music. Every event in a piece
of music has to be characterized by musically relevant parameters
like the pitch, time position, duration, and the instrument. Ac-
cordingly, the problem of music transcription can be divided into
different challenges: onset detection, f0-estimation and instrument
recognition. While the problem is considered as solved for mono-
phonic signals, it is more challenging for polyphonic ones. The ad-
ditivity of signals and the overlapping of partials of different notes
make the task more and more complex as the number of sources
increases.

A piece of music is generally performed by harmonic and per-
cussive instruments. These instruments have different features.
The spectrogram of a note is sparse in frequency, and a harmonic
note has relatively few constraints with respect to its duration. On
the contrary, a drum event covers a continuous part of the spec-
trum, but has a specific temporal response. Accordingly, different
features are used to transcribe the different events. In this article
we will focus on the automatic transcription of parts of the drum
kit.

Automatic drum transcription is still a challenge today. Sev-
eral methods have been proposed in literature and most of them

can be categorised into two families: segment and classify or sep-
arate and detect. The first category segments the audio and then
tries to describe what the audio segment contains. The second one
separates different instruments and tries to detect onsets in the dif-
ferent channels.

In 2009, Paulus et al. proposed a method based on Hidden
Markov Model (HMM) network in [1]. Recently, different deep
learning methods have been proposed. Vogl et al. use a Recurrent
Neural Network (RNN) which provides an activation function for
the drum instrument (bass drum, snare drum and hi-hat) in [2]. The
first study to use CNN for drum transcription has been performed
in [3].

These different methods can be compared easily as most of
them have been evaluated on the same database, the ENST drum
database [4]. In light of the results, most DNN approaches seem
to lag behind those using Hidden Markov Models (HMM) such as
proposed in [1].

Automatic onset detection, which consists in locating the on-
sets of musical events in a piece of music, is an important initial
step for efficient transcription. Onset detection is frequently used
as a preprocessing step for more refined transcription, as used re-
cently in [5] for piano transcription, and in [6] for drum transcrip-
tion. A successful detection of all onsets significantly reduces the
processing time of the subsequent transcription algorithm which
does not need to be run over the complete signal.

There exists a large multitude of approaches that have been
developed for the onset detection problem. Bello et al. provide
a rather extensive overview of the various methods in [7]. The
methods generally are variations of the following approach: after
a pre-processing step, which highlights some properties of the sig-
nal facilitating the subsequent detection stage, the so called Onset
Detection Function (ODF) is calculated. The local maxima of the
ODF with a value above a threshold (which is a parameter of the
algorithm) are then retained as onsets. Elowsson in [8] for example
used the spectral flux, which is the difference of energy between
the actual temporal frame and the previous one, to calculate the
ODF. Many other approaches to calculate the ODF have been dis-
cussed in the literature.

Recently, onset detection methods based on deep learning have
shown very good results. While some works aim to improve peak
picking from an onset detection function as in [9], others use RNN
(Recursive Neural Network) as in [10] to create the ODF. In 2014,
Schlüter et al. investigated using CNN (Convolutional Neural Net-
work) [11] for the onset detection task, and according to MIREX
20171 the CNN based onset detection can now be considered as
state of the art. In [11] it is shown that the weights of the kernels
of the convolutive layers that are used to detect percussive and

1http://nema.lis.illinois.edu/nema_out/
mirex2017/results/aod/summary.html
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harmonic onsets are rather different. This observation seems to
suggest that these networks may not only be able to detect onsets,
but to detect onsets for specific classes of instruments.

If we compare the CNN architecture used by Schlüter in [11]
for general purpose onset detection and by Wang in [5] for piano
onset detection, we find that the overall structure is very similar.
However, they do not use the same data structure. Similarly how
the RGB channels are accounted for in image processing, Schlüter
uses as input three mel band spectrograms with the same number
of bands but calculated from different STFT representations. On
the contrary Wang uses just one constant Q spectrogram with a
much larger number of bands.

The following paper aims to investigate the use of CNN for
drum transcription. Two different approaches will be considered.
First, we will use a CNN based onset detection as an initial step
for subsequent drum transcription based on a recent method using
non-negative matrix deconvolution [6]. Here we will introduce the
new idea of a detection of qualified onsets meaning onsets fulfill-
ing additional criteria - for example onsets belonging to percus-
sive events or drum instruments. In developing the qualification
of onsets further we will investigate a CNN based drum transcrip-
tion where the CNN are trained to detect individual drum instru-
ments. The later system has strong resemblance to the approach
proposed in [3]. However, instead of training a multi label system
that detects multiple instruments at the same time, we will sepa-
rate the systems into individual drum instrument detectors. That
allows us to investigate the optimal input representation for the
different instruments. Instead of using the magnitude spectrogram
data directly [3], we will use single and multi channel2 mel band
spectrogram data that has been introduced successfully for onset
detection in [11]. We will compare two different cost functions.
We will evaluate the final system using the ENST-Drums drum-
mer that was left aside during training. That allows to compare
our results with the various evaluations performed so far on the
ENST-Drums database. We notably compare with results in [1]
that to our knowledge are the best results reported so far. We also
evaluate the available model of Southall 3 on the three drummers
from ENST-Drums.

The article is organised as follows: Section 2 introduces the
neural network and the different parameters to be compared, Sec-
tion 3 shortly summarizes the NMD algorithm, Section 4 describes
the experimental results, and finally Section 5 summarizes the con-
clusions and describes future work.

2. ONSET DETECTION AND COMPARISON OF
CONFIGURATIONS

2.1. The CNN network

The model we use to compare different configurations is very sim-
ilar to the one in [11, 5] and is represented in Figure 1. We sum-
marize here the architecture of the network.

The input data contains mel frequency spectrogram data. The
subsequent layers are alternating stacks of convolutional layers
with ReLU activations and max-pooling layers. It finally ends with
a fully connected layer of ReLU units and an output layer contain-
ing either a sigmoid unit or a linear unit. The output layer provides

2the term channel will be used for the feature channels of a deep net-
work in the following and has nothing to do with the channels of stereo
audio signal

3https://github.com/CarlSouthall/ADTLib

the ODF. The method then follows the standard approach to detect
local maxima and uses a fixed threshold of 0.5 for the detection of
onset in a given frame, which significantly simplifies the algorith-
mic design.

The feature maps at the output of these layers can be seen as
a convolution between the input and a filter kernel. Usually in
computer vision, the convolution is achieved with square filter. In
time-frequency representation, the two dimensions represent two
different quantities. As the aim of the network is to find changes
over time dimension, it can be more interesting to use narrow rect-
angular filters frequency-wise and the max-pooling operations per-
formed only on the frequency axis.

Following [11] we apply dropout with 50% drop out probabil-
ity at the output of the first fully connected layer, to reduce over-
fitting during the training.

2.2. Parameter comparison

2.2.1. Loss function

The loss function used to direct the optimization of the neural net-
work measures the divergence between the predicted value - the
output of the network - and the target label. For onset detection,
cross-entropy is commonly used because the task of detecting an
onset in a frame has some relations to a binary classification task:
frames containing an onset are marked as 1 and frames without
onsets are marked as 0.

We note however, that the resemblance of the target ODF with
a probability is only partially followed. As the CNN model is
smooth in all parameters, the ODF function produced is smooth
as well. Accordingly, a Dirac-impulse is difficult to produce, and
therefore, similarly to [11], we will construct the target function
by means of placing a sequence of three ones centered at the anno-
tated onset. Broadening the target labels has the beneficial effect
of increasing the pressure on the network to correctly represent
the target labels, and at the same time reduces the problems of
incoherent label positions. In our experiments we have seen that
broadening the labels leads to reduced training times and slightly
improved results. The use of a CNN as onset detector does not
require the ODF to be confined to [0, 1]. This fact motivates us
to compare two different cost functions combined with two cor-
responding output activation functions. On the one hand there is
the binary cross entropy together with sigmoid activation function,
and on the other hand the linear (ReLU) output unit with MSE loss
function. We will discuss the results of the use of these two loss
functions in the experimental section.

2.2.2. Input data structure

Kelz et al. in [12] compare the importance of hyper-parameters
for piano transcription and they rank some hyper-parameters in re-
spect to relative importance. The data representation is the second
most important hyper-parameter. As a matter of fact, several dif-
ferent data representations are used as input data throughout the
literature.

Schlüter et al. in [11] use three log-magnitude mel band spec-
trograms obtained with different time-frequency resolutions. They
process the short time Fourier transform (STFT) with a hop size
of 10 ms and window sizes of 23 ms, 46 ms and 93 ms. As the
spectrograms must have the same size, they filter the spectrogram
with an 80-band mel filter bank covering the band from 27.5 Hz to
16 kHz. We will subsequently denote this representation as multi
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Figure 1: Convolutional neural network used for this work.

channel mel spectrogram (MCMS) where the term channel refers
to the feature channel of a DNN.

On the contrary, Wang in [5] uses a single constant Q trans-
form spectrogram. In this paper, we compare different data rep-
resentations. We feed the eight networks with spectrograms with
different resolution. Two STFT are processed with two different
window sizes, 0.064 ms and 0.125 ms. Then for each spectro-
gram four mel spectrograms are calculated with triangular filters
to compare four numbers of mel-bands: 116, 174, 231 and 289.
We compare these mel spectrograms calculated from an individual
STFT with the input representation proposed by Schlüter.

3. APPLICATION TO DRUM TRANSCRIPTION

We will use the CNN presented in this article in two ways to per-
form automatic drum transcription: combined with an ADT algo-
rithm or alone.

As mentioned in the introduction we will investigate qualified
onset detection with CNN with the objective to use these qualified
onsets in the context of drum transcription. By "qualified onsets",
we mean onsets that are created by one of the three targeted parts of
a drum kits (hi-hat, bass drum and snare drum), either in collection
(onset of any of these instruments) or individually.

In the first case, to achieve drum transcription, we combine
the onset detection with a second stage to determine which of the
three instruments have generated the onset. In the second case
CNNs will perform the complete transcription task.

3.1. Combination of onsets detector with a drum transcription
algorithm

The NMD algorithm for drum transcription we will use in the fol-
lowing is detailed in [6]. It decomposes the time-frequency rep-
resentation of the audio signal into a convolution of a dictionary
containing patterns of instruments and a matrix of activations.

For percussive instruments, the temporal response is a signifi-
cant characteristic. This is the reason for using a dictionary of two-
dimensional time-frequency patterns. These are previously learned
from isolated events of each instrument.

The dictionary contains only patterns from drum instruments
(hi-hat, snare drum and bass drum). But the drum transcription

is processed on polyphonic music with harmonic instruments. To
avoid the activation of drum patterns by other events, the decom-
position includes some patterns in the dictionary dedicated to rep-
resenting the non percussive part of the signal, which we call the
background.

To reduce the computational costs, a prior knowledge of the
onset position is given to the algorithm. An external algorithm,
e.g. [8], feeds the transcription algorithm with the onsets that it
detected. The transcription algorithm focuses on the parts of the
signal that are around these positions. At these positions several
instruments are likely to play. In that case, the segment study en-
ables to separate them.

For each segment, the NMD algorithm aims to approach the
studied spectrogram by activating some patterns from the dictio-
nary. In order to, the dictionary of patterns, called W , and acti-
vations H are usually updated iteratively. For our algorithm, only
background patterns in W are updated but all activations are con-
cerned by the updating step. The update rules are calculated by
minimizing a cost function, here the Itakura-Saïto divergence. As
the background patterns are very flexible, they could in principle
represent all parts of the signal under study. Therefore, it is impor-
tant to penalize the algorithm for the use of background patterns.
To this end the objective function
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with p the number of patterns, l the frequency bin and n the time
frame and with bg designating the background.

Once all segments are analyzed, we follow the procedure de-
scribed in [6] to adapt the detection thresholds that are applied to
the activation to retain onsets of the targeted instruments.

3.2. Using CNN to transcribe drum parts

We also can use CNN described in section 2.1 to transcribe one of
the targeted instrument. Instead of training the network to detect
qualified onsets, we train three individual networks so that each of
them detects only one instrument.

4. RESULTS

4.1. Datasets

4.1.1. RWC dataset

The training database used to adapt the CNN is extracted from
the Real World Computing (RWC) music database [13]. This
database contains annotated polyphonic music of different styles
in MIDI format. We choose two genres, Pop and Jazz and pick
only pieces where drums are present. For Jazz, there are 34 pieces
of music and 100 for the Pop database. Each piece was gen-
erated with three different publicly available MIDI sound fonts:
FluidR3_GM, GuGS_1.47 and HQOrchestralSFCollv2.1.2. The
training database finally contains 102 jazz pieces and 300 pop
pieces. In addition, we add recordings of a the single targeted
instrument. These recordings are given in SMT-Drums.

For some of the experiments, evaluation is performed using a
small hold out test set containing four pieces from the synthetic
RWC database described above.

4.1.2. ENST-Drums dataset

The ENST-Drums database [4] is composed of different multi-
channel recordings from three drummers on three different drum
kits. For each drummer, the data set provides individual hits and
phrases, individual soli which are more complex than the phrases
and longer tracks played without scores but with an accompani-
ment. For these longer tracks, called ’minus-one’, the accompa-
niment is provided with two mixes: "dry" where minimal effects
are added and "wet" with effects and compression. The "wet" mix
sounds closer to commercial recordings than "dry" mix does and
we use the "wet" mix for the following evaluation.

We use the ’minus-one’ tracks mixed with the synchronized
accompaniment. As in [1], scaling factors are applied to the differ-
ent parts: 2/3 for the drums and 1/3 for the accompaniment. The
data set also provides the ground truth annotations for each percus-
sive instrument. The test database contains 64 tracks (21 for two
drummers and 22 for the last one) which last between 30 s and 75
s.

The evaluation is performed by using the drummer cross vali-
dation procedure on the ENST-Drums database [4].

4.2. Evaluation criteria

To evaluate the algorithms, the detected onsets are compared to
the ground truth onsets. A detected onset is considered correct if
the absolute time difference with the associated ground truth on-
set does not exceed 30 ms. We denote by Tp the true positives,

correctly detected onsets, by Fp false positives, detected onsets
which are not in ground truth annotations and by Fn false nega-
tives, onsets present in ground truth annotation but not detected by
the algorithm.

Several measures are calculated from these values. The preci-
sion P gives the part of detected onsets which is relevant and the
recall R gives the part of relevant onsets which is selected. They
are defined as:

P =
Tp

Tp + Fp
R =

Tp
Tp + Fn

(5)

The F-measure is a compromise between recall and precision:

F =
2PR

P + R
(6)

4.3. Evaluation of onset detection for drum instruments

In the first part of the evaluation we will study the performance of
the CNN onset detection algorithm for detecting specific onsets.
In our case, this means the onsets of any of the targeted percussive
instruments. The goal of this first step is to prepare the subsequent
integration of the CNN onset detection algorithm as preprocessing
step into the NMD drum transcription algorithm.

Following a general practice, we will evaluate the detection of
the three main instruments of the percussive part: bass drum (BD),
snare drum (SD) and the hi-hat (HH). These three instruments are
predominant in popular music and are representative of the rhyth-
mic feel in music.

4.3.1. Loss function

As discussed before we compare two loss functions along with ad-
equate changes in the output activation function: binary cross en-
tropy with sigmoid output units and mean square error with ReLU
output units. Several networks are trained with different configu-
rations. We study four numbers of mel-bands (116, 174, 231 and
289) and two sizes of STFT window (0.064 s and 0.125 s). We also
give the results for the MCMS input data configuration detailed in
2.2.2. The networks are trained and evaluated to detect the onsets
of any of the three targeted percussive onsets (hi-hat, bass drum
and snare drum) in the RWC database detailed in section 4.1.1.

In Figures 2 and 3, the results obtained with binary cross en-
tropy are consistently outperforming those that are obtained with
mean square error. For the following comparison, we will there-
fore focus on the binary cross entropy. We note that the onset pre-
diction performance of only the three target percussive instruments
is encouraging with F-measure above 90% for all configurations.
There is no apparent and significant difference between any of the
input data structures.

4.3.2. Evaluation the influence of data structure on the ENST-
Drums database

To improve the relevance of the evaluation for real world sounds
we will now evaluate CNN drum detection approach on the record-
ings of the ENST-Drums database [4]. The evaluation follows the
common three-fold cross-validation scheme with the three config-
urations of the 3 drummers of the ENST-Drums database 4.1.2.
The networks are trained on two drummers of the dataset and
tested on the remaining one. We use all pieces available in the
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Figure 2: Comparison of loss functions on RWC database: binary
cross entropy and mean square error, for STFT window 0.064 s.

data set for the learning phase, during which the evaluation is per-
formed over the minus-one of the same drummers to determine
the optimal result for drum detection (according to the F-measure).
Then we test the generalization on the third drummer who was not
used during training.

We compare the different data input configurations: two STFT
window sizes 64 ms and 125 ms and four numbers of mel-bands
116, 174, 231 and 289 and the MCMS input representation. The
Figure 4 averages the results over the three experiments for the
detection of all percussive onset.

We notice that contrary to the evaluation with the RWC database,
for the ENST-Drums database the use of the MCMS format (three
spectrograms) seems to provide a significantly better results, im-
proving the performance from 91.5% F-measure for the best sin-
gle channel mel-band spectrogram to nearly 93.5% for the MCMS.
While the MCMS representation was equivalent with the individ-
ual spectrogram formats on the RWC database, it is significantly
better for the ENST-Drums database. That suggests the conclusion
that the multiple time resolutions in the different channels of the
MCMS lead to improved robustness of the final detection.

It is interesting to see to what extent the training of MCMS
detector on specific onsets (the main three percussive instruments)
does change its performance. To this end we use the MCMS detec-
tor provided by Schlüter in the madmom package [14]. We eval-
uate the two detectors on a different hold out test set of the RWC
database and we find that the specific onset detector significantly
improves the detection performance in F-measure from 86.8% for
the general purpose onset detector to 93.2% for the percussive on-
set detector.

4.4. Application to drum transcription

Characterizing detected onsets might be advantageous for drum
transcription. We investigate here two uses of the MCMS format
for the drum transcription task. The first method combines the
drum onset detector based on CNN with the ADT algorithm based

Figure 3: Comparison of loss functions on RWC database: binary
cross entropy and mean square error, for STFT window 0.125 s.

on NMD described in 3.1. The CNN gives the drum onset posi-
tions and the NMD algorithm studies the segments around these
positions to determine which percussive instruments provided the
onset. The second one uses three individual CNNs. Each CNN is
trained to detect one of the three main percussive instruments.

4.4.1. Drum onset detector combined to automatic drum tran-
scription algorithm

Given the rather high performance of the drum onset detection
algorithm, we are interested in seeing the effect of the specific
onset detection when combined with an NMD based drum tran-
scription algorithm [6]. We evaluate the performance on ENST-
Drums dataset and present in Table 1 the average results on the
three cross-validation experiments. We compare the obtained re-
sults with Paulus’ and Southall’s results. We evaluate the models
by transcribing the drum parts for the ’minus one’ pieces of ENST-
Drums and perform the mean over the three drummers.

Table 1: Results of transcription on three-fold cross validation.

Methods Metric BD SD HH
HMM+ P(%) 80.2 66.3 84.7

MLLR [1] R(%) 81.5 45.3 82.8
F(%) 80.8 53.9 83.6

Soft Attention+ P(%) 98.5 88.2 67.8
mechanisms [15] R(%) 62.2 40.1 87.9

F(%) 72.0 53.7 76.4
NMD fed by P(%) 79.6 68.8 72.6
drum onset R(%) 64.7 43.9 67.1

detected by CNN F(%) 68.9 52.6 68.3

Feeding the drum onsets to the NMD algorithm does not en-
able it to reach Paulus’s or Southall’s results.
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Figure 4: Comparison different input configurations on percussive
onset detection task on ENST-Drums dataset.

4.4.2. Individual CNNs trained on each drum instrument

In a final experiment, motivated by the very good performance of
the CNN based drum detection algorithm, we evaluate the CNN
specific onset detectors trained to detect the individual drum in-
strument events. We therefore perform the complete transcription
of an individual instrument. We focus this last experiment on the
MCMS network which had the best performance in the previous
experiments. Three independent CNNs are involved in this ex-
periment. Each network is trained to detect only one of the three
main percussive instrument. They are evaluated with the three-
fold cross validation on the ENST-Drums database. The results
averaged over the three folds of the cross validation are given in
Table 2. The results of drum onset detection in ’all drums’ are
also displayed. They are obtained with the CNN trained to detect
qualified onsets (without distinction between instrument) for our
method. Southall’s model does not provide those results.

Table 2: Results of drum transcription per instrument on three-fold
cross validation.

Methods Metric BD SD HH Percus.
HMM+ P(%) 80.2 66.3 84.7 79.0

MLLR [1] R(%) 81.5 45.3 82.8 70.9
F(%) 80.8 53.9 83.6 74.7

Soft Attention+ P(%) 98.5 88.2 67.8 -
mechanisms [15] R(%) 62.2 40.1 87.9 -

F(%) 72.0 53.7 76.4 -
CNN with P(%) 77.5 57.9 71.0 93.7

MCMS R(%) 75.0 67.0 89.7 93.0
configuration F(%) 76.2 62.1 79.3 93.4

We notice that the CNN provides comparatively good results
for the snare drum, for which it obtains 8pts more in F-measure
than Paulus’ method. But it also loses 4pts for the two other in-
struments, the bass drum and hi-hat. Our model is better than
Southall’s method.

Comparing the bass-drum results between the HMM and CNN
methods we can find an explanation for the reduced performance
in Table 3, which displays the results of the individual folds of
the cross evaluation experiment. While the detection of drummer
3 and drummer 2 are performing very satisfyingly, the recall of
drummer 1 is particularly low. Listening to the bass drum sig-
nals of the different drummers reveals that the bass drum signal
of drummer 1 is clearly different from the two other drummers.
Its energy is significantly lower in comparison to the bass drum
signals of drummers 2 and 3. We have tried to counter this differ-
ence by means of using different mixes when training the network,
without achieving any improvement. One can also observe that the
bass drum signal of drummer 1 contains a much less pronounced
onset, which may constitute another explanation for the low recall.
Here, the high specificity of the CNN leads to an over-fitting of the
training signals, which in turn reduces the recall for drummer 1.
Although Southall’s model seems to encounter the same problem,
the HMM model displayed in Table 2 apparently does not have the
same issue with drummer 1. It may indicate that the CNN model
we chose and which worked very well for the general drum detec-
tion task, is too complex.

Table 3: Results of bass drum transcription on three-fold cross
validation.

Train drummers Eval drummer P R F
1 and 2 3 82.5 96.7 89.1
2 and 3 1 75.1 36.7 45.0
3 and 1 2 74.6 98.1 84.8

An other idea to improve detection of bass drum played by
drummer 1 is to normalize over time only. It highlights the sudden
changes of energy which can be characteristic of onsets. However,
this kind of normalization modify the relation of energy between
the frequency bands. But as the energy of bass drum is located in
low frequency bands, the networks is able to correctly detect the
onsets. In fact, for drummer 1, the F-measure on drummer 1 for
bass drum raises 67.7 % instead of 45%. The results for the other
drum instruments and for the percussive instruments are given in
Table 4. We compare the results with [1] and [15].

Table 4: Results of drum transcription per instrument on three-fold
cross validation with normalization over time.

Methods Metric BD SD HH Percus.
HMM+ P(%) 80.2 66.3 84.7 79.0

MLLR [1] R(%) 81.5 45.3 82.8 70.9
F(%) 80.8 53.9 83.6 74.7

Soft Attention+ P(%) 98.5 88.2 67.8 -
mechanisms [15] R(%) 62.2 40.1 87.9 -

F(%) 72.0 53.7 76.4 -
CNN with P(%) 84.0 54.2 71.9 93.8

MCMS config. R(%) 80.7 68.1 86.6 91.7
and tnorm F(%) 81.5 59.4 77.8 92.7

The F-measure is slightly better for bass drum and signifi-
cantly better for snare drum than F-measures obtained with the
method of HMM. The detection of percussive onsets is also largely
more effective. Although normalization over time degrades a little
bit the F-measure for snare drum and hi-hat detection in compari-
son with our model, it is much better for bass drum detection.
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5. CONCLUSIONS

In this paper, we investigated different new approaches to the use
of Convolutional Neural Networks for automatic drum transcrip-
tion. We compared different loss functions and input representa-
tions. We found that the best results are obtained with the MCMS
representation of the input data, namely three log-magnitude spec-
trograms with three different STFT window sizes: 23, 46 and
93 ms filtered into 80 mel frequency bands. We trained the net-
work for the detection of percussive onsets, achieving very good
detection performance well above 90% in F-measure. The com-
bination of specific onset detectors based on CNN with a drum
(bass drum, snare drum and hi-hat) transcription algorithm based
on Non-negative Matrix Deconvolution did not lead to competitive
performances.

Finally, we trained three individual CNNs: each of them de-
tecting one of the three percussive instruments (bass drum, snare
drum and hi-hat). The results obtained are significantly better than
the results obtained with the NMD, which leads us to believe that
the use of CNN for drum transcription has more potential than the
use of a non-negative decomposition. We conjecture that the main
reason for the better results is the fact that the CNN is trained with
an objective function (the ODF) that is much closer to the final
task than the objective function used in the NMD training. Fur-
ther investigation is required to compare the single label detector
proposed in the present paper with the multi label detector. While
the single label detector may have the advantage of specializing
more on the specific instrument, it also may be the reason for the
over-fitting observed notably during the bass drum detection of
drummer 1 of the ENST-Drums database.

6. REFERENCES

[1] Jouni Paulus and Anssi Klapuri, “Drum sound detection in
polyphonic music with hidden markov models,” EURASIP
Journal on Audio, Speech, and Music Processing, 2009.

[2] Richard Vogl, Matthias Dorfer, and Peter Knees, “Drum tran-
scription from polyphonic music with recurrent ,eural net-
works,” Proceedings of the 17th International Society for
Music Information Retrieval Conference (ISMIR), 2016.

[3] Carl Southall, Ryan Stables, and Hockman Jason, “Au-
tomatic drum transcription for polyphonic recordings us-
ing soft attention mechanisms and convolutional neural net-
works,” Proceedings of the 18th International Society for
Music Information Retrieval Conference (ISMIR), 2017.

[4] Olivier Gillet and Gaël Richard, “Enst-drums: an extensive
audio-visual database for drum signals processing,” Proceed-
ings of the 7th International Society for Music Information
Retrieval Conference (ISMIR), 2006.

[5] Qi Wang, Ruohua Zhou, and Yonghong Yan, “A two stage
approach to note-level transcription of a specific piano,” Ap-
plied Science, 2017.

[6] Axel Roebel, Jordi Pons, Marco Liuni, and Mathieu La-
grange, “On automatic drum transcription using non-
negative matrix deconvolution and itakura-saito divergence,”
Proceedings IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 414–418, 2015.

[7] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris
Duxbury, Mike Davies, and Mark B. Sandler, “A tutorial on

onset detection in musical signals,” IEEE Transactions on
Speech and Audio Processing, vol. 13, no. 5, pp. 1035–1047,
2005.

[8] Anders Elowsson and Anders Friberg, “Modelling percep-
tion of speed in music audio,” Proceedings of the Sound and
Music Computing Conference, 2013.

[9] Matija Marolt, Alenka Kavcic, and Marko Provosnik, “Neu-
ral networkd for note onset detection in piano music,” Pro-
ceedings of the International Computer Music Conference
(ICMC), 2002.

[10] Sebastian Böck, Andreas Artz, Florian Krebs, and Markus
Shedl, “Online real-time onset detection with recurrent neu-
ral networks,” Proceedings of the 15th International Confer-
ence on Digital Audio Effects (DAFx), September 2012.

[11] Jan Schlüter and Sebastian Böck, “Improved musical on-
set detection with convolutional neural networks,” Proceed-
ings IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2014.

[12] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian
Böck, Andreas Artz, and Ghehard Widmer, “On the poten-
tial of simple framewise approaches to piano transcription,”
Proceedings of the 17th International Society for Music In-
formation Retrieval Conference (ISMIR), 2016.

[13] Masataka Goto, Hiroki Hashigichi, Takuichi Nishimura, and
Ryuichi Oka, “RWC music database: Popular, classical and
jazz music databases.,” Proceedings of the 3rd International
Society on Music Information Retrieval Conference (ISMIR),
vol. 2, pp. 287–288, 2002.

[14] Sebastian Böck, Filip Korzeniowski, Jan Schüter, Florian
Krebs, and Gerhard Widmer, “Madmom: a new python audio
and music signal processing library,” Late-Breaking Demo
Session of the 17th International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2016.

[15] Carl Southall, Nicholas Jillings, Ryan Stables, and Jason
Hockman, “Adtweb: An open source browser based auto-
matic drum transcription system,” Proceedings of the 18th
International Society for Music Information Retrieval Con-
ference (ISMIR), 2017.

DAFX-7

DAFx-86
DAFx-86



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21th International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

OPTIMIZED VELVET-NOISE DECORRELATOR

Sebastian J. Schlecht

International Audio Laboratories Erlangen �

Erlangen, Germany
Sebastian.Schlecht@audiolabs-erlangen.de

Benoit Alary †

Acoustics Lab, Dept. of Signal Processing and Acoustics
Aalto University, Espoo, Finland
Benoit.Alary@aalto.fi

Vesa Välimäki

Acoustics Lab, Dept. of Signal Processing and Acoustics
Aalto University, Espoo, Finland
Vesa.Valimaki@aalto.fi

Emanuël A. P. Habets

International Audio Laboratories Erlangen �

Erlangen, Germany
Emanuel.Habets@audiolabs-erlangen.de

ABSTRACT

Decorrelation of audio signals is a critical step for spatial sound
reproduction on multichannel configurations. Correlated signals
yield a focused phantom source between the reproduction loud-
speakers and may produce undesirable comb-filtering artifacts
when the signal reaches the listener with small phase differences.
Decorrelation techniques reduce such artifacts and extend the spa-
tial auditory image by randomizing the phase of a signal while
minimizing the spectral coloration. This paper proposes a method
to optimize the decorrelation properties of a sparse noise sequence,
called velvet noise, to generate short sparse FIR decorrelation fil-
ters. The sparsity allows a highly efficient time-domain convolu-
tion. The listening test results demonstrate that the proposed op-
timization method can yield effective and colorless decorrelation
filters. In comparison to a white noise sequence, the filters ob-
tained using the proposed method preserve better the spectrum of
a signal and produce good quality broadband decorrelation while
using 76% fewer operations for the convolution. Satisfactory re-
sults can be achieved with an even lower impulse density which
decreases the computational cost by 88%.

1. INTRODUCTION

In multichannel reproduction systems as well as binaural repro-
duction, the decorrelation of signals is key in controlling the spatial
extent of a reproduced sound source. With decorrelation we aim
to reduce the cross-correlation of the reproduction signals. For in-
stance, when reproducing a mono source on headphones, the spa-
tial image is perceived in the center of the head. Decorrelation can
extend the width of the auditory image such that it appears origi-
nating from a larger area. Fully decorrelated signals may even be
perceived as separate auditory events [1]. Common applications
of decorrelation include controlling the spatial extent, spatial au-
dio coding, sound distance simulation, coloration reduction and
headphone externalization [2–5]. This paper focuses on decorre-
lation methods suitable for controlling the perceived spatial extent
of a sound source.

� The International Audio Laboratories Erlangen are a joint institu-
tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS.

† This work was supported by the Academy of Finland (ICHO project,
grant no. 296390).

Decorrelation may be achieved by randomizing the phase of a
signal while maintaining its magnitude spectrum. In [2], Kendall
proposed a decorrelation filter based on 20–30 ms sequences of
white noise. Shorter decorrelation filters can preserve the qual-
ity of the transients and prevent a reverberation effect [2]. In-
deed, since high frequencies have shorter wavelengths, random-
izing their phases can produce a noticeable smearing effects on
short transient signals if the delays are too long. Unfortunately,
limiting the length of a filter will limit its ability to decorrelate low
frequencies, since long wavelengths require long delays to alter
their phase significantly. This duality illustrates the challenge of
designing a good broadband decorrelator that can compromise be-
tween preserving the transients and low-frequency decorrelation.
This is the reason why most modern decorrelation methods oper-
ate in the time-frequency domain and restrict the phase variation
based on the wavelength of various frequency bands [6].

Laitinen et al. proposed to apply a random delay within per-
ceptually motivated bounds at each frequency band [7]. Although
this method can lead to audible artifacts in stereo reproduction,
these artifacts are less perceivable in multichannel reproduction.
An alternative and common method is to decompose the signal
into transient and non-transient signals, and apply the decorrela-
tion only to the non-transient signal. For time-domain methods,
finite impulse response (FIR) filters are applied with the fast con-
volution technique which can be computationally prohibitive for
long filters in multiple decorrelation stages of multichannel sys-
tems. Alternatively, infinite impulse response (IIR) filters such as
single or cascaded allpass filters, which guarantee a flat magnitude
response, are computationally efficient [2, 8, 9]. However, if the
group delay of the filter becomes too large, higher-order allpass
filters can cause an undesired chirping effect [10].

Karjalainen and Järveläinen proposed velvet-noise sequences
(VNSes), i.e., sparse series of uniformly distributed ±1s, as a per-
ceptually smoother alternative to Gaussian white noise [11, 12].
At only a fraction of the computational cost of dense FIR filters,
VNSes are suitable for artificial reverberation [13,14] and approxi-
mation of room impulse responses [11,15–19]. Short VNSes were
proposed as an effective decorrelation method, although it suffered
from spectral coloration [20]. In this work, we present a method
to optimize the decorrelation properties of VNSes without altering
the computational cost. We also conduct a formal listening test to
evaluate the new method and to compare it with previous methods.

This paper is organized as follows. In Sec. 2, we review vel-
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vet noise and its time and frequency-domain representations. Sec-
tion 3 proposes an optimization technique for VNSes to minimize
spectral coloration. Section 4 proposes a selection process to im-
prove the decorrelation in sets of sequences. Section 5 presents the
listening tests we conducted to evaluate the proposed method.

2. VELVET NOISE

2.1. Velvet-Noise Sequences

For a given density Nd and sampling rate fs, the average spacing
between two impulses in a VNS is

Td = fs/Nd, (1)

which is called the grid size [12]. The total number of impulses is

M = LsTd, (2)

where Ls is the total length in samples. The sign of each impulse
is

�(m) = 2 �r1(m)� � 1, (3)
where �·� denotes the rounding operation to the closest integer and
0 � m � M � 1 is the integer impulse index, and r1(m) is a uni-
formly distributed random number between 0 and 1. The impulse
location is

�(m) =

�
0 for m = 0

�Td(m � 1 + r2(m))� for m > 0,
(4)

where �·� is the ceil operation to the next higher integer and 0 <
r2(m) � 1 is a uniformly distributed random number.

Exponentially decaying impulse gains have been found to im-
prove the sharpness of transients and therefore the quality of the
overall decorrelation [20]. The positive gain of each impulse is

�(m) = e��(m)�, (5)

where � > 0 denotes the slope of the exponential decay

� =
� ln 10�LdB/20

Ls
, (6)

where LdB is the target total decay in dB. The exponentially de-
caying velvet noise is denoted EVNM , where M indicates the total
number of impulses. In this work, we consider modifications to the
EVNM by allowing deviations from the exponential pulse gains
(5) to improve the sequence’s magnitude response. We refer to
this non-exponential sequences as optimized velvet noise OVNM

obtained using the method described in Sec. 3.
Since velvet noise is the sum of single delayed impulses, the

impulse response h(n) of the resulting sparse FIR filter with M
coefficients that are unequal to zero, is given by

h(n) =
M�1�

m=0

�(m)�(m)�(n � �(m)), (7)

where � denotes the Kronecker delta function and n denotes the
time index in samples. An input signal x can be decorrelated by
convolution with the impulse response h. For this, we take advan-
tage of the sparsity of the sequence. By storing the VNS as a series
of non-zero elements, all mathematical operations involving zero
can be skipped [17, 19]. For a sequence with a density of a 1000
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Figure 1: Decorrelator sequences in the time domain: white noise
WN, exponential velvet noise EVN30, and two optimized velvet-
noise sequences OVN15 and OVN30. Positive impulses are indi-
cated by • and negative gains by � (except for WN).

impulses per second, which has been found sufficient for decorre-
lation [20], and a sample rate of 44.1 kHz, the zero elements repre-
sent 97.7% of the sequence. Therefore, given a sufficiently sparse
sequence, time-domain convolution can be more efficient than a
fast convolution using the FFT for an equivalent white-noise se-
quence [20]. Furthermore, this sparse time-domain convolution
offers the benefit of being latency-free.

For comparison, we use an exponentially decaying Gaussian
white noise sequence WN, with the same envelope as given in
(5). The spectral coloration, i.e., non-flatness of the magnitude re-
sponse, of the WN is reduced by replacing its magnitude response
with a constant number, and re-synthesizing the time-domain se-
quence using the inverse Fourier transform.

Figure 1 depicts four decorrelation sequences: OVN30,
OVN15, EVN30, and WN. The total length of each sequence
is 30 ms such that the VNS sequences have an impulse density
of 1 and 0.5 impulse per ms, respectively. The total decay is
LdB = �60 dB. However, the impulse response of WN decays
only by about �30 dB in total, because of the spectral post-
processing of WN. Convolution with OVN30 according to (7)
uses 76% fewer operations than the fast convolution with WN,
whereas OVN15 decreases the computational cost by 88% [20].

2.2. Velvet Noise in Frequency Domain

In addition to the time-domain formulation given in [20], we for-
mulate the z-domain transfer function of the velvet noise. This
formulation can be generalized to continuous impulse locations
which is critical for the optimization procedure in Sec. 3. The cor-
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Figure 2: Constraint on the optimized impulse gain � over time.
The solid blue line indicates the exponential decay as defined in (5)
with LdB = �60 dB. The shaded blue area indicates the range of
the optimized impulse gain with ±6 dB and the enforced normal-
ization of the first pulse to ±1.

responding z-domain transfer function of (7) is

H(z) =
M�1�

m=0

�(m)�(m)z��(m) =
M�1�

m=0

Hm(z), (8)

where Hm(z) indicates the transfer function of the mth impulse.
The magnitude response of the mth impulse is

|Hm(eı�)| = �(m), (9)

where � is the frequency in radians and ı =
�

�1. The corre-
sponding unwrapped phase response is

�Hm(eı�) =

�
���(m) for �(m) = 1

� � ��(m) for �(m) = �1,
(10)

where � denotes the radian angle of a complex number. The phase
response formulation in (10) generalizes directly to continuous
impulse locations ��(m). The corresponding single impulse and
summed transfer functions are denoted �Hm and �H , respectively.
The continuous formulation plays a critical role in the optimization
process presented in the following section as it allows continuous
modification of both impulse location and impulse gain.

3. MAGNITUDE RESPONSE OPTIMIZATION

A central challenge in decorrelation is the coloration caused by
a non-flat magnitude response of the decorrelator. This section
is concerned with modifying the impulse locations �(m) and im-
pulse gains �(m) of a VNS to improve the flatness of its magnitude
response |H(eı�)|. In the following subsections, we describe: i)
heuristic constraints on the velvet-noise parameters; ii) the objec-
tive function; iii) the optimization process; and iv) the performance
results.

3.1. Parameter Constraints

In the following, we impose heuristic constraints on the time lo-
cation �(m) and gain �(m) of the impulses of the velvet noise.
An even distribution of impulses over time is desirable to ensure a
smooth time-domain response [20]. Therefore, the impulse loca-
tions should not exceed the boundaries defined in (4).

An impulse with a long delay and a large gain is perceived
as an echo, so it degrades the perceptual quality of decorrelated
transients. The exponential decay of impulse gains over time as
defined in (5) effectively minimizes the time-domain smearing of
transients signals [20]. Nonetheless, small deviations from the
exponential decay may be marginal for the perception. Informal
experiments determined an appropriate range of ±6 dB deviation
from the exponential decay, which corresponds to a multiplicative
gain factor � up to 2. To enforce a normalization of the impulse
gains, we set the first impulse gain to be ±1. Later for evaluation
purposes, all sequences are normalized to the same energy. Fig-
ure 2 depicts the constraints on the impulse gain � over time. The
positive and negative impulse gain ranges in Fig. 2 are not con-
nected such that a continuous optimization process cannot change
the impulse sign �.

3.2. Objective Function

We establish the objective function as to represent the perceived
quantity of coloration of the decorrelator. In this work, we employ
a third-octave smoothing of the magnitude response in dB between
20 Hz to 20 kHz [21]. The magnitude response is sampled at log-
arithmically spaced frequencies

flog(k) = eflin(k), (11)

where flin = [ln(20), . . . , ln(fs/2)] is a linearly spaced 1 � K
vector and K is the number of frequency points. The correspond-
ing frequencies in radian are �log = 2�

fs
flog. The rectangular

smoothing kernel � for a third-octave smoothing is then given by

�(k) =

�
1

2�w+1 for |k| < �w

0 otherwise,
(12)

where the kernel width �w is defined by

�w

K
ln(fs/2)
ln(20)

=
1
6
. (13)

The third-octave smoothed magnitude response H is then

H(k) =
�
� � 20 log

���H
�
eı�log(k)

����
�

, (14)

where � denotes the convolution operation. The objective function
L is given by the root mean squared error (RMSE) of the smoothed
magnitude response

L(�, �) =

���� 1
K

K�1�

k=0

�
H(k) � H

�2
, (15)

where H =
�K�1

k=0 H(k)/K is the mean smoothed magnitude
response. The proposed optimization problem is then

min
�,�

L(�, �)

subject to �(0) = 0 and �(0) = 1

Td(m � 1) < �(m) � Td m

e��(m)�/� � �(m) < �e��(m)�,

(16)
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(a) Magnitude response error without smoothing.
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(b) Magnitude response error with third-octave smoothing.

Figure 3: Magnitude responses error of an EVN30 between a con-
tinuous impulse location �� and the closest integer impulse location
����. The error between the non-smoothed magnitude responses
in Fig. 3a increases with frequency up to 20 dB. However, for
the third-octave smoothed response in Fig. 3b the error is within
1.3 dB.

where the possible gain deviation � = 2 and the impulse sign � is
a random, but fixed parameter in the objective function L.

3.3. Optimization Process

The optimization problem (16) is a constrained, non-linear and
non-convex problem such that the optimal solution, i.e., the global
minimum, is generally difficult to find. However, local minima can
be attained by various gradient descent algorithms. Here we em-
ploy a variant of the interior-point method [22]. The initial point
is given by a randomly generated EVN according to (4) and (5).

To allow gradual changes of all parameters during optimiza-
tion, we employ the continuous impulse location �� in the objective
function

min
�� ,�

L(�� , �). (17)

The corresponding integer impulse location solution is then given
by � = ����. In the following, we evaluate the error introduced by
the continuous impulse location solution.

The continuous impulse location �� introduces a phase error of
the single impulse transfer function in (10). The maximum im-
pulse location error is

|��(m) � ���(m)�| � 0.5. (18)

Consequently, the maximum phase error between the continuous
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(a) Standard deviation on the smoothed magnitude response for 500
sequences.
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(b) Smoothed magnitude response of the best sequence, i.e., with the
lowest objective function value, out of 500 sequences.

Figure 4: Performance evaluation of the proposed optimization
process by comparing 500 sequences of the four decorrelator
types: WN, EVN30, OVN30, and OVN15.

and the closest integer transfer function is

���� �Hm(eı�) � �Hm(eı�)
��� � �/2 (19)

such that the maximum phase error increases linearly with fre-
quency. The phase error of the single impulse transfer function
Hm results in a magnitude error of the full sequence transfer func-
tion H .

Figure 3a depicts the magnitude response error of an EVN30

between a continuous impulse location �� and the closest integer
impulse location ����. Whereas the magnitude error is below 1 dB
for frequencies below 1 kHz, the error increases up to 20 dB for
high frequencies. In Fig. 3b, the magnitude response error of the
same two sequences are shown with third-octave smoothing. The
maximum error over the complete frequency range stays below
1.3 dB. Similarly, Karjalainen and Järveläinen observed that in-
creasing the time resolution beyond 44.1 kHz, does not improve
velvet noise [11]. Hence, the proposed optimization using contin-
uous impulse locations which are then rounded to the nearest inte-
gers introduces only minor deviations in the magnitude response.
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Figure 5: Evaluation of the absolute coherence between over all
sequence pairs of the 500 randomly generated sequences of four
decorrelator types: WN, EVN30, OVN30, and OVN15.

3.4. Results

In this subsection, we compare the magnitude response of four
decorrelation sequence types: WN, EVN30, OVN30 and OVN15.
The total length of the sequences is 30 ms and the total decay is
LdB = �60 dB. We generated 500 sequences for each decor-
relation filter type. For the optimized sequence types, the initial
sequences are EVN15 and EVN30, respectively, which were ran-
domly generated. As convergence is not guaranteed, the optimiza-
tion algorithm was limited to 60 iteration steps to comply with a
time limit of 30 s. The mean absolute change in impulse location
between the initial point and the local minima is 11 to 12 samples.
The mean absolute gain deviation from the exponential decay is
about 3 to 4 dB.

Figure 4a depicts the standard deviation of the smoothed mag-
nitude response over 500 sequences. The EVN30 has the largest
standard deviation over all frequencies indicating a relatively poor
flatness of the magnitude response. The largest deviation is in
the low frequencies with 5.3 dB, which decays with frequency to
1.5 dB. The standard deviation of the WN is similar in shape to the
EVN30 with the largest deviation of 2.3 dB in the low frequencies
and a minimum of 0.5 dB in the high frequencies. The standard

deviations of the optimized sequences OVN30 and OVN15 are sim-
ilar to WN for high frequencies, but is considerably lower for low
frequencies. The minimum standard deviation at around 30 Hz is
1 dB and 1.6 dB, respectively, and by this up to 2.5 times lower
than WN and up to 4 times lower than EVN30. The low standard
deviation of the OVN30 implies a successful minimization of the
objective function (16).

Figure 4b depicts the smoothed magnitude response for the
best sequences, i.e., with the lowest objective function value, out
of all 500 sequences. The magnitude responses confirm the trends
of the standard deviation, as shown in Fig. 4a. The best sequence
demonstrates that optimization can yield sequences with less than
a 1-dB maximum deviation from the mean magnitude. Despite the
large standard deviation in the low frequencies, the best sequences
have rather flat magnitude responses at low frequencies.

4. SET OF DECORRELATOR SEQUENCES

In many applications, a set of decorrelators is required such that
each pair of decorrelation filters is as “different” as possible. In
the following, we measure the difference using the coherence and
present a method to choose a low-coherence set of multiple decor-
relators. When a mono signal is required to be decorrelated to ND
channels, we need ND decorrelation sequences where each pair-
wise coherence is minimal.

4.1. Coherence

The effectiveness of decorrelation can be measured with the cross-
correlation in different frequency bands, called coherence. Nor-
mally, a broadband decorrelator is more effective at higher fre-
quencies than at lower, which is a result of the effective length
of a decorrelation filter. Indeed, a longer filter will exhibit
stronger decorrelation for longer wavelengths, but will also cre-
ate potentially perceivable artifacts when the input signal contains
transients. To study the decorrelation behavior on a frequency-
dependent scale, we use a third-octave filterbank. The signals for
the jth band are denoted as aj and bj and the normalized correla-
tion coefficient as

�(j)
a,b =

�
n aj(n)bj(n)��

n a2
j (n)

�
n b2

j (n)
, (20)

where 1 � j � J , and J is the number of third-octave bands.
Between 20 Hz and 20 kHz, we have J = 30. A lower abso-
lute value indicates a more effective decorrelation such that we are
mainly interested in the absolute correlation

����(j)
a,b

���. To summa-
rize the broadband effectiveness of the decorrelation, we use the
frequency mean absolute coherence

|�a,b| =
1
Q

J�

j=1

����(j)
a,b

��� . (21)

Note that the sparse impulse locations of two velvet noise se-
quences rarely coincide such that the classic broadband decorre-
lation is ill-defined and (21) is preferred instead.

In the following, we evaluate the coherence between the
500 generated sequences of each decorrelation type explained in
Sec. 3. Since the coherence is symmetric, there are 500�499/2 =
124, 750 different pairs of sequences. Figure 5a depicts the mean
absolute coherence for each third-octave band over all sequence
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Table 1: Best pair of optimized velvet noise OVN30 found with the proposed method. The gains � are given with a factor of 10.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�a(m) 1 46 91 134 175 182 239 271 351 359 407 484 531 536 581
�a(m) 4.71 7.37 -3.72 1.46 1.12 -1.84 0.64 -0.54 -0.64 1.08 -0.32 0.24 0.21 -0.49 0.14
�b(m) 1 5 78 125 172 219 234 271 318 381 403 460 531 575 583
�b(m) 4.11 -3.91 5.58 4.30 -2.96 2.02 -0.61 -1.34 1.15 -0.93 0.81 -0.37 -0.26 0.16 0.14

m 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

�a(m) 651 669 731 797 829 851 890 961 984 1027 1074 1130 1175 1232 1246
�a(m) 0.18 -0.14 -0.09 -0.08 -0.08 0.07 0.05 0.04 -0.04 0.02 0.02 0.01 -0.01 0.01 -0.01
�b(m) 663 703 737 791 809 881 902 950 999 1041 1083 1135 1177 1216 1258
�b(m) 0.10 -0.19 0.07 0.06 0.05 0.05 -0.06 -0.04 0.03 0.02 -0.02 0.01 -0.01 -0.01 -0.01

Table 2: Best pair of optimized velvet noise OVN15 found with the proposed method. The gains � are given with a factor of 10.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�a(m) 1 51 101 200 291 372 476 581 627 736 827 913 998 1089 1180
�a(m) 4.80 -7.51 -4.18 -1.58 -0.48 0.29 0.21 0.43 -0.08 0.20 0.12 0.08 0.05 0.03 -0.01
�b(m) 1 10 140 215 279 365 485 579 668 756 836 892 1005 1071 1192
�b(m) 6.10 -2.94 6.63 -1.05 -2.88 -0.46 -0.28 -0.68 -0.36 0.06 0.04 -0.09 0.02 0.01 -0.02

pairs. For all four decorrelator types, the absolute coherence de-
creases with frequency due to the effective length of the decorre-
lator. The maximum absolute coherence at low frequencies is be-
tween 0.35 and 0.4 and the minimum absolute coherence of 0.1 and
0.33 at high frequencies. The coherence is generally slightly larger
for EVN30 and OVN15 due to the systematic exponential gain, and
higher sparsity, respectively. Since coherence is not modeled in the
optimization process in Sec. 3, it is expected to have little influence
on the overall coherence.

Figure 5b depicts the distribution of the frequency mean abso-
lute coherence |�a,b| over all pairs. The difference between the
four decorrelation types is small, as expected, and a frequency
mean absolute coherence of around 0.19 to 0.22 is most frequent.
However, there are sequence pairs with rather large coherence val-
ues up to 0.8 suggesting poor decorrelation performance. In the
next subsection, we present methods to choose a set of decorrela-
tion sequences with low pairwise coherence.

4.2. Choosing Set of Decorrelators

Although the mean absolute coherence is typically between 0.19
and 0.22, the coherence of a set of sequences can be improved by
a selection process. More formally, the goal is to find a set D of
ND sequences such that

min
D

�

a,b�D

|�a,b|. (22)

Let us consider the coherence matrix, i.e., all pairwise frequency
mean absolute coherences, to be the adjacency matrix of an undi-
rected graph. The minimization problem (22) then corresponds to
finding the thinnest ND-subgraph. By taking the negative of the
coherence matrix, this problem is equivalent to the better known
densest ND-subgraph problem [23]. Although finding the optimal
solution is NP-hard, greedy algorithms can be applied to yield an
approximative solution [24]. In this contribution, however, we are
mainly concerned with pairs of sequences to allow decorrelated

stereo reproduction. Thus, (22) is merely the minimum entry of
the coherence matrix. Although, the frequency mean absolute co-
herence peaks around 0.2 in Fig. 5b, sequence pairs with coherence
as low as 0.05 can be found for all decorrelator types.

In the choice of the optimal set of decorrelators, the lowest co-
herence pairs are not necessarily those which have flat magnitude
responses. To account for the coloration of the single sequences,
we introduce a penalty term for (22):

min
D

�

a,b�D

(1 � �)|�a,b| + � µ(La + Lb), (23)

where La and Lb are the objective functions (15) of sequences a
and b, � is the weighting factor, and µ is the normalization factor
to balance the two objective functions with � = 0.5. The balance
is optimal if the distributions of |�a,b| and µ(La + Lb) overlap
maximally. In this work, this is achieved by µ = 0.1. The larger
�, the more emphasis is put on magnitude flatness rather than a low
coherence value. Tables 1 and 2 give the best decorrelation pairs
we have found through our proposed method with � = 0.8. These
sequences were evaluated via a formal listening test, as explained
in the next section.

5. PERCEPTUAL EVALUATION

We conducted two formal listening tests to evaluate the perceived
quality of the decorrelation filters obtained using the proposed
method. The first test assessed the coloration introduced by the
decorrelators via comparison of the processed signal to the unpro-
cessed signal. The second test evaluated the effectiveness of the
decorrelators to extend the auditory source width and overall qual-
ity. The tests were conducted in special listening booths built for
sound isolation and high-quality reproduction over headphones.
The test interface was based on a MUSHRA-type web interface
with a subjective rating scale from 0 to 100 allowing seamless
switching between test conditions and looping of short sections.
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(a) Coloration test with mono reproduction.
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(b) Stereo quality test with stereo reproduction.

Figure 6: Results of two listening tests of four decorrelator types: OVN30, OVN15, EVN30, and WN. In each box, the central red line
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, and the outliers are plotted individually using the + symbol. The box notches indicate
the confidence intervals, i.e., two medians are significantly different at the 95% confidence level if their intervals do not overlap.

Each test page compared six conditions: OVN30, OVN15, EVN30,
WN, anchor, and reference. For each decorrelation type, we chose
four decorrelator instances. Each test page was repeated once dur-
ing the test. In total, 4 instances � 2 trials � 4 input signals = 32
test pages were presented for each test1.

Each listening test was participated by 11 listeners (10 males
and 1 female) who were all aged between 24 and 34. Due to the
long test time, few participants performed both tests on the same
day. Four different input signals were convolved with the decorre-
lation sequences: drums, guitar, singing, and speech. The order of
the test conditions was individually randomized. From the differ-
ence between the identical trials, the test-retest reliability could be
computed. The cross-correlation coefficient between the first and
second trial was 0.96 suggesting that most participants were able
to give consistent ratings.

5.1. Coloration Test

The first listening test evaluated how much the decorrelation filters
distort the input signal. The input signal was convolved with a
single decorrelation filter, and the difference to the unprocessed
signal was rated by the participants. In MUSHRA terminology, the
unprocessed mono signal was the reference, and the input signal
processed with a lowpass filter having a 3.5-kHz cutoff frequency
was the anchor. The resulting mono signals were reproduced on
both headphone channels. The main coloration was expected to be
caused by the change in timbre and smearing of transients.

The four decorrelation instances were selected out of the 500
sequences which were generated in Sec. 3. For OVN30 and
OVN15, we selected the four best sequences according to spectral
flatness as defined in (15). The EVN30 sequences were selected
as the initial sequences of the OVN30, i.e., the original random
sequence before the optimization to emphasize the improvement
gained by the proposed method. The WN sequences were gener-
ated randomly and spectrally flattened, as described in Sec. 2.

Figure 6a shows the resulting subjective rating of the col-
oration test. The median ratings for OVN30, OVN15, EVN30, and

1Audio examples are available at https://www.
audiolabs-erlangen.de/resources/2018-DAFx-VND.

WN are 90, 86, 26, and 75, respectively. All pairwise compar-
isons of the confidence interval suggests that the medians are sig-
nificantly different at the 95% confidence level. The superior rat-
ing of both optimized velvet-noise sequences suggests a substan-
tial reduction in spectral coloration compared to EVN30, and this
demonstrates the effectiveness of the optimization method and the
corresponding objective function (15). Furthermore, both OVN30

and OVN15 were rated slightly superior to WN suggesting that
they are valid alternatives.

5.2. Stereo Quality Test

The second listening test evaluated the effectiveness of the decor-
relators in extending the auditory source width and the overall spa-
tial quality. The input signal was convolved with a decorrelation
filter for each channel (left and right) and the participants were
asked to rate the perceived width, localization at the center, and
overall quality. In this test, no ideal reference could be defined,
so the unprocessed mono signal was provided only for guidance.
The lowpass filtered mono signal was given as the anchor. The
resulting stereo signal was reproduced on the left and right head-
phone channels. Once again, we selected the sequences from the
generated set as in the coloration test. For OVN30 and OVN15, we
selected the four best sequence pairs according to the rating func-
tion (23) and weighting factor � = 0.8. Tables 1 and 2 present the
top-rated sequence pairs. The EVN30 sequence pairs were selected
as the initial optimization sequences of the OVN30 pairs. The WN
sequence pairs were generated randomly according to Sec. 2.

Figure 6b shows the resulting subjective rating of the auditory
source width test. The median ratings for OVN30, OVN15, EVN30,
and WN are 72, 71, 32, and 80, respectively. Pairwise comparison
of the confidence interval suggests that the EVN30 and WN medi-
ans are significantly different at the 95% confidence level. No sig-
nificant difference between OVN30 and OVN15 was found. Here
again, a superior rating was given to the optimized sequences over
the EVN30, which is expected due to the perceptible coloration of
the EVN30 found in the coloration test. A slightly inferior rating
was given to the optimized methods compared to WN. This may be
a result of our pair selection process favoring a flat spectrum over
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low coherence. Nonetheless, these results suggest that OVN30 and
OVN15 are valid alternatives to WN, since they can yield reduc-
tion in the computational cost without affecting significantly the
overall sound quality.

6. CONCLUSION

We have proposed an optimization method to improve the per-
ceived quality of velvet-noise decorrelators. The original method
EVN employed short, sparse, and exponentially decaying se-
quences, which were generated randomly [20]. The proposed
method OVN attempts to improve such sequences by allowing
small deviations in the impulse gains and timings. The optimiza-
tion maximizes the spectral flatness within given heuristic con-
straints. A continuous impulse location formulation facilitates si-
multaneous modifications of gains and times. Furthermore, we
proposed a method to select a set of minimally correlated se-
quences according to a coherence metric. An additional weight-
ing factor allows user-defined control over the trade-off between
coherence and spectral flatness.

Two formal listening tests were conducted to evaluate possible
coloration as well as the auditory source width and overall stereo
quality. The subjective ratings show a substantial improvement of
the proposed method against the original and perceptually satis-
factory decorrelation. While convolving a signal with velvet noise
can be performed using as much as 88% less operations compared
with WN, the objective ratings as well as the subjective ones con-
firms that the proposed OVN method is a good alternative to the
WN decorrelation, when it is possible to pre-compute sets of opti-
mal sequences.
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ABSTRACT

Conventional panning approaches for surround sound require loud-
speakers to be distributed over the regions where images are needed.
However in many listening situations it is not practical or desirable
to place loudspeakers some positions, such as behind or above the
listener. Compensated Amplitude Panning (CAP) is a method that
adapts dynamically to the listener’s head orientation to provide im-
ages in any direction, in the frequency range up to � 1000 Hz
using only 2 loudspeakers. CAP is extended here for more loud-
speakers, which removes some limitations and provides additional
benefits. The new CAP method is also compared with an Am-
bisonics approach that is adapted for surround sound without rear
loudspeakers.

1. INTRODUCTION

Amplitude panning is a method for producing a spatial audio im-
age in which 2 or more waves combine coherently at the listener
position, each carrying the same signal but independent gains. For
some choices of plane wave directions and gains the listener per-
ceives an image, or phantom source, from a definite direction, a
phenomena known as summing localisation [1]. The direction of
the image can be varied continuously by varying the gains.

Below � 1000Hz the perception of image direction is mainly
determined by the Interaural Time Difference (ITD) cue. In this
frequency range, a central stereo image, produced by panning with
2 loudspeakers, is unstable. If the listener faces straight ahead
the image is also straight ahead. As the listener turns away from
this direction the image moves in the direction of the listener, as
illustrated in Fig. 1 [2, 3, 4]. A typical scene contains multiple

Figure 1: The black dot indicates the direction of the image when
2 loudspeakers each have the same signal, for different head direc-
tions.

images in different directions, so at any moment images that are
not directly ahead of the listener or inline with a loudspeaker will
be distorted. The distortion is greater when the angle between the
loudspeakers, viewed from the listener, is increased. For example
the listener can approach a stereo pair until the loudspeakers are
180� apart. In this position an image panned to the centre would

be completely unstable. Producing consistent ITD cues when the
head rotates, otherwise known as dynamic ITD cues, is important
for localisation [1, 5, 6, 7].

The change in the panned image direction when the head is ro-
tated is caused by the ITD cue not matching that of a static source
for each head angle. Compensated Amplitude Panning (CAP), is
an extension of conventional panning methods in which the ITD
cues are corrected by modifying the gains to take account of the
head orientation of the listener [8]. Tracking the listener accurately
in real-time with low latency is a challenging requirement for this
system. However suitable tracking technology is progressing very
rapidly, driven by a wide range of applications.

CAP has been developed for 2 loudspeaker reproduction (Stereo-
CAP). This produces more stable images than conventional stereo
across the front stage. Further more, the method can produce im-
ages in any direction, because ITD is reproduced accurately in any
case. Dynamic ITD cues generated by small head movements al-
low the resolution of front-back ambiguities, and elevation.

To cover the full bandwidth CAP can be combined with high
frequency reproduction methods. CAP requires only 2 loudspeak-
ers that are capable of driving the ITD frequency range, while
the high frequency range can be driven using smaller and lighter
loudspeakers, that are practical to use in higher numbers. Energy
based panning, or Vector Base Intensity Panning (VBIP) [9] can
be combined with Stereo-CAP to provide a very stable full band-
width front stage. Stereo-CAP provides low frequency coverage
elsewhere, which is useful for immersive ambience and reverber-
ation. High frequency coverage can also be provided in all direc-
tions using transaural cross-talk cancellation [10, 11]. Cross-talk
cancellation systems generally perform poorly at low frequencies
because the inverse transfer function is then ill-conditioned. CAP
can take over in this range, and has the advantage of not requiring
calibration for the listener’s head diameter.

An extension to Stereo-CAP for near-field images has been
made by matching the low frequency ILD (Inter-aural Level Dif-
ference) to that of a near source. This is possible using complex
panning gains realized with a 1st order filter [12].

For a low frequency spherical head model, [8], the condition
that the ITD and ILD cues match with the target plane wave can
be formulated as

r̂R · (r̂I � rV ) = 0 (1)
where r̂I is the direction of the image, r̂R is the inter-aural axis,
and rV is the Makita vector that represents the sound field at low
frequencies [13]. If the field is produced by panning, the waves
at the listener can be approximated as plane waves provided the
listener is not so close to the loudspeakers that near-field cues are
significant. In this case the Makita vector is given by

rV =

�
gir̂i�
gi

(2)
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where gi are the gains of the source signal at the listener, and r̂i

are the direction vectors of the loudspeakers relative to the listener
[8]. The gains at the loudspeakers are compensated for the vari-
able distance to the loudspeakers. Since the wave amplitude falls
by 1/r the compensated loudspeaker gains are rigi. Also delays
are introduced to the loudspeaker feeds so that the signals at the
listener are in phase. These compensations depend on accurate
knowledge of the ambient speed of sound, as well as the distances.

Combining (1) and (2), and normalising the total gain, which
determines the overall level, leads to expressions for Stereo-CAP
gains,

g1 =
r̂R · (r̂I � r̂2)
r̂R · (r̂1 � r̂2)

g2 =
r̂R · (r̂I � r̂1)
r̂R · (r̂2 � r̂1)

(3)

These panning laws were tested objectively by calculating the re-
sulting cues at different frequencies for a KEMAR dummy head
[8]. The perceived directional error was then calculated and found
to be within a Minimum Audible Angle (MMA) [14] for a wide
range of target images and head orientations. Subjective tests were
carried out to evaluate the stability of images in all directions. Dy-
namic head tracking was used to allow natural unrestricted listen-
ing. The tests showed that images between loudspeakers were im-
proved, and further more steady images could now be created in
directions away from the loudspeakers.

It is helpful to visualise the 3-dimensional vectors in the solu-
tion. Fig. 2 shows a plan view of these vectors. This is called a
Makita diagram here since each point on this diagram corresponds
to a value of rV , rather than a point in 3-dimensional space. The

r̂R

r̂I

rV

r̂�
I

r̂1 r̂2

Figure 2: Makita diagram for Stereo CAP, in plan view, for a lis-
tener facing towards left of centre of the stereo array. The Makita
vector is to the right of centre in order to keep the image central.
Shown are loudspeaker directions r̂1, r̂2 the inter-aural direction
r̂R, image direction r̂I and Makita vector rV

dotted circle is a cross section through a sphere of radius 1. A
point rV on the circle or sphere corresponds to a plane wave, such
as that from a distant loudspeaker or source. The dotted line rep-
resents a plane perpendicular to the page containing all the values
of rV of sound fields that produce an image r̂I . The image is not
unique, since there is a circle of consistent images, where the plane
intersects with the sphere, the cone of confusion. The dashed line
shows the values of rV that can be produced by panning using

the 2 loudspeakers. Where the plane and line cross is the single
value of rV that can produce the image using stereo panning. The
method is valid whatever the direction of the image, even if it is
behind or above.

The panning gains are positive for values of rV between r̂1

and r̂2. Outside this region, one of the gains is negative, and there
is cancellation of the pressure at the listener. The cancellation im-
plies the sum of gain magnitudes

�
|gi| is greater than the sum

of gains
�

gi. Since the reproduction error due to each gain gen-
erally accumulates, then for given

�
gi the total error increases

as the sum of gain magnitudes
�

|gi|, and degree of cancellation.
Reproduction error is due to inaccuracies in the head model, the
audio hardware, and the tracking of the listener and loudspeakers.

If the listener faces towards the side, the plane and line be-
come close to parallel, and the denominators vanish. The gains
become large and polarised and the error increases. The common
gain in the denominators can be limited, however this will reduce
the perceived image level.

Introducing another loudspeaker between the existing pair would
introduce more freedom for controlling rV ,and the singular case
can be avoided. Solutions for more than 2 loudspeakers are devel-
oped in the remainder of this article.

2. SOLUTIONS WITH MORE THAN 2 LOUDSPEAKERS

A Makita diagram with 3 loudspeakers is illustrated Fig. 3. Pro-
vided the loudspeakers direction vectors are distinct, then the pro-
ducible values of rV cover a plane containing r̂1, r̂2, r̂3. The cor-
responding gains are positive for rV in the triangular region inside
these points, the convex hull of the points, and at least one gain is
negative for each point outside. Two image examples are shown,
each with a head superimposed to show the head orientation in
order to simplify the picture in Fig. 2. The image direction and
head orientation define the plane of permitted rV values indicated
by the dotted line. If the dotted and dashed planes intersect then

r̂I

-ve gain

r̂1 r̂2

r̂3

+ve gains

-ve gain

-ve gain

r̂I

Figure 3: Makita diagram for CAP with 3 loudspeakers, in plan
view. Shown are loudspeaker directions r̂1, r̂2, r̂3, and two im-
ages r̂I , each with associated head orientations.

there are possible solutions along the line of intersection. There
are no solutions only when the planes are parallel and separated,
which only happens when the inter-aural axis is perpendicular to
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the loudspeaker plane, ie when one ear is pointing directly up. Dif-
ferent strategies can be considered for selecting from the possible
solutions:

Localised energy : It is natural to try and localise loudspeaker
energy in the directions where images are. In high frequency pan-
ning this reduces image spread, and makes images more compat-
ible for multiple listeners is different locations. In the low fre-
quency ITD range image spread is perceived much less, provided
the cues are consistent, because the cues only contain directional
information. The image on the left side in Fig. 3 has a localised
solution where the dotted line crosses the dashed line between r̂1

and r̂3. The gain is zero for the other loudspeaker g2 = 0. This is
similar to a pairwise panning arrangement. However for the image
on the right side there are no positive solutions. Solutions are pos-
sible with negative gain and either g2 = 0 or g3 = 0, but they are
not localised to the target image. To move continuously between
these solutions when the head rotates requires non-zero gain from
all loudspeakers.

Least radiated energy: The energy radiated,
�

r2
i g2

i , drives
room reverberance that interferes with the direct signal at the lis-
tener. Reducing this energy reduces interference, and also the
maximum power required from the loudspeakers. Although the
precedence effect mitigates the localisation error caused by rever-
berance, it is desirable to minimise the reverberance because of
its overall effect. A minimum energy solution will generally be
spread over all the available loudspeakers. However, as explained
above, spreading is not a primary concern in the low frequency
ITD range.

Least direct energy: CAP may produce gains with opposite
sign, and cancellation of pressures at the listener. As with the case
of Stereo-CAP, cancellation implies the sum of gain magnitudes�

|gi| is greater than
�

gi, and the total reproduction error is in-
creased. The energy sum

�
g2

i provides a measure of total error
that captures the incoherent addition of errors, and is convenient to
optimise. Minimising this quantity will minimise the reproduction
error due to the direct signal. The solutions for least radiated en-
ergy and least cancellation error could be combined to give partial
weight to each strategy. These solutions are the same when the dis-
tances ri are equal. Note that rV >> 1 implies cancellation and�

g2
i >> 1, however

�
g2

i >> 1 is also possible for rV = 1,
for example in the case of Ambisonics.

Ambisonic: If the image direction r̂I is restricted to the plane
containing the loudspeaker directions, then there is a solution rV =
r̂I that is independent of head orientation. This is equivalent to
Ambisonic panning based on mode matching of the sound field to
first order [3, 15]. The low frequency cues depend only on the
first order approximation. It is unusual to consider mode matching
for full surround without loudspeakers behind the listener. Mathe-
matically this is possible, but it is not immediately clear how well
conditioned it is, and how much direct energy is needed.

2.1. Least energy solution

From the above discussion, the most useful solutions for general
images are for the least radiated energy and the least direct energy.
These solutions can be found analytically. This is shown first for
the least radiated energy case. The least direct energy solution is
then a special case of this.

Substituting (2) in (1) and multiplying by
�

gi gives the con-
straint

�
gi (r̂R · r̂i) = r̂R · r̂I (4)

The summation range for the index i is omitted here and in the
following. A second condition is needed to fix the level of the per-
ceived image to a non-zero value, without which the gains would
be minimized to zero. This is achieved by specifying the the in-
cident pressure at the listener, which ensures the binaural signals
will match those of a planewave with the same incident pressure.
For a normalised level,

�
gi = 1 (5)

The 2 constraints (4) and (5) can be combined to produce an alter-
native for constraint (4),

�
gi �i = 0 , �i = r̂R · (r̂i � r̂I) (6)

where �i is defined here for convenience. Using constraints (5)
and (6) simplifies the gain formulae that will be derived. The least
energy problem can be stated by minimising the total energy radi-
ated by the loudspeakers,

argmin{gi}

�
(rigi)

2 (7)

subject to the previous constraints (6) and (5). This function and
the conditions are smooth, so a closed solution is sought using
Lagrange multipliers. The Lagrangian is

L =
�

(rigi)
2 � �1

�
gi�i � �2(

�
gi � 1) (8)

with multipliers �1, �2. Setting partial derivatives by the unknown
parameters to zero, �L/�gi = 0, �L/��1 = 0, �L/��2 = 0,
produces n + 2 constraints, including the original 2 constraints,
where n is the number of loudspeakers.

2r2
i gi � �1�i � �2 = 0 , i = 1 .. n (9)

�
gi�i = 0 (10)

�
gi = 1 (11)

From (9) the gains can be written

gi =
�1�i + �2

2r2
i

(12)

Substituting the gains into (10),

� �1�i + �2

2r2
i

�i = 0

�1

� �2
i

r2
i

+ �2

� �i

r2
i

= 0

�1� + �2� = 0 (13)

where � =
� �i

r2
i

and � =
� �2

i
r2

i
are defined for convenience.

Substituting the gains into (11),

� �1�i + �2

r2
i

= 2

�1� + ��2 = 2 (14)
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where � =
� 1

r2
i

. (13) and (14) can be solved simultaneously to
find �1 and �2,

�1 =
�2�

�� � �2
(15)

�2 =
2�

�� � �2
(16)

The resulting optimal gains are found by substituting into (12),

gi =
� � ��i

r2
i (�� � �2)

(17)

These gains are inexpensive to evaluate, which allows them to be
updated frequently when the listener moves. The compensated
loudspeaker gains are rigi. A global gain factor can be added
to set the reproduction level. The least direct energy solution can
be found by setting all the loudspeaker distances ri = 1. The
least energy solution using 2 loudspeakers has to be identical to
Stereo-CAP, because there can be only one solution. This can also
be checked algebraically by simplifying (17) for the case n = 2.
Like Stereo-CAP, it is possible to extend the least energy solution
for near-field images, although this is not shown here.
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Figure 4: Gains for Stereo-CAP and 3-way CAP for an image at
180� azimuth, and a range of head directions.

The plots shown in Fig. 4 compare the gains produced by
the Stereo-CAP system with the least energy 3-way CAP system.
Head direction is varied, and the image is directly behind. The
Stereo loudspeakers are directly to the left and right. The 3-way
system has loudspeakers in these positions and an extra one di-
rectly in front, the same as Fig. 3. When the listener turns to the
side the Stereo-CAP gains become large, whereas the 3-way CAP
gains have magnitudes similar to the total gain

�
gi = 1.

Adding a 4th loudspeaker that is not coplanar with the others,
for example above the front loudspeaker in the example shown in
Fig. 3, increases the space of rV that can be produced by pan-
ning, from a plane to the whole 3-dimensional Makita space. The
panning gains are all positive for points inside the convex hull de-
scribed by the 4 loudspeaker direction vectors, and at least one
gain is negative for each point outside this region. The intersection
of the whole space with the plane described by the ITD constraint
is always non empty, so there are no singular configurations.

The multichannel solution can be used with any number of
loudspeakers. While an advantage of the CAP system is that it re-
quires only a few loudspeakers, more loudspeakers can be added to
progressively reduce the radiated energy. Effectively this is beam
forming focused on the listener.

The subjective performance of least energy CAP with more
than 2 loudspeakers can be inferred from the objective and subjec-
tive results for the 2-channel case [8]. These results show that an
upper bound for the subjective localisation error can be given that
depends only on the total gain energy

�
g2

i . From this the given
3-channel case the total energy is sufficiently low, across all com-
mon configurations of image and listener, so that the inferred error
is within an MMA. This also implies reverberant interference is
at least as low as the 2-channel test cases, for which reverberance
could be heard but did not affect image localisation.

2.2. Ambisonic solution

In the mode-matched Ambisonic approach, the aim is to produce
an image by reproducing the associated sound field. To produce an
accurate low frequency ITD cue it is enough to reproduce pressure
and velocity, forming the 1st order of approximation. The first
order problem can be written in terms of the variables used in this
article by combining (2) and (5) into a single matrix equation,

�
1 1 1 ..
r̂1 r̂2 r̂3 ..

�
�

����

g1

g2

g3

.

.

�

����
=

�
1

rV

�
(18)

Or, abreviated,
Rg = s (19)

The least energy solution, where it exists, is given using the pseu-
doinverse

g = R+s (20)

R+ is the Ambisonic decoding matrix. For the example shown in
Fi. 4, with 3 loudspeakers and an image behind,

s =

�

��

1
�1
0
0

�

�� , R =

�

��

1 1 1
0 0 1
1 �1 0
0 0 0

�

�� (21)

R+ =

�

�
1/2 �1/2 1/2 0
1/2 �1/2 �1/2 0
0 1 0 0

�

� , g =

�

�
1
1

�1

�

� (22)

The ordering of loudspeakers here is left, right then centre. Al-
though there are no rear loudspeakers, the target image can be pro-
duced without excessive gains or cancellation in this case. How-
ever if the listener position is set further back, so that the loud-
speakers are separated by smaller angles relative to the listener,
then the gains for rear images increase rapidly in size and there is
more cancellation. For example if the left and right loudspeakers
are positioned closer at �30�, +30� then the gains producing a
rear image are

g =

�

�
7.46
7.46

�13.93

�

� (23)
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Using CAP the gains in this case are small when the listener is
facing forward,

g =

�

�
0.33
0.33
0.33

�

� (24)

Assuming equal loudspeaker distances, the total energy radiated
by the Ambisonic array is 916 times greater than that for CAP. The
CAP gain magnitudes generally increase smoothly as the listener
turns their head to the side, and are equal to the Ambisonic gains
when the listener faces directly to the sides.

Adding a 4th loudspeaker that is not coplanar with the others,
for example above the centre loudspeaker in the example shown
in Fig. 3, allows gains to be produced for any image direction, us-
ing the Ambisonic method. Comparatively high gains are required
when the loudspeakers are positioned more closely, as for the 3
loudspeaker case.

3. CONCLUSION

Using 2 loudspeakers and with full 6-degrees-of-freedom head track-
ing, position and orientation, it was previously shown possible to
create low frequency images in any direction, although excessive
gain is required for some listener orientations . Here it was shown
that with 3 loudspeakers all images directions can be reproduced
with moderate gain except for a small range of orientations that
are practically unimportant. Alternatively, taking an Ambisonic
approach with position tracking, 3 frontal loudspeakers can re-
produce horizontal images, and 4 loudspeakers can reproduce im-
ages in any 3D direction. Ambisonics does not require orientation
tracking. As loudspeaker separation is reduced Ambisonics suffers
from rapidly increasing gains and cancellation for forward head di-
rections and rear images, whereas in this case CAP gains are lower
and remain low as separation is reduced. The overall CAP energy
can be reduced further by increasing the number of loudspeakers.
In the light of the objective and subjective results for the 2-channel
case, the multichannel CAP gains mean the localisation accuracy
is within an MMA for all common configurations for the test array
considered.

The most recent real-time implementation of the multichannel
CAP system is based on an extensive and flexible C++ / Python
framework for spatial sound rendering, called the Versatile In-
teractive Software Rendering framework (VISR). It is planned to
make this publicly available in due course.
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ABSTRACT
A real-time auralization system is described in which room sounds
are reverberated and presented over loudspeakers. Room micro-
phones are used to capture room sound sources, with their out-
puts processed in a canceler to remove the synthetic reverberation
also present in the room. Doing so suppresses feedback and gives
precise control over the auralization. It also allows freedom of
movement and creates a more dynamic acoustic environment for
performers or participants in music, theater, gaming, and virtual
reality applications. Canceler design methods are discussed, in-
cluding techniques for handling varying loudspeaker-microphone
transfer functions such as would be present in the context of a per-
formance or installation. Tests in a listening room and recital hall
show in excess of 20 dB of feedback suppression.

1. INTRODUCTION

Real-time virtual acoustic/auralization systems have been made
possible by advances in signal processing and acoustics measure-
ment. Computational methods for simulating reverberant environ-
ments are well developed, and these auralization systems process
sound sources according to impulse responses encapsulating the
acoustics of the desired space and render them over loudspeakers
in the venue or through headphones [1, 2]. In live and recoding
settings, close mics or contact mics are commonly used for acous-
tic instruments and voice to avoid feedback. Such mic’ing can be
cumbersome and can affect or restrict performances. In virtual,
augmented, or mixed reality settings, the immersive audio possi-
bilities are similarly restricted by the use of headphones. More-
over, in all of these situations, unless the locations of the sound
sources are tracked, movement in the virtual space will not be re-
flected in the experienced auralization.

In recent years, several systems which use room microphones
and loudspeakers have been developed to create virtual reverber-
ant auralizations. These include products by Meyer Sound [3] and
Lexicon [4] as well as the system designed by Woszczyk [5] at
McGill. See [6] for a more extensive review. In such systems, a
number of approaches have been used to suppress feedback, in-
cluding adaptive notch filtering to detect and suppress individual
frequencies as they initiate feedback [7], frequency shifting the
synthesized acoustics [8], varying the synthesized acoustics over
time [4], and decorrelating the various auralization impulse re-
sponses [9, 10]. Such processing compromises the original dry
signals. In addition, to provide the needed control and to achieve
the best possible performance, these systems are typically built
from the ground up using proprietary hardware and software. Ac-
cordingly, they do not take advantage of existing loudspeaker and
microphone arrays already present on site. Ultimately, this makes
these systems expensive, involving significant alteration to the in-
stallation site, and requiring prolonged calibration and tuning.

d(t)
room sources

c(t)

canceler

h(t)

auralizer

+

g(t)

room

m(t)
mic

d̂(t)
dry estimate

l(t)
speaker

�

Figure 1: Feedback Canceling Auralization System. Room sounds
are convolved with an auralization impulse response h(t), gener-
ating simulated acoustics l(t) which are projected into the room
via a loudspeaker. A room microphone captures both room sounds
and simulated acoustics m(t), and is processed according to mea-
surements of the loudspeaker-microphone transfer function to re-
move the simulated acoustics, thus leaving an estimate of the room
sounds d̂(t) to be auralized.

Here, we present a system for real-time auralization that uses
standard room microphones and loudspeakers, and employs signal
processing tools to cancel the feedback, thus eliminating the need
for close or contact microphones. The cancellation method de-
scribed here is similar to the adaptive noise cancellation approach
developed by Widrow [11] for removing unwanted additive noise
from a signal. In that approach, a reference signal, which is corre-
lated with the unwanted noise, is used to estimate and subtract the
unwanted noise from the primary signal. Related literature also
includes echo cancellation and dereverberation [12–14].

The system we describe can also be integrated into existing
speaker arrays as it does not requires proprietary hardware and can
be implemented using inexpensive and readily available software.
The system is designed to be easy to configure and straightforward
to calibrate. The ease of use and mobility afforded by not requir-
ing close mic’ing creates opportunities for dynamic artistic expe-
riences for performers and audiences in disciplines such as music,
theater, dance, and emerging digital art forms [15]. For example,
in virtual, augmented, and mixed reality scenarios, the system al-
lows users to dispense with headphones for more immersive virtual
acoustic experiences.

In the sequel, the system and cancellation processing are de-
scribed. Example applications and a performance analysis follow.

DAFX-1

DAFx-100
DAFx-100



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

2. AURALIZATION SYSTEM

We begin by describing the auralization system, which is similar
to the recording processing described in [16].

Referring to Fig. 1, a room microphone captures contributions
from room sound sources d(t) and synthetic acoustics produced by
the loudspeaker according to its applied signal l(t), with t being
the discrete time sample index. One can impart the sonic charac-
teristic of a space, h(t), on the room sounds d(t) through convo-
lution,

l(t) = h(t) � d(t) . (1)

Many auralization systems work this way, using fast, low-latency
convolution methods to save computation [17–19]. The difficulty
is that the room source signals d(t) are not directly available. As
described above, the room microphones also pick up the synthe-
sized acoustics, and would cause feedback if the room microphone
signal m(t) were reverberated without additional processing.

Here, we auralize an estimate of the dry signal d̂(t), formed
by subtracting from the microphone signal m(t) an estimate of
the synthesized acoustics. Assuming the geometry between the
loudspeaker and microphone is unchanging, we have

d(t) = m(t) � g(t) � l(t), (2)

where g(t) is the impulse response between the loudspeaker and
microphone. Here, we design an impulse response c(t), which
approximates the loudspeaker-microphone response, and use it to
form an estimate of the "dry” signal d̂(t),

d̂(t) = m(t) � c(t) � l(t). (3)

This is shown in the signal flow diagram Fig. 1: the synthetic
acoustics are canceled from the microphone signal m(t) to esti-
mate the room signal d̂(t), which is then reverberated.

2.1. Canceler Design

The question then becomes how to design the canceling filter c(t).
A measurement of the impulse response g(t) provides an excel-
lent starting point, though there are time-frequency regions over
which the response is not well known due to measurement noise
(typically affecting the low frequencies) or changes over time due
to air circulation or performers, participants, or audience members
moving about the space (typically later in the impulse response).
In regions where the impulse response is not well known, the can-
cellation should be reduced so as to not introduce additional rever-
beration.

Here, we choose the cancellation filter impulse response c(t)
to minimize the expected energy in the difference between the
actual and estimated room microphone loudspeaker signals. For
simplicity of presentation, for the moment let us assume that the
loudspeaker-microphone impulse response is a unit pulse,

g(t) = g �(t), (4)

and that the impulse response measurement g̃(t) is equal to the
sum of the actual impulse response and zero-mean noise with vari-
ance �2

g . Consider a canceling filter c(t) which is a windowed
version of the measured impulse response g̃(t),

c(t) = w g̃ �(t) . (5)

In this case, the measured impulse response ĝ(t) is scaled accord-
ing to a one-sample-long window w. The expected energy in the
difference between the auralization and cancellation signals at time
t is:

E
�
(g l(t) � w g̃ l(t))2

�
= l2(t)

�
w2�2

g + g2(1 � w)2
�
. (6)

Minimizing the residual energy over the window w, we find

c�(t) = w� g̃ �(t), w� =
g2

g2 + �2
g
, (7)

a Wiener-like weighting of the measured impulse response. When
the loudspeaker-microphone impulse response magnitude is large
compared with the impulse response measurement uncertainty, the
window w will be near 1, and the cancellation filter will approx-
imate the measured impulse response. By contrast, when the im-
pulse response is poorly known, the window w will be small—
roughly the measured impulse response signal-to-noise ratio—and
the cancellation filter will be attenuated compared to the measured
impulse response. In this way, the optimal cancellation filter im-
pulse response is seen to be the measured loudspeaker-microphone
impulse response, scaled by a compressed signal-to-noise ratio
(CSNR).

Typically, the loudspeaker-microphone impulse response g(t)
will last hundreds of milliseconds, and the window that scales the
measured impulse response will preferably be a function of time
t and frequency f so as to account for changes in impulse re-
sponse variance over time and frequency. Denote by g̃(t, fb), b =
1, 2, . . . N the measured impulse response g̃(t) split into a set of
N discrete frequency bands fb using a filterbank such that the sum
of the band responses is the original measurement,

g̃(t) =
N�

b=1

g̃(t, fb). (8)

In this case, the canceler response c�(t) is the sum of measured
impulse response bands g̃(t, fb), scaled in each band by a corre-
sponding window w�(t, fb). Expressed mathematically,

c�(t) =
N�

b=1

c�(t, fb), (9)

where

c�(t, fb) = w�(t, fb) g̃(t, fb), (10)

w�(t, fb) =
g2(t, fb)

g2(t, fb) + �2
g(t, fb)

. (11)

We suggest using the measured impulse response bands g̃(t, fb) as
stand-ins for the actual impulse response bands g(t, fb) in comput-
ing the optimal window w�(t, fb). In addition, repeated measure-
ments of the impulse response g(t, fb) could be made, with the
measurement mean used for g(t, fb), and the variation in the im-
pulse response measurements as a function of time and frequency
used to form �2

g(t, fb). We also suggest smoothing g2(t, fb) over
time and frequency in computing w(t, fb) so that the window is a
smoothly changing function of time and frequency.
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Figure 2: Canceling auralizer using multiple loudspeakers and mi-
crophones. Multiple loudspeakers and microphones can be accom-
modated in this auralizer architecture by estimating the matrix of
loudspeaker-microphone transfer functions, G(t). Additionally,
the room sound estimates may be processed using beamforming
or other techniques before being diffused about the space.

Figure 3: Max/MSP patch showing one possible implementation
of the auralization system.

2.2. Multiple Microphones and Speakers

In the presence of L loudspeakers and M microphones, a matrix of
loudspeaker-microphone impulse responses is measured, and used
in subtracting auralization signal estimates from the microphone
signals. Stacking the microphone signals into an M -tall column
m(t), and the loudspeaker signals into an L-tall column l(t), our
cancellation system becomes

l(t) = H(t) � d̂(t) , (12)

d̂(t) = m(t) � C(t) � l(t) , (13)

c(t) = �(t � ⌧)

canceler

h(t) = 0

auralizer

+

s(t)
sweep

r(t)
measurement

point

+

g(t)

room
m(t)

mic

l(t)
speaker

�

Figure 4: Canceling Auralizer Calibration. The cancellation pro-
cessing c(t) may be determined by measuring the impulse re-
sponse between the loudspeaker and microphone, simultaneously
with the response through c(t).

where H(t) is the matrix of auralizer filters and C(t) the matrix
of canceling filters. As in the single-speaker single-microphone
case, the canceling filter matrix is the matrix of measured impulse
responses, each windowed according to its respective CSNR.

Moreover, a conditioning processor, Q, can be inserted be-
tween the microphones and auralizers,

l(t) = H(t) � Q

�
d̂(t)

�
, (14)

d̂(t) = Q

�
d̂(t)

�
� C(t) � l(t) , (15)

as seen in Fig. 2. This processor could serve several functions.
First, Q could act as the weights of a mixing matrix to determine
how the microphones signals are mapped to the auralizers, and
subsequently, the loudspeakers. For example, it might be benefi-
cial for microphones that are on one side of the room to send the
majority of their energy to loudspeakers on the same side of the
room, as could be achieved using a B-format microphone array
and Ambisonics processing driving the loudspeaker array. An-
other use could be for when the speaker array and auralizers are
used to create different acoustics in different parts of the room.
The processor Q could also be a beamformer or other microphone
array processor to auralize different sounds differently according
to their source position. In such a situation, Q could change the
dimensionality of the M microphone signals into P signals which
are then auralized. It is worth noting that depending on the pur-
pose, Q could a matrix of weights, a matrix of convolutions, a
combination of the two, or other processor.

3. IMPLEMENTATION AND EVALUATION

3.1. MaxMSP Implementation and System Calibration

The signal flow of Fig. 2 is straightforward to implement in any
number of environments. A Max/MSP implementation of a single-
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Figure 5: Cancellation Processing Design. The cancellation pro-
cessor reproduces the impulse response between the loudspeaker
and microphone, accounting for the scaling and delay experienced
through the canceler convolution.

Figure 6: Example Cancellation Impulse Response. A cancellation
impulse response c(t) (top) and its associated spectrogram (bot-
tom) are shown for the Listening Room at CCRMA, Stanford Uni-
versity, configured with a ceiling-mounted full-range loudspeaker
and hanging omnidirectional microphone.

microphone, single-loudspeaker canceling auralizer is shown in
Fig. 3. We use [20] for fast convolution.

To calibrate the system, the canceler impulse response c(t)
was set to a delayed pulse and the impulse response of the sys-
tem configured as shown in Fig. 4 was used to determine the scal-
ing and delay through the Max/MSP patch and to measure the
loudspeaker-microphone transfer function. An example result, us-
ing a Sennheiser MKH 20-P48 omnidirectional microphone placed
about 50 cm from an Adam A8X full-range loudspeaker is shown
in Fig. 5. To find c(t), the measured impulse response g̃(t) is
shifted and scaled according to the amplitude and arrival time of
the c(t) = �(t � �) pulse. An example canceler impulse response
is shown in Fig. 6. Finally, note that an optimal window may be

Figure 7: Canceling Auralizer Room Impulse Response. A sine
sweep from a separate loudspeaker in the room was used to mea-
sure the impulse response between a room source and the cancel-
ing reverberator system microphone input (top, blue), and system
room source estimate (top, orange). The corresponding spectro-
grams are also shown (middle and bottom). Note that the room
impulse response contains both the “dry” room response and the
“wet” synthesized room acoustics (Memorial Church at Stanford
University), while the estimated room source response shows a
substantially drier signal.

applied according to the discussion above by making a number of
measurements, and estimating the variance of the measured im-
pulse responses as a function of time and frequency.

3.2. Performance Evaluation

It is useful to anticipate the effectiveness of the virtual acoustics
cancellation in any given microphone. Substituting the optimal
windowing (7) into the expression for the canceler residual energy
(6), the virtual acoustics energy in the canceled microphone signal
is expected to be scaled by a factor of

� =
�2

g

g2 + �2
g
, (16)
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Figure 8: Canceling Auralizer Example. A dry source, Suzanne
Vega’s “Tom’s Diner,” was played in the CCRMA Listening
Room, configured with the canceling auralizer described here.
Spectrograms are shown for the microphone signal (top), the room
signal estimate (middle), and the synthetic acoustics projected into
the room (bottom). The room signal estimate contains little of
the synthetic reverberation, and is effectively a mix of the dry
Suzanne Vega track and low-frequency ventilation noise present
in the room.

compared to that in the original microphone signal. Note that the
reverberation-to-signal energy ratio is improved in proportion to
the measurement variance for accurately measured signals, �2

g �
g2. By contrast, when the impulse response is inaccurately mea-
sured, the reverberation-to-signal energy ratio is nearly unchanged,
� � 1.

To evaluate the performance of the system, we implemented
several versions of the system shown in Fig. 2 with one–two mi-
crophones and one–four loudspeakers in the CCRMA Listening
Room and CCRMA Stage recital hall at Stanford University. We
used a single loudspeaker source, playing exponentially swept si-
nusoid test signals and Suzanne Vega’s “Tom’s Diner” as dry pro-
gram material. This was selected as it often used to test reverbera-
tors and makes for a repeatable test signal.

Figure 9: Room Impulse Response Variation. The mean room
impulse response (top) formed from 1145 sine sweep responses
measured between a loudspeaker and microphone mounted in the
CCRMA Stage, a 120-seat recital hall at Stanford University that
was unoccupied during the measurement. The impulse response
energy, smoothed over a 10-millisecond-long Hanning window, is
also shown (bottom, solid), along with the smoothed sample stan-
dard deviation (bottom, dashed). The smoothed sample standard
deviation is also shown for a set of 75 measurements made with a
dozen occupants near the loudspeaker and microphone, and in dif-
ferent positions for each measurement (bottom, dotted). Note that
the impulse response variation is smallest relative to the impulse
response energy near the beginning of the impulse response, and
that the variation for the occupied room is modestly larger as the
room becomes mixed.

In a first test, the impulse response of the room with the system
active is measured. As seen in Fig. 7, the room impulse response
contains both the “dry” room response and the “wet” synthesized
room acoustics of Memorial Church at Stanford University. The
4.5 s reverberation time is plainly visible. Also shown in Fig. 7 is
the system dry signal estimate, d̂(t). Compared to the virtual room
impulse response, the canceler produces a substantially dry signal,
canceling in excess of 30 dB of the simulated reverberation.

Fig. 8 shows the response of the system to a dry source, Vega’s
“Tom’s Diner.” Spectrograms are shown for the microphone sig-
nal, the room signal estimate, and the synthetic acoustics projected
into the room. Note that the room signal estimate contains little
of the synthetic reverberation, and is effectively a mix of the dry
Suzanne Vega track, and low-frequency ventilation noise present
in the room. As expected, the room response shows the imprint of
the Memorial Church acoustics, as added by the system.

To better understand the practical performance of the system,
repeated measurements of the loudspeaker-microphone response
were made at the CCRMA Stage in unoccupied and occupied con-
ditions. Fig. 9 shows the mean room impulse response and the im-
pulse response energy, smoothed over a 10-millisecond-long Han-
ning window. The sample standard deviation is shown separately
for the unoccupied and occupied conditions. The impulse response
variation is smallest relative to the impulse response energy near
the beginning of the impulse response. Also, the variation for the
occupied room is modestly larger as the room becomes mixed. As
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Figure 10: Canceler Performance Example. The smoothed energy
of the mean loudspeaker-microphone impulse response is shown
(blue), as is the residual energy of suppressed loudspeaker signals
for the unoccupied (yellow) and occupied (orange) rooms. Note
that the cancellation is most effective at the impulse response start,
during which there is little variation, cf. Fig. 9. Note also that the
occupied room has a slightly larger residual energy as the room is
becoming well mixed.

seen in Fig. 10, the canceler residual energy is small near the be-
ginning of the response, and increases relative to the decreasing
impulse response energy throughout the response, consistent with
the notion that the beginning of the impulse response shows lit-
tle variation. As seen in Fig. 11, the canceler residual energy is
also small for frequencies below about 2 kHz. Over the speech
band of 200 Hz–3200 Hz, the residual simulated acoustics energy
present in the room signal estimate d̂(t) was 16.4 dB for the occu-
pied CCRMA Stage with moving participants, and 24.3 dB for the
unoccupied CCRMA Stage.

Finally, we present an example of the ability of the system to
suppress feedback resulting from creating a wet synthetic acoustic
environment. Fig. 12 shows a spectrogram of a recording of the
canceling auralizer simulating Memorial Church, along with the
spectrogram of the same recording, but with the canceler compo-
nent of the system switched off, and then switched back on. Note
the rapid build up and subsequent suppression of feedback with
the temporary removal of the cancellation processing.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown a real-time auralization system capa-
ble of generating multiple auralizations while canceling synthetic
reverberation with greater than 20 dB of feedback suppression. We
have also shown that the system can be calibrated and integrated
into an existing speaker array, using currently available room mi-
crophones to pick up live sounds, and function in real-time by
running with off-the-shelf software. Importantly, our system al-
lows flexible and dynamic experiences for performers, audiences,
and other users. In theatrical, musical, or other live performance
situations, this system does not require performers to wear mi-
crophones, transmitters, or battery packs in order to be processed
through artificial reverberation, thus expanding performance pos-

Figure 11: Canceler Performance Example, Residual Energy. The
loudspeaker-microphone impulse response spectrogram (top) is
shown along with the root-mean-square canceler residual for the
unoccupied CCRMA Stage (middle) and occupied CCRMA Stage
(bottom). Note that a substantial amount of the loudspeaker energy
has been canceled, particularly at the impulse response beginning
and for frequencies below about 2 kHz.

sibilities. Similarly, in emergent virtual, augmented, or mixed real-
ity settings, such as those one might find in industrial simulations,
home entertainment systems, and artistic installations, our system
does not require use of headphones to facilitate immersive aural-
izations.

We have tested our system in several rooms at CCRMA, Stan-
ford University. Additionally, the system has been used in a series
of network-audio concerts between Stanford University and Stock-
holm, Sweden [21]. We are planning to continue to develop our
system for further electroacoustic music works, for virtual reality
and virtual acoustic research, music and theatrical rehearsals and
performances, art installations, and for other academic and indus-
trial research projects at Stanford University. In particular, we are
installing a larger system (4 microphones and 8–16 loudspeakers)
for a study of performance practice using vocal repertoire writ-
ten for Rome’s Chiesa di Sant’Aniceto using impulse responses
recorded in Rome during 2017–18, [22, 23].
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Figure 12: Feedback Example. A spectrogram of a recording of
the canceling auralizer simulating the 5-second-long reverberation
of Memorial Church at Stanford University is shown (bottom),
along with the spectrogram of the same segment, but with the
canceler component of the system switched off near 500 ms, and
switched back on a little after 3000 ms (top). Note the rapid build
up and subsequent suppression of feedback near 1800 Hz with the
temporary removal of the cancellation processing.
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ABSTRACT

Several methods are available nowadays to artificially extend the
duration of a signal for audio restoration or creative music produc-
tion purposes. The most common approaches include overlap-and-
add (OLA) techniques, FFT-based methods, and linear predictive
coding (LPC). In this work we describe a novel OLA algorithm
based on convolution with velvet noise, in order to exploit its spar-
sity and spectrum flatness. The proposed method suppresses spec-
tral coloration and achieves remarkable computational efficiency.
Its issues are addressed and some design choices are explored. Ex-
perimental results are proposed and compared to a well-known
FFT-based method.

1. INTRODUCTION

Several techniques have been devised since the advent of digital
signal processing for the creative generation of textures and signal
freezing effects. Some of these methods, or variations thereof, are
also employed for audio restoration (see e.g. [1]), as they allow to
mimic a given signal and extend its time duration. Several tech-
niques have been proposed [2], among which some of the most
used ones are:

• Overlap-and-add (OLA) techniques [3, 4];

• FFT-based methods based on spectral analysis and resyn-
thesis [5];

• Linear Predictive Coding (LPC) schemes ([6, 7]).

OLA techniques constitute the foundation of granular synthe-
sis, which essentially consists in summing together several time-
shifted copies of a small number of short and usually windowed
signals (grains) to form the output signal. Generally, however,
granulation is meant as a creative tool, thus grains are often pro-
cessed, e.g. with constant or time-varying pitch-shifting. Despite
its conceptual simplicity, this synthesis method finds use in a wide
variety of applications. For extrapolation and freezing, it is suffi-
cient to employ a single input grain and have a sufficient density of
overlapping repetitions. The relative computational efficiency of
such algorithms is anyway normally counterbalanced by spectral
coloration, modulation effects, and phase-related artifacts, unless
countermeasures are taken [4].

Vocoding [8] is a well-known FFT-based method for signal
analysis and resynthesis and it has been used for the purpose of
freezing or texturing of a signal. Being block-based, it results in
nonuniform execution time and/or high implementation complex-
ity, and significant difficulties arise in handling parameter changes.

Finally, LPC methods generally achieve best output perfor-
mance in terms of timbre quality, and extensions of these meth-
ods can also work in the time-frequency domain, thus allowing for

accurate modeling of transients [9]. The good output quality nor-
mally obtained by LPC methods is however traded for high com-
putational cost due to the adaptive filtering techniques [10] they
are based on.

In this work we describe an OLA method for signal extrap-
olation which, unlike previous approaches [3, 4], is targeted not
only for efficiency, but also for maximal spectral flatness, leading
to results that are on par with FFT-based techniques.

The outline of the paper follows. In Section 2 we introduce
OLA techniques and justify our proposition from a theoretical per-
spective. Section 3 reports implementation details, experimental
and comparative data. Finally, Section 4 concludes the paper and
discusses the outcomes of this research.

2. PROPOSED METHOD

Overlap-and-Add methods are widely used in digital signal pro-
cessing to evaluate the convolution between two signals, one of
which has finite length, e.g. a filter kernel, and another that can
theoretically be infinitely long. If s[n] is the latter signal, we can
decompose it in non-overlapping blocks of length L, i.e.

s[n] =
+��

r=0

sr[n � rL]. (1)

Thus, the result of the convolution between such running signal
and a finite impulse response h[n] can be defined as

c[n] =
+��

r=0

sr[n � rL] � h[n] =
+��

r=0

cr[n � rL]. (2)

If h[n] has length P , then cr[n � rL], has length L + P � 1.
Therefore, each two contiguous blocks cr and cr+1 need to be
overlapped and added (hence the name) to obtain the correspond-
ing portion of c[n].

Many signal extrapolation methods work by summing time-
shifted copies of the windowed input signal xw[n]. This is con-
ceptually equivalent to applying the OLA method to compute the
convolution between xw[n], impersonating the fixed-length signal,
and an impulse train v[n] as the running signal. If the impulses
in v[n] are equally spaced, as is often done, the operation will
inevitably produce spectral coloration. This can be intuitively un-
derstood by considering that such a process corresponds to feeding
xw[n] into a feedback comb filter with unitary gain, thus resulting
in significant cancellation of spectral components that cannot be
compensated by post-equalization.

For our purposes, we need v[n] not only to have infinite tem-
poral duration, but also a sufficiently flat spectrum. Two well-
known signals that have these properties are white noise and dense
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Figure 1: Overview of the proposed system.

velvet noise [11]. Velvet noise, in particular, consists of randomly-
spaced unitary bipolar impulses and it has been shown to approx-
imate white noise from a psychoacoustical standpoint when its
pulse density rises above a certain threshold [12]. Due to its spar-
sity and the constant amplitude of impulses, convolution with vel-
vet noise can be efficiently implemented in the time domain by
simply summing together multiple randomly time-shifted copies
of xw[n] with random sign. The random nature of v[n] implies
random fluctuations of the local energy, requiring, thus, an am-
plitude compensation mechanism to reduce this undesired phe-
nomenon, later discussed. The overall architecture is shown in
Figure 1.

2.1. Issues and Implementation

The proposed method exposes three degrees of freedom in its de-
sign and operation: grain length, choice of window function, and
velvet noise density.

In granular synthesis, the user can often directly choose which
window function is applied as this has noticeable effect on the
sound, and especially when using short grains. In our case, we
definitely need windowing to eliminate potential discontinuities at
the extremes of the input grain, and it would be preferable to pick
a function that has high dynamic range and that is easy to com-
pute. However, since grains need to be relatively long to retain
low frequency components in the output, we can pragmatically
choose the window function based on computational cost alone.
The Welch window seems to be a valid choice because it is twice
differentiable, except at the extremes, and has an exceptionally low
computational cost. In Section 3 a few low cost windows, namely
the triangular, half sine, and Welch windows, are compared.

While many musical signal processing devices nowadays are
able to perform real-time convolution between a running signal
and a long impulse response, the complexity and computational
cost of our system can be largely reduced by leveraging the con-
cept of voices, as in other forms of synthesis. Each voice is a sam-
ple playback engine, triggered randomly and with random sign,
thus reducing the convolution operation to a limited number of
random memory accesses, sums, and sign changes per output sam-
ple. The only potential drawback of this approach is that a finite
number of voices needs to be defined beforehand, thus limiting the
number of possible simultaneous grain playbacks, which theoreti-
cally corresponds to imposing a maximum “instantaneous density”
to the velvet noise signal.

Given the suggested implementation approach, we believe it
makes most sense to parameterize in terms of simultaneous grains
on average, which corresponds to the product of the average velvet
noise density (spikes over time) and the grain length. It is probably
impossible to determine an optimal density for a given input sig-
nal, and especially when the input grain is somehow not sonically

uniform (e.g., it contains transients), however we have empirically
verified that satisfactory results can be in most cases obtained by
employing relatively few voices, usually less than 30. Further-
more, preallocating twice the number of average voices reduces
the likelihood of running out of available voices at any instant to
at most a few percentage points.

A last issue that needs to be addressed derives from the local
energy fluctuations of v[n] that are inherent to its random nature.
Those are also found in the output signal and need be compen-
sated for. Significant variations of the amplitude are indeed usu-
ally noticeable in our experiments. To attenuate these, at least in
a psychoacoustic sense, we propose applying a time-varying gain
which depends on the signal volume. We propose employing a
simple VU meter-inspired envelope detector for volume estima-
tion, which performs full-wave rectification and conversion to the
dB scale (with a lower limit of �120 dB), then applying a one-pole
lowpass filter with a rise/fall time of 300 ms for 99% excursion
(i.e., ⌧ � 65.144 ms). In order to match input and output levels,
the same volume estimator can be also applied to the input signal
to establish a target level. In any case, the gain factor needs to be
limited to avoid the occurrence of loud peaks.

A schematic overview of the implemented algorithm is shown
in Figure 2 where the amplitude compensation strategy described
in Section 2 is detailed.

3. EXPERIMENTAL RESULTS

The algorithm has been implemented as a GNU Octave script
to determine the quality of the audio output. The script
and sound samples are available at http://www.dangelo.
audio/dafx2018-freeze.html. A C++ implementation
has also been developed for execution on regular desktop com-
puters and on an embedded system running ELK by Mind Music
Labs1. It was tested on two laptops, an Acer Extensa 5220 (Intel
Celeron M 530 1.73 GHz single-core CPU, 1 GB DDR2 RAM)
and an Acer Aspire E1-522 (AMD A4-5000 1.5 GHz quad-core
CPU, 4 GB DDR3 RAM), both running 64-bit Arch Linux and
using an external Focusrite Scarlett 2i4 sound card. In all cases
(laptops and embedded system), the CPU load never exceeded 9%
for a grain density of 32 simultaneous grains on average, at a sam-
ple rate of 44.1 kHz and with different buffering configurations.

3.1. Qualitative Results

Informal listening tests have been conducted with several audio
source materials. An example of such experiments is reported in
Figure 4, where a small excerpt of a male voice singing an /a/
phoneme tuned to A2 is taken as source. Its spectrogram is shown
in Figure 4(a) and its DFT is shown in Figure 4(d). This signal has
been extrapolated according to the proposed algorithm yielding a
signal of length 5 s. Its spectrogram is shown in Figure 4(b) and its
time-domain representation is shown in Figure 4(c). Random fluc-
tuation of the overall amplitude is visible, however within a range
of 3 dB maximum. The DFT from the original and the extrapolated
signals are depicted in Figure 4(d-e) and show high resemblance,
as expected, due to the spectral flatness of velvet noise. Similar
experiments have been done with less stationary audio material,
such as a guitar chord, polyphonic music and percussive instru-
ments, with similar outcomes, see Figures 3, 8, 7.

1https://www.mindmusiclabs.com/

DAFx-108
DAFx-108



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Figure 2: Schematic overview of the implemented algorithm, including the amplitude compensation strategy and exploiting multiple sample
playback voices to reduce the computational cost of the convolution.

Figure 5 shows the DFT from the impulse train method. This
signal has been synthesized by convolution with an impulse train
having the same density as in the previous experiments, i.e. 32
pulses per second. In this case, it is quite evident that the signal
has a comb-like pattern, with peaks at multiples of 32 Hz. As
discussed previously, since the convolution with an impulse train
has the same effect of a comb filter with unitary gain, the peaks are
very pronounced, losing the timbre of the original signal.

We have also verified that the output sound quality has little
dependency on the choice of the window function when the input
grain is sufficiently long. The DFT from signals extrapolated using
three window types, triangular, half sine, and Welch, are shown in
Figure 6(a),(b) and (c), respectively. The results are almost iden-
tical, as expected. Please note that this is also true for any pulse
density.

3.2. Comparison to FFT analysis-resynthesis

In this section we compare the proposed method with a well-
known method based on FFT analysis-resynthesis, dubbed tim-
bre stamping in [5]. In general, the quality of such an FFT-based
method is rather high if the number of DFT bins is sufficiently
large. In Figures 7 and 8 we compare the proposed method and
the FFT-based method with a polyphonic music excerpt (trumpet
playing a scale and accompanying jazz combo in the background)
and a percussive jazz excerpt (containing a double bass note and
cymbals) respectively. Both methods retain features of the original
spectra. For instance, the polyphonic excerpt overlaps the notes of
the scale are contained in the window. The time envelope of the
FFT-based method is perceived as smoother for long grain size (1 s
or more), however with shorter windows, such as those used in the
figures (32 windows per second and window size of 300ms) the
FFT method shows periodic repetitions in the output that are easily
perceived especially in the presence of transients in the windowed
signal. This is even clearer with percussive audio material. In the
FFT-based method, transients may result smeared and are repeated
periodically. The proposed method shows to have a smoother tem-
poral domain envelope with respect to the FFT-based method, re-
sulting in a less mechanical behavior and a denser output.

4. CONCLUSIONS

This paper described a novel method for signal extrapolation that
has a low computational cost and is, thus, easily implemented in
real-time applications. The method is mathematically formulated
as a convolution problem with spectral flatness as a constraint.

Owing from overlap-and-add methods we derived a formulation
that ensures maximal spectral flatness. The low computational
cost of this method is an additional benefit that allows for real-time
implementations with a very low effort, as it processes the signal
directly in the time domain and requires no filter adaptation, as in
LPC methods. The real-time implementation can take advantage
of the sparsity of the velvet noise reducing the convolution to the
playback of randomly triggered voices. The method requires an
additional step of automatic gain control to reduce random fluc-
tuations of the output signal energy. In the current work we de-
scribe a mechanism that is widely used in the literature, however,
this may be improved upon taking in consideration both the vel-
vet noise density and the fluctuations inherent to the input signal
as well. Experimental results are provided showing the preserva-
tion of the original spectrum and the minimal effect of the window
type, which can be, thus, selected depending on computational
constraints. As a future work, subjective listening tests could be
performed to compare it to other well-known methods. The qual-
ity of these effects is very subjective, thus, some audio semantic
descriptors may be employed as well for the evaluation.
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Figure 3: Extrapolation of a guitar chord: spectrogram of the orig-
inal excerpt (a), spectrogram of the extrapolated audio (b) and
waveform (c).
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Figure 4: Experiments with voice extrapolation. The input signal
is an excerpt of an /a/ phoneme by a male singer tuned to A2. Its
spectrogram is shown in (a) and the resulting extrapolated signal is
shown in (b), where the impulse density is set to 32 pulses per sec-
ond. The original phoneme length was 1 s, while the extrapolated
signal lasts 5 s. The time domain plot of the extrapolated signal is
shown in (c), while the DFTs for the original and the extrapolated
signals are respectively shown in (d-e). All signals are sampled at
44100 Hz.
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Figure 5: Repeating the experiment of Figure 4 with an impulse
train instead of velvet noise with impulse density 32. The DFT is
shown in (a). A detailed view shows that the periodicity can be
clearly seen by the peaks emerging at multiples of 32 Hz, reducing
the effect to a comb filter with unitary gain. The sampling rate is
4100 Hz.
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Figure 6: Comparison between signals extrapolated from the vo-
cal signal in Figure 4(a) with window duration of 0.3 s and differ-
ent window types: triangular (a), half sine (b) and Welch (c). All
signals were generated using a grain density of 32 simultaneous
grains on average. All signals are sampled at 44100 Hz.
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Figure 7: Extrapolation of jazz polyphonic music: spectrogram of the original excerpt (a), spectrogram of the extrapolated audio using the
proposed method (b) and a FFT-based method (c). The time waveform are the one from the proposed method (d) and from the FFT-based
method (e). The FFT-based method and the proposed extrapolation method use same window size. All signals are sampled at 44100 Hz.
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ABSTRACT

The reduction of speech intelligibility in noise is usually domi-
nated by energetic masking (EM) and informational masking (IM).
Most state-of-the-art objective intelligibility measures (OIM) esti-
mate intelligibility by quantifying EM. Few measures model the
effect of IM in detail. In this study, an auditory saliency model,
which intends to measure the probability of the sources obtain-
ing auditory attention in a bottom-up process, was integrated into
an OIM for improving the performance of intelligibility predic-
tion under IM. While EM is accounted for by the original OIM,
IM is assumed to arise from the listener’s attention switching be-
tween the target and competing sounds existing in the auditory
scene. The performance of the proposed method was evaluated
along with three reference OIMs by comparing the model pre-
dictions to the listener word recognition rates, for different noise
maskers, some of which introduce IM. The results shows that the
predictive accuracy of the proposed method is as good as the best
reported in the literature. The proposed method, however, pro-
vides a physiologically-plausible possibility for both IM and EM
modelling.

1. INTRODUCTION

Speech communication often takes place in non-ideal listening en-
vironments. Speech intelligibility is often negatively affected by
background noise, leading to the potential failure of information
transmission. In order to efficiently quantify the extent to which
the background noise harms intelligibility, a great number of ob-
jective intelligibility measures (OIM) have been proposed in the
last decades. They have been used as a perceptual guide in activ-
ities such as development of modification algorithms for highly-
intelligible speech [1], speech enhancement [2], production of TV
or radio broadcast [3] and research in hearing impairment [4].
OIMs have an important role in developing speech and noise pro-
cessing algorithms for an inclusion.

Standard measures, such as the Speech Intelligibility Index
(SII, [5]) and the Speech Transmission Index [6], and early OIMs
(e.g. [4, 7]) make intelligibility predictions based on long-term
masked audibility (e.g. SII) or modulation reduction (e.g. STI) of
the target speech signal. More recent methods [8, 9, 10, 11] oper-
ate on short windows (10-300 ms), in order to improve the predic-
tive accuracy in temporally-fluctuating noise maskers. In addition,
some of the measures [10, 11] were developed on the basis of so-
phisticated auditory models, and have demonstrated more robust
predictive power in a wide range of conditions [12]. In the light
of the fact that listener do not need all time-frequency (T-F) in-
formation to successfully decode the speech [13], Cooke proposed

a glimpsing model of speech perception in noise [14]. In [14],
the percentage of the T-F regions of speech with a local speech-to-
noise ratio (SNR) meeting a given criteria was calculated as the in-
telligibility proxy, known as the glimpse proportion (GP). It can be
thought of the overall contribution from the local audibility of all
the T-F regions to intelligibility in noise. Tang and Cooke further
extended the GP to a complete intelligibility measure – the extend
GP (ext. GP) – which performs detail modelling of the masking ef-
fect taking place in the auditory peripheral from the outer-middle
ear, through the cochlea to the inner-hair cells. The predictions
by ext. GP are well correlated with listener word recognition per-
formance in various noise maskers, with correlation coefficients
greater than 0.85 [11].

Energetic masking (EM) and informational masking (IM) in-
troduced by the noise masker mainly account for the reduced intel-
ligibility. EM is the consequence of interactions of physical signals
acting in the auditory peripheral. IM is different as it obstructs au-
ditory identification and discrimination at the late stage of auditory
pathway, when a sound is perceived in the presence of other simi-
lar sounds [15, 16, 17]. However, this is overlooked by the afore-
mentioned OIMs, which can only quantify the impact of EM on
intelligibility from the physical attributes of the speech and noise
signals. When comparing the GP in speech-shaped noise (SSN)
and competing speech (CS), Tang and Cooke found that to achieve
the same intelligibility much fewer glimpses are required in SSN
than in CS, which introduces large IM [11]. They postulated that
IM made some glimpses ineffective.

With a classification of the glimpsed T-F regions based on en-
ergy, it was further found that the regions with energy above the
average are more robust in noise. Those with energy under the
average are more susceptible to both EM and IM [11]. Impor-
tantly, the amount of high-energy glimpses is broadly consistent
for the same speech signal in SSN and CS under SNRs leading to
the similar listener performance. Although this method, know as
high-energy glimpse proportion (HEGP), is a crude approach for
making consistent predictions when the masker is in presence or
absence of IM, it confirmed an early hypothesis that IM may affect
the effectiveness of the glimpsed T-F regions available for speech.

One possible explanation is that the listener switches attention
between the target and the competing sources, leading to some of
the target components that have triggered activities at the auditory
peripheral not being further processed by the brain. The percep-
tual and cognitive resources that a human’s nervous system can
use to process the input sensory stimuli received in a short time
window is limited. Consequently, the brain temporarily and se-
lectively stores only a subset of available sensory information in
short-term working memory for further processing [18, 19, 20].
This selection is a combination of rapid bottom-up signal-driven
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(task-independent) attention, as well as slower top-down cognitive
(task-dependent) attention. First, the bottom-up processing occurs
and attracts attention towards conspicuous or salient locations of
the scene in an unconscious manner. Then, the top-down process-
ing shifts the attention voluntarily towards locations of cognitive
interest. Only the information selectively attended to is allowed
to progress through the cortical hierarchy for high-level process-
ing and detailed analysis [20, 21]. Therefore, saliency detection
is considered to be a key attentional mechanism used to economi-
cally allocate and efficiently use the brain’s limited processing ca-
pacity [22, 23].

The saliency of an object is the state or quality by which it
stands out relative to its neighbours or background. In a com-
plex auditory scene, a salient sound object may stand a bigger
chance relative to other competing sources to gain a listener’s at-
tention. Saliency-based approaches were initially proposed as a
major component in modelling bottom-up visual attention [24, 25,
26, 18]. The way in which the auditory cortex responds to sound
stimuli is similar in terms of feature analyses on spectral or tem-
poral modulation for instance [27, 28, 29, 30]. Many studies (e.g.
[31, 32, 33, 34, 35]) on auditory saliency adopt the same analyti-
cal feature extraction mechanism to model auditory attention. The
features used mainly include intensity, temporal contrast, spectral
contrast and orientation which simulates the dynamics of the audi-
tory neuron responses to moving ripples [36, 37]. In general, the
modelling of auditory attention closely resembles that of visual
attention, in which features essentially approximate the receptive
field sensitivity profile of orientation-selective neurons in the pri-
mary visual cortex [38].

The output of the saliency analysis is usually a spectro-temporal
representation called a saliency map. Kayser et al. generated the
saliency map from intensity, temporal and spectral contrasts using
a standard Fourier analysis [31]. By comparing the model predic-
tion to the results from behavioural studies on human listeners and
macaque monkeys, it was confirmed that different primate sensory
systems rely on common principles for extracting relevant sensory
events. In more recent studies [32, 33, 34, 35], the features used
for composing the saliency map were extracted from the output of
auditory peripheral analysis instead of via Fourier. This in prin-
ciple provided a more physiologically-valid representation for the
saliency analysis. Besides the same features used in [31], Kalinli
and Narayanan included the orientation information in the saliency
map [32]. A saliency score, which was a function of time, was fur-
ther computed by collapsing the saliency map across frequencies
followed by normalisation. This was used to predict the ‘promi-
nent’ syllables and words in sentences drawn from a speech cor-
pus. Their model achieved a better accuracy than when orientation
information was excluded. However, further adding pitch infor-
mation did not improve the model accuracy. Some other features
were also used for generating a saliency map. Kaya and Elhilali
added temporal envelope, rate and bandwidth as features to further
emphasise the impact of the spectro-temporal modulations [35].

As both contemporary auditory saliency and glimpse analyses
are performed on T-F representations, it is therefore possible to use
a common representation at the early stage of the models for the
purposes. This study aims to integrate saliency analysis into the
ext. GP measure, in an attempt of quantifying the IM effect in a
physiologically-plausible approach. The performance of the pro-
posed method were evaluated along with another three reference
OIMs, by comparing the model predictions to measured subjec-
tive intelligibility in noise maskers, some of which introduce IM.

2. PROPOSED METHOD

The proposed method consists of two main parts, as illustrated in
Fig. 1. The first part is the ext. GP [11], which models the ener-
getic masking taking place at the auditory peripheral. The second
part (shaded and on the left of Fig. 1) performs saliency analysis
on the given auditory scene as a whole, quantifying the probabil-
ity of the T-F regions on the scene gaining processing in the later
stage of the auditory pathway in a bottom-up process. The out-
put of this part, the saliency map SM , is subsequently combined
with glimpse representation G� from ext. GP, in order to adjust the
contribution of the glimpses to the final intelligibility.

2.1. Quantifying energetic masking

Energetic masking is modelled using ext. GP [11]. To generate the
auditory representations – the spectro-temporal excitation patterns
(STEP) – for the signals, the clean speech signal s and noise signal
n are passed through 64-gammatone filterbanks1. The centre fre-
quencies of the 64 filters are evenly distributed on the equivalent
rectangle bandwidth (ERB) scale, ranging from 100 to 7500 Hz,
with a spectral resolution of 0.51 ERB. An outer-middle ear trans-
fer function [39] is applied to the filter outputs, in order to account
for the auditory sensitivity (i.e. hearing threshold) to the level of
the signal at different frequencies. The Hilbert envelopes of each
frequency band, E(f), is then extracted, smoothed by a leaky in-
tegrator with an 8 ms time constant and downsampled to 100 Hz.
A log-compression is imposed on the final output.

The glimpses are determined by comparing the STEP of the
speech signal STEPs against that of the noise signal STEPn.
A glimpsed T-F region must possess a local SNR above a given
threshold (�=3 dB), and be above the hearing level (HL, set to
25 dB),

G(t, f) = STEPs(t, f) > max(STEPn(t, f) + �, HL) (1)

To account for forward masking, the raw glimpses G are fur-
ther validated using an inner-hair cell model (IHC, [40]), which
also takes the envelopes of speech-plus-noise mixture Em as the
input. The glimpsed T-F regions surviving from simultaneous mask-
ing are considered valid only when their corresponding IHC out-
puts are not masked during the IHC depleting and replenishing
process. Hence, the IHC-validated glimpse G� is defined as,

G�(t, f) = G(t, f) � ¬g(t, f) (2)

where � indicates logic ‘and’, and g denotes the masked glimpses
due to forward masking. For the rules for IHC validation, see [11]
for details.

The plots in the second row of Fig. 2 exemplify the valid
glimpsed T-F regions on a speech signal in SSN and CS at 1 and
-7 dB SNR, respectively. The chosen SNRs led to a similar intelli-
gibility in the two maskers [41].

2.2. Generating saliency map

A saliency map is also a T-F representation produced from STEP.
Generating a saliency map often involves feature extraction, nor-

1Saliency analysis requires a greater number of filters to maintain the
T-F resolution of its output than previously used for ext. GP. Instead of 34-
channel described in [11], 64-channel STEPs were used here for ext. GP,
in order to keep the representations consistent. Tests have shown that filter
numbers above 34 have little impact to the performance of ext. GP.
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Figure 1: Diagram of the proposed system. The shaded part on the left performs saliency analysis, partly accounting for the effect of
informational masking. The unshaded part on the right describes the mechanism of the extended GP [11].

malisation, combination and resizing. After [42, 32, 33], the fea-
tures F (�, �, �) including intensity F I , spectral contrast F S , tem-
poral contrast F T and orientation F O are extracted from the STEP
of the speech-plus-noise mixture STEPm. This is performed in a
multi-scale manner [18]: eight scales � = {1, ..., 8} are used, and
the input STEPm is filtered and decimated by a factor of two iter-
atively for seven times; the output of the last iteration is the input
of the next. This results in size reduction factors ranging from 1:1
to 1:128. The resized STEPs are then convolved by the Gabor fil-
ters (which are the product of a cosine grating and a 2D Gaussian
envelope) with different �, which represents one of the four target
features, as listed in Table 1:

Table 1: Parameters of the Gabor filters for each feature

Feature � �

Intensity �/2 0

Spectral contrast 0 1

Temporal contrast �/2 1

Orientation {�/4, 3�/4} 1

In order to mimic the properties of local cortical inhibition,
the ‘centre-surrounding’ differences are calculated after extracting
features at multiple scales, yielding a set of feature maps FM(c, s).
This is done by across-scale subtraction between a centre finer
scale c � {2, 3, 4} and a surrounding coarser scale s:

FM(c, s) = |FM(c) � FM(s)| (3)

where s = c + �, � � {3, 4}. As the size of the feature repre-

sentation varies across scales, it (from scale 1 to 8) needs to be
be normalised prior to the across-scale subtraction. Here the rep-
resentations for each feature are resized to that of scale 4. The
centre-surrounding step finally results in 6 � 5 feature maps2, 6 of
which represent each of the features in different scales.

Across-scale combination aims to generate a so-called ‘con-
spicuity map’, CM , for each feature from the feature maps at dif-
ferent scales, using across scale addition. Due to different dynamic
ranges resulting from the extraction process for each feature, the
feature maps must be first handled by a nonlinear normalisation
procedure in order to bring them into a comparable scale. Another
purpose of the normalisation is to simulate competition between
neighbouring salient locations [43]. This nonlinear normalisation
consists of certain number of iterations (three times is used here),
each of which consists of self-excitation and inhibition induced by
neighbours. To implement, a 2-D difference of Gaussians (DoG)
filter is convolved with each feature map, followed by clamping the
negative values to zero. A feature map FM is then transformed in
each iteration as follow:

CM �� |FM + FM � DoG � 0.02| � 0 (4)

After normalisation, the normalised feature maps of different
scales can then be summed up to a single conspicuity map. This
is repeated for all the four features, resulting in four maps. The
final saliency map, SM , is a linear combination of all the four
normalised maps. A further resizing is required to recovery the
map size (currently at scale 4) back to the original size (at scale 1,
same to the STEPm).

2Due to orientation having two sub-conditions (i.e., � �
{pi/4, 3�/4}), there are therefore 12 feature maps for orientation in to-
tal.
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Figure 2: Spectrograms, IHC-validated glimpses (G�), saliency
maps (SM ) and saliency-weighted glimpses (G��) of the sentence
‘the birch canoe slid on the smooth planks’ in SSN (left column)
and CS (right column) at 1 and -7 dB SNR, respectively.

The plots in the third row of Fig. 2 show saliency maps of the
same speech signal corrupted by SSN and CS. While the T-F re-
gions where the glimpses occur are mostly salient in SSN, this is
not always the case in CS. For CS, the glimpsed fricative com-
ponents of speech that have energy concentrated at mid-high fre-
quencies are scarcely salient in the example. These glimpses might
have very limited contribution to intelligibility due to IM.

2.3. Intelligibility prediction

The final saliency-adjusted glimpses G�� is the product of the IHC-
validated glimpse G� and the saliency map SM . The effect of this
operation on the glimpses is visualised in the plots at the bottom
of Fig. 2. The remaining procedure follows the calculation of ext.
GP: G�� is subsequently weighted by the band importance function
K [5] , followed by a quasi-logarithmic compression in a form of

v(x) = log(1 + x/0.01)/ log(1 + 1/0.01),

OSI = v

�
1
T

F�

f=1

�
K(f)

T�

t=1

G�(t, f) · SM(t, f)
��

(5)

where F=64 and T are the number of frequency bands and time
frames, respectively. The final predictive index falls between 0 and
1, with the greater number indicating the better intelligibility.

3. EVALUATION

For the reference performance, ext. GP, HEGP and SII were eval-
uated along with the proposed method.

3.1. Subjective data

The subjective data was drawn from [41, 44]. In the two stud-
ies, the listener intelligibility was measured as the sentence-level
word recognition rate in SSN and CS at three SNR levels for each
masker, i.e. -9, -4 and 1 dB for SSN and -21, -14 and -7 dB for CS.
The chosen SNRs led to the intelligibility of approximately 25%,
50% and 75% in each masker. While the target sentences were ut-
tered by a male native English speakers, the CS was produced by
a female speaker. In contrast to SSN, CS is able to cause strong
IM [45]. In total, this corpus offers 180 conditions, covering the
intelligibility range from 5% to 95%. As this corpus consists of 30
types of speech including those algorithmically-modified for bet-
ter intelligibility and synthetic speech, it is rather challenging for
OIMs to predict from. Tang et al. evaluated up to seven state-of-
the-art OIMs using this corpus, the average overall performance
– the correlation between the listener performance and the model
predictions – across all the OIMs was merely 0.67, with 0.83 be-
ing the best [12]. Nevertheless, the use of SSN and CS maskers in
the corpus provided this study with an ideal experiment protocol
(i.e. inclusion of maskers which do or do not introduce IM) for
evaluation the proposed method.

3.2. Procedure

The raw model output, O, was transformed to the estimated lis-
tener performance using a two-parameter sigmoid function (Eqn. 6),
in order to make a direct comparison with the subjective data.

W =
1

1 + exp(�(a + b · O))
(6)

where a and b are the two open parameters, the values of which
are chosen to give a best fit to the subjective data for each OIM;
values are presented in Table 2.

Table 2: Values of parameters a and b used in the sigmoid trans-
formation for the OIMs

proposed ext. GP HEGP SII

a -2.201 -2.864 -4.007 -1.009

b 8.284 5.837 8.024 5.339

The main performance of the OIM was evaluated as the Pear-
son correlation coefficient � between the measured and estimated
intelligibility, as well as the root-mean-square error RMSE.
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Figure 3: Listener intelligibility versus model predictions in all 180 conditions. The dashed line in each plot is the sigmoid fitting for the
OIM.

Table 3: Subjective-model Pearson correlation correlations � and
RMSEs (in parentheses) as the model performance in each sub-
conditions. Figure in squared brackets indicates the number of
data points from which � and RMSE were calculated.

proposed ext. GP HEGP SII

SSN [90] 0.89 (13.0) 0.88 (13.0) 0.88 (13.1) 0.87 (13.5)

CS [90] 0.82 (14.0) 0.81 (14.4) 0.83 (13.7) 0.77 (15.7)

natural [132] 0.86 (13.5) 0.73 (17.8) 0.87 (13.0) 0.70 (18.7)

synthetic [48] 0.92 (9.0) 0.79 (13.5) 0.93 (8.0) 0.74 (14.8)

overall [180] 0.82 (15.2) 0.71 (18.5) 0.84 (14.4) 0.68 (19.2)

3.3. Results

Fig. 3 compares the model predictions against the measured intel-
ligibility in the 180 conditions. Overall, ext GP and SII exhib-
ited visually poorer performance than the other two due to the
discrepancy between the predictions in SSN (solid circles) and
in CS (open circles). While ext GP overestimated in CS or un-
derestimated in SSN, SII displays opposite behaviour. This will
be discussed later. By accounting for the effect of IM using the
saliency map to further weight the contribution of glimpses, the
proposed method decreases the discrepancy observed for ext. GP
in Fig. 3. This led to a significant improvement in accuracy for
the proposed method (� = 0.82) over ext. GP (� = 0.71) [Z =
3.216, p < 0.01]. SII performance was similar to ext. GP (� =
0.48) [Z = 0.781, p = 0.535]. With such overall listener-model
correlation, the proposed method performed as almost the best as
reported in [12] (� = 0.83). The proposed is also comparable to
HEGP [Z = 0.970, p = 0.332], despite the latter leading to the
highest correlation (� = 0.84).

The performances of the OIMs were also examined in a se-
ries of sub-conditions, as displayed in Table 3. For individual
maskers, all the OIMs achieved similar performance [all �2(3) �
3.923, p � 0.270]. When making predictions separately for natu-
ral and synthetic speech, the proposed was equivalent to the HEGP
[all Z � 0.797, p � 0.426], however was clearly more robust
than the other two OIMs [all Z � 2.927, p < 0.01], especially for
synthetic speech.

4. DISCUSSION

The current study aimed to improve the predictive power of the
ext. GP metric [11] under informational masking by incorporating
an auditory saliency model into the OIM. Having observed that
the speech-dominant T-F regions contribute to intelligibility dif-
ferently in the face of different maskers [11], a weighting based
on the likelihood of a region being selected for further auditory
processing in a bottom-up procedure, can help account for the IM
effect. Hence, improved performance over the original ext. GP
metric is seen, especially when performing across maskers which
do or do not introduce IM.

The overall performance of both ext. GP and SII suffers from
the separation of their outputs in the two maskers, as seen in Fig. 3.
Since speech is more tolerant of EM in CS (i.e. fluctuating masker)
than in SSN (stationary masker) at the same SNR level, speech in
CS must be presented at a lower global SNR to obtain the same
intelligibility level as in SSN. However, due to its large envelope
modulations, CS provides more opportunities for glimpsing T-F
regions on the target signal than in SSN. Even so, the additional
glimpses in CS are not translated to intelligibility gain. The over-
estimation of ext. GP in CS is thus attributed to the IM effect not
being accounted for. On the other hand, Tang et al. explained that
SII scores lower in CS than in SSN is due to its long-term spec-
tral SNR-based calculation being sensitive to any change in global
SNR [12], which is a more dominant factor to speech intelligibility
in noise than IM [45].

The proposed method achieved the same performance as the
HEGP metric, which assumes that the amount of the high-energy
T-F regions on the speech signal is determinant for intelligibility
prediction in noise. In terms of EM, more energy offers bigger
chance of surviving from the masking to this group of T-F re-
gions, it is therefore more likely for them to be glimpsed by the
listener. In the meantime, relatively high intensity in these regions
may cause large spectral and temporal contrasts across both the
time and frequency at the boundaries when intensity dramatically
increases or decreases, e.g. at the transition between a consonant
and a vowel. Consequently, these T-F regions are likely to be more
salient than others, and hence more probable to win the completion
of the auditory attention during the bottom-up processing. Despite
the similar fundamental mechanism and predictive performance,
the proposed method presents a finer and more transparent mod-
elling of speech intelligibility in noise than HEGP. As it quantifies
the EM and IM effects in different components, modelling of each
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effect could be further improved and extended separately. There is
some evidence suggesting that in English the glimpses taking place
on vowels are more important to the intelligibility than those on
consonants [46, 47], implying that the contribution of the glimpsed
T-F regions could be further re-weighted for voicing and invoicing
segments. In addition, a top-down auditory spotlight searching
[48] could be also considered in the metric for better modelling of
IM.

5. CONCLUSIONS

An auditory saliency model was used in conjunction with a state-
of-the-art OIM to improve the accuracy for intelligibility predic-
tion under IM. The evaluation confirmed the validity of this ap-
proach, whose performance for the given dataset was comparable
to the best reported in the literature. This study presents a detailed
and yet physiologically-plausible approach for modelling both EM
and IM to speech intelligibility. The proposed method could be
thus used as a perceptual guide in audio production and reproduc-
tion, where speech intelligibility is a concern. However, the com-
plexity of IM occurring at the later stage of the auditory pathway
warrants investigations in future.
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ABSTRACT

The acoustics of spaces whose purpose is the acoustic com-
munication through speech, namely classrooms, is a subject that
has not been given the due importance in architectural projects,
with consequences in the existence of adverse acoustic conditions,
which affect on a daily basis the learning of the students and the
well-being of teachers.

One of the lecture rooms of the Faculty of Engineering of the
University of Porto (FEUP) was chosen, with a criterion of gen-
erality, in which the acoustic conditions were evaluated and com-
pared with those that are known to be necessary for the intended
acoustic communication effect. Several measurements were made
in the space to investigate the acoustic parameters situation rela-
tively to the appropriate range.

An acoustic model of the amphitheater under study was devel-
oped in the EASE software, with which it was possible to obtain
simulated results for comparison with the previously measured pa-
rameters and to introduce changes in the model to perceive their
impact in the real space. In this phase it was possible to use the
auralization resources of the software to create perception of how
the sound is heard in the built model. This was useful for the phase
of rehabilitation of the space because it was possible to judge sub-
jectively the improvement of the sound intelligibility in that space.

Finally, possible solutions are presented in the acoustic do-
main and using electroacoustic sound reinforcement aiming to pro-
vide a better acoustic comfort and communicational effectiveness
for the people who use it.

1. INTRODUCTION

In today’s society there is still no great concern with the acoustic
problems of the daily frequented places, however, if an analysis is
done on this subject, we quickly see how harmed we sometimes
are due to the poor acoustics of a space, either by the excessive
effort to the understanding of speech or by the vocal effort caused
on the speaker. Among the most critical cases of this situation are
the classroom spaces. Often they do not present favorable acoustic
conditions for a good understanding of the words, so impairing
student learning [1].

This problem arises from the lack of awareness in the project
stage of the space about the acoustic specifications necessary for
its purpose. It is known in acoustic science that, if the space is used
for communication by means of the word, then the intelligibility
of the transmission will only be assured by deliberate attention and
should therefore be a factor to be taken into account [2].

� Acknowledgments: Support from MIEEC programme of work devel-
oped in the scope of the MIEEC master dissertation; Support of Acoustics
Laboratory of FEUP - António Costa (M.Eng.).

Through direct contact with the problem and the perception of
its impact it became necessary to intervene.

This problem was identified in some lecture spaces of FEUP
from internal reports and studies and above all, through the com-
mon experience of students and teachers [3, 4]. In the course of
previous studies in some of those spaces, a clear diagnosis of the
problem was achieved, through objective and subjective tests, and
some pilot interventions were carried out, however, the changes
made in the chosen rooms were quite profound and expensive,
making it difficult to generalize to the whole school.

A new study was carried out in the Amphitheater B013 of
FEUP, one of the more abundant types of lecture rooms that may
be encountered at FEUP, in terms of quantity times capacity rank-
ing, to evaluate how far is it from the necessary conditions for the
purpose and to present solutions.

Is it possible to evaluate the acoustic conditions of a space not
only through experimentation but also by modeling the space using
appropriate software. This is a great advantage when it comes to
evaluate and simulate changes to the space in an economic way.
To do this there are several softwares available, such as, EASE
[5], ODEON [6], Olive Tree Lab-Room[7] and CATT [8], among
others. In these softwares, auralization might also be available
allowing a subjective evaluation of the space through its digital
model where it is possible to actually ear a simulated sound as if
the person was inside, on a specific spot of the model. This also
brings the advantage of having a perception of how sound will
be heard after simulating an intervention, saving all the costs of
implementing the solution experimentally in the place, which is
very important in the case of a preliminary study.

2. METHODOLOGY OF STUDY, ASSESSMENT AND
ACOUSTIC DESIGN OF CLASSROOMS

Since the problem under analysis is centered on the evaluation of
an existing lecture room, a methodology is proposed for its acous-
tic enhancement, that, in this case, a corrective one, since the space
in study is already constructed. The work addressed in this paper
can be separated in two phases, a preliminary phase and an imple-
mentation phase. The present paper describes only the first phase
which was already accomplished. Thus, the workflow proposed
for the preliminary phase consists of the steps presented in figure
1.

For the following implementation phase, where the design will
be applied to the space, what is recommended is to intervene with
alteration of the acoustic architecture by means of some acoustic
materials for passive correction as well as with introduction of a
simple speech reinforcement system, composed of microphones,
amplifier and one loudspeaker. Finally, the project should finish
by taking measurements for verification of the effectiveness of the
intervention.
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Figure 1: Workflow proposed for the preliminary phase of the
acoustic assessment and rehabilitation.

3. CASE STUDY: AMPHITHEATER B013 (FEUP)

3.1. Acoustic evaluation

The acoustic evaluation consisted of an in loco data collection
for calculation of a set of descriptive acoustic parameters of the
space. For the amphitheater B013, composed of 98 seats, of which
two pictures are presented in figures 2 and 3, the set of param-
eters, which were considered important, taking into account that
the space has the purpose of speech communication, was com-
posed by: reverberation time, RASTI, definition, clarity, and also
background noise [9] [10]. Two types of sound sources besides a
RASTI emitter were used to excite the room space, and a couple of
measurement microphones, a sound-level meter and a RASTI re-
ceiver were employed to record sound and measure, respectively.
Some pictures of the equipment used are presented in figure 4.
Posteriorly, a specially developed Matlab program was employed
to process the recorded signals and obtain not only the values for
the definition and clarity but also reverberation times for additional
sub-bands not given by the sound-level meter. The impulse re-
sponses of the space were also obtained for two distinct locations,
in rows 2 and 6, using the same software with additional averaging.

Figure 2: Front of amphitheater B013.

Figure 3: Rear of amphitheater B013.

Figure 4: Material used for the measurements. From left to right
in the top row are two sound sources and a sound-level meter. In
the bottom row are a RASTI emitter and a RASTI receiver.

For the wideband global reverberation time (averaging the re-
sults for the octave bands of 500 Hz, 1 kHz and 2 kHz) a value of
2.35 s was obtained. A graphic with the RT frequency distribution
can be seen in figure 5 .The other mean obtained values were: 0.45
for RASTI, for D50 and C50 in row 2, 0.45 and -0.79 dB, respec-
tively and 38.4 dBA for background noise. Table I presents the ob-
tained values in comparison with the ones that would be adequate
for this room[2] [11] [12]. Through a reflectometry analysis of the
room impulse responses, we observed a large number of important
late reflections that contribute to impair the speech intelligibility.

With those values so distanciated from the desired levels, a
clear need for intervention in the space was proved.

3.2. Acoustic simulation

Exploring the possibility of evaluating the space not only through
experimentation, but also using simulation software allows to take
profit of the advantage that, after the required model is completed,
changes may be inserted simulating space interventions virtually,
in a rather quick and economic way. The studied space was sim-
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Figure 5: Measured reverberation time on amphitheater B013.

Table 1: Presentation of the values obtained for the selected acous-
tic parameters in the amphitheater B013 in relation to their appro-
priate values.

Parameter Appropriate range Obtained value
RT [500-1kHz] (s) 0,7-0,8 2,42

RASTI � 0,6 0,39-0,54
Definition > 0,5 � 0,45

Clarity (dB) > 0 � -0,79
Background noise (dBA) < 40 38,4

ulated in EASE and the descriptive acoustic parameters were ob-
tained from the model. The model construction required some it-
erations and fine-tuning. Finally, simulation results were close to
the experimental ones, allowing to conclude that the model was a
good approximation of the reality, as can be verified by comparing
figures 5 and 8 (no intervention) RT plots.

When constructing the model the first things that were needed
to be taken into account were the dimensional aspects of the room,
which include the dimensions of the space and its elements such as
stairs, doors and windows. Consultation of the building construc-
tion blueprints still left some dimensions to be measured on site
due to small alterations that were not clear in the drawings. After
this part was accomplished it was necessary to carefully close the
model in geometrical terms, otherwise the simulated room geom-
etry would have leaks and the software would not allow a good
simulation.

After modeling the space geometrically, several essential as-
pects were considered such as discovering which materials grades
were used in the amphitheater in order to reproduce them in the
model. It was taken into account the absorptions coefficients vari-
ations by frequency, thicknesses, mounting of false ceilings, etc.
All these aspects have an impact on the acoustics of the space and
for this reason they should be considered in the model.

Having reached this phase it became possible to check the ac-
curacy of the model, not only in an objective, but also in a subjec-
tive way, using auralization. This is the process of producing the
sound field created by a source in the space in a virtual way, in or-
der to simulate a listener’s binaural sensation in a defined position
of the modeled space. In the developed work, auralization allowed
to compare the audio recordings previously done in the space to
the ones obtained with the model and verify that the sounds ob-
tained were similar, giving the model a subjective validation as a

good representation of reality.

4. SIMULATED ACOUSTIC REHABILITATION

4.1. Simulated rehabilitation of the amphitheater B013

With the calibrated model, and noting the need for intervention
in the space, some solutions were considered and studied for the
required improvement of its characteristics. Thus, a set of three
valences were analyzed, namely, spreaded change of absortion on
the enclosure surface, the use of spot absortion devices and the use
of sound reinforcement as a complement.

For this amphitheater after several computational simulations,
it was found that the use of the absorbent material K13 applied at
the rear of the space, on the back wall and the rear part of the ceil-
ing (2.5m length along the width of the ceiling), presented the best
relation between obtained results and cost. This conclusion was
obtained through the reflectometry study with which it was pos-
sible to find where the most adverse reflections come from and to
guide the placement of absorbent material to attenuate them. Thus,
the use of this material is proposed mainly to improve the intelli-
gibility of the space. However, when examining the direct sound
pressure level at the audience it was also noted that there was a de-
crease and this created a need to introduce sound reinforcement in
the space to allow the direct sound to reach the listeners on the rear
rows with sufficient intensity [13] [14]. Thus, a study was made on
the best minimal approach for sound reinforcement taking into ac-
count the localization of the speaker and which loudspeaker type
and location to use. The choice of the loudspeaker type is cru-
cial since its characteristics models the sound radiation and how
directly it reaches the listeners. For this phase the simulation is
a specially important tool which allows to study the position and
comparison of several loudspeakers as well as their driving param-
eters, time delay and power, and to select the one which produces
the desired results.

In this way, the complete intervention proposal presented in
this work for the studied amphitheater consists of a combination of
the placement of absorbent material (K13) in the back of the am-
phitheater and the introduction of sound reinforcement as a com-
plement. A representation of the model geometry of this interven-
tion is depicted in figure 6 and the proposed electroacoustic chain
to use in figure 7. The view point of the representation in figure 6
is below the floor and two walls are removed. The white board
backside is visible in green, the professor’s desk in brown, the
loudspeaker in light blue and the new absorbent material in dark
blue. If needed, color pictures are available by request to one of the
authors or by downloading from the following link: https://
www.dropbox.com/s/emc74rtyv7bfhac/Model.PNG?
dl=0.

Simulating in the EASE software the changes proposed above,
there was a decrease in the reverberation time in function of fre-
quency between 0.31 s and 1.51 s, as can be seen in figure 8. It
was also possible to increase the mean RASTI value to 0.6, thus
reaching a subjective rating evaluated as good. In figures 9 and 10
the simulated distribution of RASTI before and after the interven-
tion is shown. The simulated mean value of C50 after intervention
also changed from -4.28 dB to 0.36 dB.

By using the proposed chain presented in figure 7, the direct
sound pressure level received by the listeners is increased from
52dB before rehabilitation to near 61dB. In figure 11 the distribu-
tion of the direct sound pressure level before rehabilitation sim-
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Figure 6: Model geometry of the amphitheater after intervention
on EASE.

Figure 7: Proposed audio chain for sound reinforcement in the
amphitheater B013.

ulated on EASE is shown and in figures 12 and 13, respectively,
the direct and total sound pressure levels with acoustic reinforce-
ment simulated on EASE, are represented. It may be concluded
that this simple borderline intervention can guarantee a significant
improvement of the values of the descriptive acoustic parameters
of the space.

Figure 8: Simulated reverberation time before and after the inter-
vention on EASE.

4.2. Use of auralization for subjective apreciation

As previously mentioned, auralization is a powerful tool for the
subjective evaluation of a simulated model. In this work it had an
important role in the validation of the model and in the simulation
phase of rehabilitation since it allowed to verify the sound qual-

Figure 9: Distribution of simulated RASTI before intervention on
EASE.

ity improvement introduced in the space with the application of
the proposed solution. In order to do this, a speech sound segment
was recorded in an anechoic chamber and the same sound recorded
in the space under study, in rows 2, 6 and 10. The anechoic record-
ing was submitted to auralization sound treatment with the EASE
software where the result of this process is a binaural recording
demonstrating how the sound would be perceived in the room.
The result of this whole process before the rehabilitation allowed
not only the quantitative but also the qualitative validation of the
model, by the authors and a small group of test listeners, and to
verify the improvement of the same after rehabilitation.

5. CONCLUSIONS

The objective of this work was fully achieved, having reached the
enhancement of the acoustic design of a space adapted to speech
communication with minimized implementation costs, through a
proposal of intervention using a minimal amount of absorbent ma-
terial and complementary introduction of a simple sound reinforce-
ment system. Thus, a workflow is proposed for the acoustic assess-
ment and rehabilitation design, which can be applied to several
spaces, and also a way to combine acoustics and electroacoustics
while reaching all main quality specifications is presented with the
purpose of minimizing application prices. These are the main con-
tributions of this work which can serve as guidelines. In this way,
to implement this proposal, is a solution to provide greater acoustic
comfort to the people who attend the treated space.

It is also concluded with this work that the power of the acous-
tic design simulation tools was demonstrated, allowing that in a
simple and effective way, time and resources be saved since after
the model is built it allows to simulate several changes to the space
to arrive at the desired result. It is still important to emphasize the
importance of auralization in the process of acoustic design since
it allows to subjectively predict how the sound will be perceived
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Figure 10: Distribution of simulated RASTI after intervention on
EASE.

even before the space is built or to undergo intervention.
For future work the characterization of the average of people

generated noise, the integration of other sources of background
noise into the model and the other acoustic effects of the audi-
ence, mainly its per capita sound absorption, should be done to
replace average empirical coefficients that are generally used and
therefore, increase model accuracy. Also, in order to make the
evaluation of the space more complete, it would be appropriate to
introduce in this study the performance evaluation by means of
subjective panel tests.
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Figure 12: Distribution of direct sound pressure after rehabilitation
simulated on EASE.

Figure 13: Distribution of total sound pressure after rehabilitation
simulated on EASE.
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USING SEMANTIC DIFFERENTIAL SCALES TO ASSESS THE SUBJECTIVE 
PERCEPTION OF AUDITORY WARNING SIGNALS 

TEMPLATES FOR DAFX-08, FINLAND, FRANCE 

 
ABSTRACT 

The relationship between physical acoustic parameters and the 
subjective responses they evoke is important to assess in audio 
alarm design. While the perception of urgency has been thor-
oughly investigated, the perception of other variables such as 
pleasantness, negativeness and irritability has not. To characterize 
the psychological correlates of variables such as frequency, speed, 
rhythm and onset, twenty-six participants evaluated fifty-four au-
dio warning signals according to six different semantic differential 
scales. Regression analysis showed that speed predicted mostly the 
perception of urgency, preoccupation and negativity; frequency 
predicted the perception of pleasantness and irritability; and 
rhythm affected the perception of urgency. No correlation was 
found with onset and offset times. These findings are important to 
human-centred design recommendations for auditory warning sig-
nals.  

1. INTRODUCTION 

The study of the psychological correlates of physical parameters 
motivated early psychophysical research. This was considered a 
tool to better study and understand the mind [1]. Early studies fo-
cused on sensory thresholds of humans, associating the human re-
sponse to the systematic variation of a physical stimulus. Nowa-
days, this interest in human response is broader. Could we know 
more than sensory responses? Could similar methods be used to 
comprehend the relation between physical parameters and affec-
tive responses?  
Several experimental methodologies attempt to understand the as-
sociation of physical parameters with subjective perceptions and 
evaluations by humans. Mostly derived from these early works, it 
is common to have controlled laboratorial set-ups to understand 
how certain emotional states can be triggered. This happens be-
cause there is consensus and robustness in what a culturally similar 
group of participants finds pleasant, attractive, or annoying. 
For instance, semantic profiling stemmed from the wine tasting 
industry and is currently being applied in other areas such as 
acoustics [2], [3]. Here, the evaluators can taste and compare sev-
eral samples of wines and then verbally create a vocabulary de-
scribing the perceptual differences between the wines. Later, con-
sensus is achieved among all gathered vocabularies. Another tech-
nique, Kansei Engineering [4], originated in the automotive indus-
try in Japan intending to quantitatively connect affective responses 
of the customers to physical design specifications. The evaluation  

method pairs representative samples of the product under evalua-
tion with representative words usually presented in a semantic dif-
ferential scale (a scale between two polar adjectives). 
In the auditory modality, the semantic differential scale method is 
used to understand which variations in which acoustic parameters 
should be implemented in order to trigger the appropriate affec-
tive, attentional or motor response. While the method is commonly 
applied in alarm design (e.g.: trendsons [5]), disciplines such as 
sound design for products [6] or music theory [7] are also inter-
ested in knowing exactly which acoustic structure originates 
which affective response.   
In the auditory alarm design context, early work by Roy D. Patter-
son [8], [9], Judy Edworthy and Elizabeth Hellier [10]–[12] has 
set the fundamental work grounds to understand the perception of 
urgency. However, not all auditory warning signals are associated 
with urgent events, and thus the same work needs to be made to 
comprehend which acoustic parameters might trigger, for instance, 
irritability, preoccupation, unpleasantness or others - depending on 
their context and adequate response. This knowledge will allow 
designing more appropriate audio alarms or warning signals for 
environments heavily populated with alarming sounds, such as 
control rooms, intensive care units or operating theatres. 
The purpose of this study is to use a semantic differential scale 
methodology to understand which acoustic parameters of simple 
computer-generated sounds have an effect on perceived urgency, 
pleasantness, irritability, preoccupation, speed, and positiveness.  
Its specific aim is to create a predictive model that indicates which 
acoustic parameters (spectral or temporal) activates the subjective 
perceptions mentioned above. In the future, these findings will be 
used for the design of auditory warning signals from medical de-
vices.  

2. METHOD  

The selected methodology was based on previous studies of Kan-
sei Engineering [13] and semantic differential scales applied to 
psychoacoustic studies [10], [11], [14]. 

2.1. Selection of representative pairs of words 

When using semantic differential scales, it is of extreme im-
portance to select pairs of words that can adequately describe the 
object under evaluation [4]. For this, in a pilot study, people were 
asked to suggest words they associated with artificial sounds, in 
all possible contexts. Any words, adjectives or not, were accepted. 
Examples of sounds were referred, such as sounds from household 
devices, electronics, sounds from inside the vehicle, or alarms 
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from queuing services. In total, 183 words were suggested that de-
scribed sensations, emotions and perceptions evoked by sounds. 
The most frequent words were shrieking, loud, alert, irritating, 
deafening, confusing, noisy, pleasant, short, and sweet. Other 
words related with a) physical properties (low, short, long, fast, 
vibrant, synchronous, slow, repetitive, harmonious); b) positive 
feelings (relief, calm, curiosity, fresh, gentle, positive, relaxing, 
pleasant, melodic, peaceful, soft); c) negative feelings (boring, 
anxious, unpleasant, strident, fiddly, nervous, stressful, irritating, 
intrusive, angry, frustrating, penetrating); d) other words (critical, 
strong, important, order, respect, safety, attention, artificial).  
All were grouped considering similitude of meaning and fre-
quency. This resulted in 11 words and corresponding negation. 
Then, five human factors and acoustics researchers selected the 
most fitted pairs to describe artificial sounds/alarms, resulting in 6 
pairs. The final six pairs of words are in Table 1. 

Table 1: Pairs of Words used for evaluation. 

1 Not very - very Urgent 

2 Unpleasant-Pleasant 

3 Not very - Very Irritating 

4 Not very - Very Preoccupying 

5 Slow - Fast 

6 Negative - Positive 

All pairs of words were presented in an analog visual scale, rang-
ing from 0 to 100 mm without numbers (Figure 2) 

2.2. Selection of acoustic parameters 

This phase consisted in selecting the acoustic parameters to be ma-
nipulated, so in the evaluation phase they could be paired with the 
chosen pairs of words. Two types of parameters were selected: 
spectral and temporal characteristics of sound. Four acoustic pa-
rameters were analysed in the present study:  

1) Frequency: referred to by Hertz (Hz) where 1 Hz is one 
cycle per second. 

2) Amplitude Envelope: the shape of a waveform's intensity 
throughout time. Rise (onset) and fall (offset) times were 
edited in milliseconds (ms). 

3) Speed: determined by the inter-pulse interval with faster 
bursts possessing shorter inter-pulse intervals. 

4) Rhythm: regular occurrence of an auditory event in time. 
This occurrence can have a given pattern that can be cy-
clic, thus having periodicity. 

A total of three levels were defined for Frequency, Speed and On-
set. Rhythm had two levels. The objective was to have three dif-
ferent levels of priority, similarly to an emergency signal (level 1 
in table 2), a warning signal (level 2) and an information notifica-
tion (level 3). Table 2 depicts all levels for each parameter. 
Values and directionality of the variations were established after 
literature and international standards on the design of audio warn-
ing signals, detailed in the following sections. 

Table 2: Levels of variation in each acoustic parameter 

 1 2 3 
F0  

Frequency  
2500 Hz 1500 Hz 500 Hz 

Speed x4 x2 x1 

Rhythm 
Regular Regular Regular 

Syncopated 0 Syncopated 5 Syncopated 
10 

Onset Regular Slow onset Slow offset 
 

2.2.1. Frequency 

The fundamental frequency of a signal should depend on the pur-
pose and context of the signal. Whether it is an emergency or an 
information signal, or whether it is to be used in a public or private 
space. For instance, Begault and Godfroy [15] proposes a range 
between 300 Hz – 1000 Hz for NASA’s crew exploration vehicles, 
while ISO 7731 [16] for danger signals proposes frequency com-
ponents in the 500 Hz to 2 500 Hz range. Specifically for medical 
devices, IEC 60601- 1-8:2012 [17] proposes a frequency range be-
tween 500 Hz and 3 000 Hz. Because the aim of this study is to 
help in the design of medical devices’ audio alerts, three levels of 
the range suggested by [17] standard were chosen as a fundamen-
tal frequency. 
All agree the auditory signals should have several harmonics. 
Begault and Godfroy [15] state that “there should be four or more 
harmonically related spectral contents”; IEC 60601- 1-8:2012  
[17] and ISO 7731  [16] also propose four or more harmonics to 
improve spatial localization and signal audibility. 
For this study, three levels of frequency (F0) were chosen: 2500 
Hz, 1500 Hz, and 500 Hz. All had four harmonics. 

2.2.2. Speed 

ISO 7731  [16] recommends the temporal distribution of the signal 
to be pulsating rather than continuous in time; Patterson, Edwor-
thy, and Lower [9] mention speed as the main variable for the per-
ception of priority. ANSI/ASA S3.41 [18] recommends a temporal 
pattern of three 1-s pulses with 1.5s silence; ISO 9703-1:1994 [19] 
(this standard has been withdrawn) proposed multiple pulses with 
an interval between of 0.15- 0.5 s, depending on the priority of the 
alarm. Similarly, IEC 60601- 1-8:2012 [17] proposes three differ-
ent pulse duration patterns according to high, medium or low pri-
ority of the alarm, respectively 75 ms to 200 ms (high) and  125 
ms to 250 ms (medium and low), but only mentions the interpulse 
interval should be “speeding up > regular/slowing”. 
For this experiment, the strategy adopted by Edworthy, Loxley, 
and Dennis [10] was applied by creating three levels of speed with 
a systematic relationship: the faster speed was twice the speed of 
the moderate one, which was twice the speed of the slower one. 
The temporal distribution of the “pulse + silence” was repeated 
three times when the speed was x1 (slow) and x2 (moderate), and 
it was repeated five times when speed was in x4 (fast). However, 
the silence duration differed according to speed. In x1 it had 1 s, 
in x2 it had 0.5 s and in x4 it had 0.25 s. 

2.2.3. Rhythm 

The standard IEC 60601- 1-8:2012  [17] suggests syncopated or 
“off-beat” rhythms for higher priority alarms and regular rhythms 
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for medium and low priority alarms. Edworthy, Loxley, and Den-
nis [10] have found the inverse relation with syncopated rhythms 
being perceived as less urgent than a regular one.  
For this study, the stimuli rhythm was based on the syncopation 
index of Fitch and Rosenfeld [20] (index 0, 5 and 10), and all stim-
uli were tested both with regular and syncopated rhythm. 

2.2.4. Onset – Offset 

The rise and fall time of an auditory warning is defined in IEC 
60601- 1-8:2012   [17] as “the interval over which the pulse in-
creases from 10 % to 90 % of its maximum amplitude”. While in-
itially this standard proposed a rise time of 10 to 20% of the stim-
uli’s total duration, a 2012 amendment changed this to allow for 
rise times of up to 40% of the total duration. Due to hardware con-
straints, this rise time should not be less than 10-ms long. The ma-
nipulation of rise times provide, according to the standard, more 
psychoacoustic cues of greater urgency, where rapid rise times are 
perceived as more urgent than slow rise times. Edworthy, Loxley, 
and Dennis [10] found that a regular 20 ms onset was considered 
more urgent than a pulse with a slower onset. 
In this study, stimuli had either a slow onset (180 ms; offset of 20 
ms), a regular onset and offset (20 ms) or a slow offset (180 ms; 
onset of 20 ms). 

2.3. Auditory Stimuli 

In order to test all variables, a combination of all parameters was 
performed, generating 54 stimuli (3 Frequency x 3 Speed x 2 
Rhythm x 3 Onset/Offset). All audio stimuli were generated in R 
Studio using Seewave [21] and TuneR [22] packages. A modular 
approach as first proposed by Patterson [8] and used in Edworthy,  
Loxley, and Dennis [10] was applied, where pulses were firstly 
created and then grouped into longer bursts of sound, which were 
then intercalated with periods of silence to form the full warning. 
All pulses were 200-ms long. Figure 1depicts two warning signals. 
 

a) 

 
b) 

 
Figure 1: Depictions of a) Stimuli with 180-ms onset, regular 
rhythm, speed level 4 (1500 Hz); b) Stimuli with 20-ms onset, 

180-ms offset, syncopated rhythm, speed level 1 (500 Hz)) 

2.4. Participants 

Twenty-six participants took part in the study (17 female, 9 male), 
from 20 to 50 years (M=33, SD=10), all with normal hearing and 
most (22) without formal musical education. Data collections were 
carried out in two geographical locations in order to gather a 
higher number of participants, using the same equipment. 

2.5. Apparatus 

The study took place in a quiet room, where the participant was 
seated in front of a display and made the sound evaluation using a 
computer mouse by clicking on the visual analog scale. Partici-
pants used AKG Pro Audio K271 MKII headphones and all stim-
uli were presented using PsychoPy [23] software running on a 
Lenovo G500s with a 3rd generation Intel® Core™ i7-3612 pro-
cessor and a Conexant Audio HD. Audio stimuli were presented 
in 77 dB SPL. 

2.6. Procedure 

Participants were welcomed and explained the main objective of 
the study, which consisted in evaluating several sounds according 
to a set of properties. They sat in front of a screen and placed the 
headphones. There was one participant per experimental session. 
After signing an informed consent and answering demographic 
questions, the instructions were given by the experimenter. These 
referred that after presenting a sound, an adjective was going to be 
presented, and participants should evaluate that sound according 
to that adjective. There were a total of six adjectives, and partici-
pants were told they should evaluate how much the sound was 
pleasant or unpleasant, irritating or not, preoccupying or not, slow 
or fast, urgent or not urgent and, finally, negative or positive 
(Table 3). 
Participants were told they could only make the evaluation after 
hearing the entire sound once, which could last between 2 to 5 sec-
onds. Participants could navigate with the mouse on the line of the 
scale, but after clicking with the mouse, it could not be changed. 
The scale was a continuous 100-mm scale. Before starting the ex-
periment, all participants went through a training phase with the 
same scales and four different sounds (from [17]). 

Table 3: Descriptors per pair of words. A sheet with this 
information was always near the participant  

Pair of words Description 
Unpleasant 
Pleasant 

I dislike the sound and it bothers me//  
I like the sound and it does not bother me   

Not Irritating 
Very Irritating   

The sound does not make me feel irritated 
and impatient//  
The sound makes me feel irritated and im-
patient  

Not Preoccupying 
Very Preoccupying  

The sound does not make me feel worried 
and alarmed// 
The sound makes me feel worried and 
alarmed 

Slow 
Fast  

The sound has a slow pace// 
The sound has a fast pace  

Not Urgent 
Very Urgent 
 

The sound communicates a need that may 
not be immediate//  
The sound communicates an immediate 
need  

Negative 
Positive 
 

The sound communicates a negative infor-
mation// 
The sound communicates a positive infor-
mation 

 
After, the experimental session began, the screen displayed one 
pair of words at the time (Figure 2). The presentation of sound files 
was randomized, as well as the presentation of the pairs of words. 
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Figure 2: Image of the evaluation interface with the se-

mantic differential scale under evaluation 

Due to the great number of stimuli to be evaluated, there were two 
intervals, which had the length the participant preferred. The total 
procedure lasted between 30 to 40 minutes. Each participant eval-
uated each stimuli once for each pair of words. In total, each par-
ticipant made 324 evaluations (54 stimuli x 6 pairs of words). 

3. RESULTS 

Because participants did not repeat the evaluation, it was im-
portant to assess the degree of agreement between participants as 
raters of a given stimuli. Outliers were removed from the sample 
using Tukey’s method due to its independency from data distribu-
tion. This method ignores the mean and standard deviation, which 
are influenced by the outliers, by using an inter-quartile range ap-
proach (above and below the 1.5*IQR). 

3.1. Inter-participant concordance 

Kendall's W (also known as Kendall's coefficient of concordance) 
is a non-parametric statistic and can be used for assessing agree-
ment among raters. Kendall's W ranges from 0 (no agreement) to 
1 (complete agreement). The value of Kendall’s W was calculated 
per pair of words to verify if the stimuli were rated in more or less 
the same order per participant. The results are in Table 4. All tests 
revealed a significant value of Kendall’s W. As expected, because 
it was the most objective adjective, the pair “Slow-Fast” obtained 
the highest value of concordance, followed by “Not Urgent – Ur-
gent”.  

Table 4: Values of Kendall’s W 

 Kendall’s W  
Slow – Fast  0.70 *** 
Not Urgent - Very Urgent 0.61 *** 
Not Irritating - Very Irritating   0.45 *** 
Not Preoccupying -Very Preoccupying  0.42 *** 
Unpleasant – Pleasant 0.36 *** 
Negative – Positive 0.12 *** 

*** Significant (p < .001) ** (p <.01) * (p < .05) 
 
This analysis only shows consistency, and does not reveal the na-
ture of the classification made by the participants. For this purpose, 
correlational (Table 5) and linear regression analysis were per-
formed after all data was pooled and averaged. 
 

Table 5: Correlations between the four acoustic parameters 
and the six pairs of words 
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Irritating 0.69 *** 0.13 0.27 * 0.04 
Positive -0.27 * -0.70 *** -0.18 0.02 
Pleasant -0.88 *** -0.26 -0.14 0.04 
Preoccupying 0.15 0.80 *** 0.31 * -0.03 
Urgent 0.11 0.83 *** 0.37 * 0.00 
Fast 0.14 0.78 *** 0.41 *** -0.01 

 
 

*** Significant (p < .001) ** (p <.01) * (p < .05) 
 
The significant correlations found with Frequency were with Irri-
tating (r(52) = .69, p < .001), Positive (r(52) = -.27, p < .05) and 
Pleasant (r(52) = -.88, p < .001); with Speed, the stronger correla-
tions were with Positive (r(52) = -.70, p < .001), Preoccupying 
(r(52) = .80, p < .001), Urgent (r(52) = .83, p < .001),  and Fast 
(r(52) = .78, p < .001); with Rhythm were Irritating (r(52) = .27, p 
< .05), Preoccupying (r(52) = .31, p < .05), Urgent (r(52) = .37, p 
< .05), and with Fast (r(52) = .41, p < .001). No correlations were 
found with the acoustic parameter Onset-Offset. For this reason, 
this variable will not be used in further analysis. 
Additionally, it can be seen that the pair of words Irritating corre-
lated significantly with all other words, negatively with Positive 
and Pleasant. The pair of words Positive and Pleasant were nega-
tively correlated with Preoccupying, Urgent and Fast. And Preoc-
cupying was correlated with Urgent, and Fast. 
Following this, all relations between acoustic parameters and pairs 
of words were explored using linear regression models (Table 6-
9). 

3.1.1. Frequency 

The Frequency (Table 6) variable had three levels, and each 
level increased the perception of unpleasantness of our partic-
ipants, with 500 Hz (B= 53.96, F = 100.2, R² = .80, p < .001) 
1500 Hz (B= -15.55, p < .001) and 2500 Hz (B= -23.77, p < 
.001). A similar pattern was found regarding the perception of 
irritableness, with 500 Hz (B= 39.11, F = 29.43, R² = .54, p <  
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Irritating ---      

Positive 
-0.41 
*** ---     

Pleasant 
-0.82 
*** 

0.53 
*** ---    

Preoccupying 
0.40 
*** 

-0.88 
*** 

-0.48 
*** ---   

Urgent 0.38 * 
-0.86 
*** 

-0.45 
*** 

0.96 
*** ---  

Fast 0.40 * 
-0.85 
*** 

-0.47 
*** 

0.97 
*** 

0.98 
*** --- 
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.001) 1500 Hz (B= 19.82, p < .001) and 2500 Hz (β= 24.75, p 
< .001). No significant relations with Frequency were ob-
served among the other pairs of words. 

Table 6: Results of linear regression by levels of Fre-
quency (500 Hz, 1500 Hz and 2500 Hz). N = 54. 95% 

Confidence Interval (only R2 > 0.5 are depicted)  

FREQUENCY 
Unpleasant – 

Pleasant 
Not Irritating - 
Very Irritating 

B CI B CI 

Intercept 
(500) 

53.96 
*** 

51.54 – 
56.38 

39.11  *** 
34.26 

– 
43.96 

1500 
-15.55 

*** 
-18.97 – 
-12.12 

19.82 
*** 

12.96 
– 

26.68 

2500 
-23.77 

*** 
-27.19 – 
-20.34 

24.75 
*** 

12.96 
– 

26.68 
F 100.2 29.43 
R2 .797 .536 

 
*** Significant (p < .001) ** (p <.01) * (p < .05) 
 
These two regression models are plotted in Figure 3, with the y-
axis depicting the 20-80 mm fraction of a 100-mm visual analog 
scale.  
 
According to these results, the higher the sound’s frequency, the 
more irritant and the less pleasant the sound is evaluated. 
 

 
Figure 3: Significant regressions for Frequency as pre-
dictor. Relationship between participant’s evaluation of 
a sound as Irritable (R2 = .54) or Pleasant (R2 = .80) 

and three levels of increasing frequency. 

3.1.2. Speed 

The Speed (Table 7) variable also had three levels and it was the 
variable which better explained the variance of four pairs of words. 
As the speed increased, so did the perception of Urgency (Speed 
x1 B= 31.70, p < .001, Speed x2 B= 23.82, p < .001 and Speed x4 
B= 39.68, p < .001, F = 76.11, R2 = .75): Preoccupation (Speed x1 
B= 34.31, p < .001, Speed x2 B= 20.37, p < .001 and Speed x4 B= 
30.78, p < .001, , F = 69.47, R2 = .73) and Speed (Fast) (Speed x1 
B= 32.95, p < .001, Speed x2 B= 27.33, p < .001 and Speed x4 B= 
40.85, p < .001, , F = 63.9, R2 = .72). The inverse pattern was ob-
served in the Negative-Positive pair of words, with the perception 
of positiveness decreasing as the speed increased (Speed x1 B= 
50.60, p < .001, Speed x2 B= -8.75, p < .001 and Speed x4 B= -
11.95, p < .001, F = 37.9, R2 = .60). No significant relations with 
Speed were observed among the other pairs of words. 
 
The four regression models are plotted in Figure 4, with the y-axis 
depicting the 20-80 mm fraction of a 100-mm visual analog scale.  
 
According to these results, the higher the sound’s speed, the more 
urgent, fast and preoccupying and the less positive it is evaluated. 

Table 7: Results of linear regression by levels of Speed (x1, x2, x4). N = 54, 95% Confidence Interval (only R2 > 0.5 are 
depicted) 

 

SPEED 
Not Preoccupying- 
Very Preoccupying 

Slow – 
Fast 

Not Urgent – 
Very Urgent 

Negative – 
Positive 

B CI B CI B CI B CI 

Interc. (x1) 
34.3 
*** 

30.5 – 38.1 
33.0 
*** 

27.7 – 38.2 
31.7 
*** 

27.1 – 36.3 
50.6 
*** 

48.6 – 52.6 

x2 
20.3 
*** 

15.0 – 25.7 
27.3 
*** 

19.9 – 34.7 
23.8 
*** 

17.3 – 30.3 
-8.8 
*** 

-11.6 – -5.9 

x4 
30.7 
*** 

25.4 – 36.1 
40.9 
*** 

33.5 – 48.2 
39.7 
*** 

33.2 – 46.2 
-12.0 
*** 

-14.8 – -9.1 

F 69.47 63.9 76.11 37.9 
R2 .731 .715 .749 .598 

 
*** Significant (p < .001) ** (p <.01) * (p < .05) 
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Figure 4: Significant regressions for Speed as predictor. 
Relationship between participant’s evaluation of a sound 

as Fast (R2=.71), Positive (R2=.60), Preoccupying 
(R2=.73), or Urgent (R2=.75) and three levels of increas-

ing speed 

3.1.1. Rhythm 

The Rhythm (Table 8) variable had two levels and the perception 
of speed (word fast) (Regular B= 47.47, p < .001, Syncopated B= 
16.41, p < .001, F=10.4, R2 = .17) and urgency (Regular B= 45.89, 
p < .001, Syncopated B= 13.95, p < .001, F=8.26, R2 = .14) in-
creased when the rhythm was syncopated.  

Table 8: Results of linear regression by levels of Rhythm 
(Regular, Syncopated). N = 54, 95% Confidence Interval 

(only R2 > 0.5 are depicted) 

 

RHYTHM 
Slow – Fast Not Urgent – 

Very Urgent 
B CI B CI 

Intercept 
(Regular) 47.47 

*** 

40.25 
– 

54.69 

45.89 
*** 

39.00  
–  

52.78 
Syncopated 

16.41 
** 

6.20  
– 

26.62 

13.95 
** 

4.21  
–  

23.69 
F 10.4 8.26 
R2 .167 .137 

*** Significant (p < .001) ** (p <.01) * (p < .05) 
 
Having significant regression coefficients means the Rhythm is 
correlated with both subjective perceptions, nevertheless, the 
model does not account for the variability found among the data. 

4. DISCUSSION 

The obtained results demonstrate how the semantic differential 
scale methodology is robust and useful for the analysis of relations 
between subjective perceptions and physical acoustic parameters. 
Firstly, although some pairs of words were extremely subjective, 
like unpleasant – pleasant, and vague, like negative-positive, there 
was consistency among participants, revealed in the significant 
values of Kendall’s W in all pairs of words. 

 
 

Figure 5: Significant regressions for Rhythm as predictor. Rela-
tionship between participant’s evaluation of a sound as Fast 

(R2=.17) and Urgent (R2=.14) and two levels of Rhythm (regular 
or syncopated). 

 
This was an important result, as it allows to somewhat balance an 
obvious limitation of this study, which was the lack of repetitions 
of the evaluation sessions. At first, one could expect large inter 
personal variability regarding such subjective perceptions, but 
these observations serve as an addition to the strengths of this sim-
ple method. It is important to add that during the data collection 
phase, some participants had informally mentioned they had trou-
ble in classifying a sound as negative or positive, even though they 
had the definition sheet nearby. It is then somewhat surprising to 
understand that, although difficult, the classification was congru-
ent among raters, later relating significantly to the manipulation of 
the Speed variable.  
 
Regarding the associations between subjective and physical varia-
bles, with Frequency, it was observed that the subjective percep-
tions in which it had more effect were Pleasantness and Irritabil-
ity. Again, although apparently a very personal evaluation, most 
participants found high-frequency audio signals as unpleasant and 
irritant. This is an important result that confirms that an alarm, to 
essentially fit its purpose of communicating an urgent event, does 
not need to increase its frequency. In fact, it should not, as it only 
affects the negative affective perception of the signal 
Also importantly, and in agreement with Patterson’s suggestions 
and standard norms, Speed is the variable which mostly affects an 
alarm’s perception of urgency, communication of preoccupation 
or that “something” negative is happening. In applied settings, it 
is important to bear in mind that an increase in these subjective 
perceptions should be made via inter-pulse interval.  
Rhythm obtained results also aligned with the [17] standard, with 
participants evaluating as significantly more urgent those auditory 
signals with syncopation than those with regular rhythm. How-
ever, the association found was not robust, and no more elations 
can be made. One explanation can be that the irregularity of the 
rhythm might have been affected by the slow onsets and offsets, 
not allowing to hear the full structure of the auditory signal.  
Contrary to the literature and standards, the onsets and offsets of 
the auditory signals had no effect on the perception of any pair of 
words. In the future, the variations of this parameter should be 
more numerous, and evaluations should consider this manipula-
tion only. This would allow clarifying the effect this parameter has 
without interacting with other manipulations.  
With this study, it was possible to understand which acoustic fea-
tures trigger what affective state when designing for auditory 
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warning signals. For instance, that a signal to be understood as ur-
gent should have shorter and irregular inter-pulse intervals, pref-
erably with lower frequencies. However, these sound design rec-
ommendations must co-exist with other requirements such as the 
ability to localize audio warning signals in an open space, and the 
ability to recognize it among other devices with similar spectral 
and temporal patterns. 

5. CONCLUSION 

A study was performed to better understand the psychological cor-
relates of acoustic parameters. Fifty-four stimuli were created ma-
nipulating frequency, speed, rhythm and onset and offset times. 
Twenty six participants listened to each stimuli six times, each 
time considering a different pair of words presented in a visual 
analog scale. These words were selected among more than a 100 
sound-related words. The applied methodology consisted in using 
semantic differential scales. The findings allowed to consolidate 
this method as a good evaluator of subjective perceptions. Results 
have demonstrated that the acoustic features which most contrib-
ute to the perception of these states in audio stimuli are frequency 
(pleasantness and irritability) and speed (urgency, preoccupation 
and negativity). Rhythm also affected the perception of urgency, 
although to a lesser extent, with irregular rhythms obtaining higher 
ratings for the perception of urgency. 
This was the first study intending to use a human-centred approach 
to the design of auditory warning signals. After these fundamental 
associations between acoustic parameters and subjective percep-
tion have been established, the next step will be to apply them in 
the design of better auditory warning signals for medical devices. 
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ABSTRACT

Soundscape research is concerned with the study and understanding
of our relationship with our surrounding acoustic environments and
the sonic elements that they are comprised of. Whilst much of this
research has focussed on sound alone, any practical application of
soundscape methodologies should consider the interaction between
aural and visual environmental features: an interaction known as
cross-modal perception. This presents an avenue for soundscape
research exploring how an environment’s visual features can affect
an individual’s experience of the soundscape of that same envi-
ronment. This paper presents the results of two listening tests1:
one a preliminary test making use of static stereo UHJ renderings
of first-order-ambisonic (FOA) soundscape recordings and static
panoramic images; the other using YouTube as a platform to present
dynamic binaural renderings of the same FOA recordings along-
side full motion spherical video. The stimuli for these tests were
recorded at several locations around the north of England including
rural, urban, and suburban environments exhibiting soundscapes
comprised of many natural, human, and mechanical sounds. The
purpose of these tests was to investigate how the presence of vi-
sual stimuli can alter soundscape perception and categorisation.
This was done by presenting test subjects with each soundscape
alone and then with visual accompaniment, and then comparing
collected subjective evaluation data. Results indicate that the pres-
ence of certain visual features can alter the emotional state evoked
by exposure to a soundscape, for example, where the presence of
‘green infrastructure’ (parks, trees, and foliage) results in a less
agitating experience of a soundscape containing high levels of envi-
ronmental noise. This research represents an important initial step
toward the integration of virtual reality technologies into sound-
scape research, and the use of suitable tools to perform subjective
evaluation of audiovisual stimuli. Future research will consider how
these methodologies can be implemented in real-world applications.

1. INTRODUCTION

To provide a context for the methods used in the two listening
test presented in this paper, this section includes a summary of
the various research areas informing this study. This includes
soundscape theory and evaluation, cross-modal perception, and
green infrastructure.

1This work is part of an EPSRC supported doctoral training studentship:
reference number 1509136.

1.1. Soundscape Theory

In his seminal text ‘The Soundscape: Our Sonic Environment and
the tuning of the World’, R. Murray Schafer defines a soundscape
as [1]:

‘The sonic environment. Technically, any portion
of the sonic environment regarded as a field for study.
The term may refer to actual environments, or to
abstract constructions such as musical compositions
and tape montages, particularly when considered as
an environment.’

Soundscape analysis looks at the holistic experience of all sound in
a given location, and aims to explore an individual’s perception of,
and interaction with, that environment [2]. In this way, soundscape
analysis describes both the physical and perceptual properties of an
environment [3]. This explains soundscape research’s position as
a convergence of multiple disciplines, including acoustic ecology,
musicology, sociology, psychology, architecture, and acoustics
[4, 5].

1.2. Cross-modal Perception

Cross-modal perception is where the stimulation of one sensing
modality (for example vision) can influence the experience of an-
other (e.g. hearing). A famous example of this phenomenon is
the McGurk effect [6] where a change in the appearance of mouth
movement can alter the phoneme heard in recorded speech.

In a soundscape context, cross-modal perception has been con-
sidered as a way of understanding how the visual setting of an
environment can change the perception of that environment’s sound-
scape. For example, Lercher and Schulte-Fortkamp showed living
on a ‘pretty’ street could reduce noise annoyance [7] and Viollon
et al. found that exposure to still images of natural environments
incorporating natural features reduced the perceived ‘noisiness’ of
a soundscape [8]. Research into this area is of great importance
to human health and well-being, in terms of reduced stress due to
lower levels of noise annoyance and other health effects (for exam-
ple, a patient’s recovery following an operation has been shown to
be faster if the patient has access to a window with a pleasant view
[9]).

1.3. Green Infrastructure

Broadly speaking, when considering noisy soundscapes, the kind
of visual features that may be present to improve one’s experience
of noise can be collected under the term Green Infrastructure. A
definition of Green Infrastructure is given in [10]:
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‘It can be considered to comprise of all natu-
ral, semi-natural and artificial networks of multi-
functional ecological systems within, around and be-
tween urban areas, at all spatial scales.’

Whilst the acoustic impact (noise level reduction, acoustic ab-
sorption to reduce reverberation times etc.) of green infrastructure
may be minimal, the impact on perception of sound may be much
more pronounced [11]. An underlying motivation for this research
is to investigate to what extent the presence of green infrastructure
and other natural, pleasant, visual features can reduce the nega-
tive effects of acoustic noise in a soundscape. This aligns with
the Biophilia thesis, originating from the field of environmental
psychology, which posits that human beings have an innate ap-
preciation for, and affinity with, natural environmental features:
particularly water and vegetation [12].

The motivation for the work presented here is to make use of
visualisation and soundscape methodologies to understand how
the presence of certain visual features can change the emotional
response evoked by a soundscape. This includes a preliminary
test making use of still panoramic images and ambisonic UHJ
renderings of soundscape stimuli, and a main test making use of
panoramic videos and dynamic binaural rendering of FOA sound-
scape recordings.

2. METHODS

This section will consider the research methods and approaches
applied to this study, including the soundscape evaluation method-
ologies used, and the data collection process.

2.1. Subjective Evaluation

2.1.1. The Self-Assessment Manikin

A previous study [13] made a direct comparison between semantic
differential (SD) pairs and the Self-Assessment Manikin (SAM) as
methods for measuring a test participant’s experience of a sound-
scape.

The use of SD pairs is a method originally developed by Os-
good to indirectly measure a person’s interpretation of the mean-
ing of certain words [14]. The method involves the use of a set
of bipolar descriptor scales (for example ‘calming-annoying’ or
‘pleasant-unpleasant’) allowing the user to rate a given stimulus.
SD pairs are a well established aspect of listening test methodology
in soundscape research [15–17]. Whilst useful in certain scenarios,
they can be time-consuming and unintuitive [13]. An alternative
subjective assessment tool to use is the SAM.

The SAM is a method for measuring emotional responses de-
veloped by Bradley and Lang in 1994 [18]. It was developed from
factor analysis of a set of SD pairs rating both aural [19] and visual
stimuli [20] (using, respectively, the International Affective Digital
Sounds database, or IADS, and the International Affective Picture
System, or IAPS). The three factors developed for rating emotional
response to a given stimuli are:

• Valence: How positive or negative the emotion is, ranging
from unpleasant feelings to pleasant feelings of happiness.

• Arousal: How excited or apathetic the emotion is, ranging
from sleepiness or boredom to frantic excitement.

• Dominance: The extent to which the emotion makes the
subject feel they are in control of the situation, ranging from
not at all in control to totally in control.

Figure 1: The Self-Assessment Manikin (SAM) as used in this
study, after [18].

These results were then used by Bradley and Lang to create the
SAM itself as a set of pictorial representations of the three identified
factors. The version of the SAM used in this experiment (as shown
in Fig. 1) contained only the Valence and Arousal dimensions
following results from a previous study [13].

2.1.2. Soundscape Categorisation

The soundscape recordings used in this test were selected in order
to cover as wide a range of sound sources as possible. In order to
determine what such a set of soundscape recordings would contain,
a review of soundscape research indicated that in a significant
quantity of the literature [21–24] three main groups of sounds are
identified:

• Natural: These include animal sounds (such as bird song),
and other environmental sounds such as wind, rustling leaves,
and flowing water.

• Human: Any sounds that are representative of human pres-
ence/activity that do not also represent mechanical activity.
Such sounds include footsteps, speech, coughing, and laugh-
ter.

• Mechanical: Sounds such as traffic noise, industrial and
construction sounds, and aeroplane noise.

Following results from a previous test [25] it was decided
to include ratings scales for the test participants to evaluate the
soundscape in terms of the three above categories. Fig. 2 shows
the category ratings question as presented to the test participants.
The purpose of including this question, in both the preliminary and
main listening tests, was to see how the presence of visual features
can alter the perceived category of an environment, and how this
relates to evoked emotional state.

2.2. Data Collection

The data used in this study were collected from various locations
around the North of the United Kingdom, including: Dalby forest, a
natural environment; Pickering, a suburban/rural environment; and
Leeds city centre, a highly developed urban environment. All of the
soundscape recordings were made in FOA using a Soundfield STM
450 microphone [26]. Concurrent A-weighted noise level measure-
ment were taken to allow for calibration of later auralisation.
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Figure 2: The category ratings question as presented to test partici-
pants.

Table 1 gives details of the sound sources present in each of the
16 clips used in the listening test. These clips were 30 seconds long
and extracted from the 10 minutes of soundscape recording made
at each location. These clips have been used in previous stages of
this research [13, 27].

The visual data was collected at each recording location using
six GoPro cameras mounted as the faces of a cube in a Freedom360
rig [28]. At each location a still image was taken immediately
before recording began, and then full motion video recordings were
made alongside the FOA sound recordings.

3. PRELIMINARY LISTENING TEST

This section covers the content creation and test procedure for the
preliminary listening test, as well as its results. This includes the
conversion of the FOA soundscape recordings to stereo UHJ format,
and the stitching of the still GoPro photographs to create panoramic
images of the recording location.

3.1. Stereo UHJ Conversion

In order to present the recorded soundscape material over head-
phones without head-tracking, the FOA signals had to be converted
to a suitable two-channel format. It was decided to make use of
Ambisonic UHJ stereo format, where the W, X, and Y channels
of an FOA recording are used to translate the horizontal plane of
the soundfield into two-channels [29]. The resultant signal can the
be shared online and reproduced over headphones, allowing the
FOA recordings to be used with the spatial content of the W, X,
and Y channels preserved in reproduction. The use of this format
has been established as ecologically valid in a prior stage of this
research [30], where it was shown that emotional states evoked
by exposure to the stereo UHJ format soundscape recordings were
significantly similar to those evoked by full FOA renderings in a
16-loudspeaker listening rig.

The following equations are used to convert from the W, X,
and Y channels of the FOA signal to two stereo channels:

S = 0.9397W + 0.1856X (1)
D = j(�0.342W + 0.5099X) + 0.6555Y (2)
L = 0.5(S +D) (3)
R = 0.5(S �D) (4)

where j is a +90� phase shift and L and R are the left and right
channels respectively of the resultant stereo UHJ signal [31]. Note
that the Cartesian reference for FOA signals is given by ISO stan-
dard 2631 [32], and the Z channel of the FOA recording is not
used.

3.2. Preliminary Test Procedure

The listening test was presented using Qualtrics [33] to adminis-
ter the questions to the test participants, and using MATLAB to
play the stereo UHJ audio and present the panoramic images us-
ing FSPViewer [34] (a freely downloadable viewer for spherical
panoramic images). Presenting the images in this way allowed par-
ticipants to click-and-drag the panoramic image to ‘look’ around
the environment (which they were encouraged to do). These im-
ages were created using Kolor Autopano [35] to stitch together the
still images from the GoPro cameras into single equirectangular
spherical panoramic images. An example image can be accessed
online [36].

All 16 soundscape clips were presented to the test participants
in both the aural and audiovisual stages. These were presented
in a random order each time and were preceded by two orienting
stimuli. The audio-only test was completed by 31 test participants,
and the audiovisual test was completed by 11 participants. Of the
31 audio-only test participants, 20 were male, and 16 were aged
under 26. No demographic data were collected for the audiovisual
test, as analysis of previous results did not indicate any significant
effect on test results due to demographic factors. The next section
includes an evaluation and discussion of the test results.

3.3. Preliminary Test Results

A Shapiro-Wilk’s test was applied to all of the rating scales for each
test stimuli as a test for normality [37]. Only a handful were identi-
fied as normally distributed. As such, in order to make comparisons
between the results for the different stimuli, the Mann-Whitney
test was used [38]. This test is suitable for comparing the values
of two variables that are not normally distributed [39]. It is also
suitable for comparing variables with small, arbitrary, sample sizes,
including where the sample sizes of the two variables are different.

The purpose of applying the Mann-Whitney test was to indicate
where the test results were significantly different for each of the five
rating scales (Valence, Arousal, Natural, Human, and Mechanical)
when comparing the results for the audiovisual stimuli with the
audio alone. Fig. 3 shows the Mann-Whitney test results for the pre-
liminary listening test data, indicating these significant differences.
The next section will discuss theses results.

3.3.1. Significant Differences

The three clips showing a significant difference in arousal values
are 6A, 6B, and 7B. For all three of these clips the arousal rating
value was significantly larger when the clip was presented with the
visual stimuli. Both of these recording locations were in Leeds city
centre: one next to a main road (location 7); one on a pedestrianised
street (location 6). This increase in arousal is therefore possibly
due to the presences of cars and people in the images of the scenes
that are not so pronounced in the soundscape recordings.

The 6 clips showing a significant difference in valence values
are 1A-2A, 3A-3B, and 8A. As with the arousal results, for all of
these clips the presence of visual stimulus results in an increase in
valence. For clips 1A and 1B this is unsurprising: the soundscape
clips contain some birdsong and insect noise, but despite their
hi-fidelity (where the sound sources present are clearly defined
with little background noise [1]) there is little information given to
indicate the features of the recording location. As such it is to be
anticipated the presence of the visual features with the soundscape
results in an increased valence rating.
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Location Site Clip A Sound Sources Clip B Sound Sources
Dalby Forest
(Rural/Natural)

1. Low Dalby Path Birdsong, Owl Hoots, Wind Birdsong and honking, Insects, Aeroplane flyby
2. Staindale Lake Birdsong, Wind, Insects, Single car Insects, Birdsong, Water

North York Moors
(Rural/Suburban)

3. Hole of Horcum Birdsong, Traffic, Bleating Birdsong, Traffic, Conversation
4. Fox & Rabbit Inn Traffic, Car door closing, Car starting Traffic, Footsteps, Car starting
5. Smiddy Hill, Pickering Traffic, Car door starting, Conversation Birdsong, Distant traffic

Leeds City Centre
(Urban)

6. Albion Street Busking, Footsteps, Conversation, Distant traffic Workmen, Footsteps, Conversation, Distant traffic
7. Park Row Traffic, Buses, Wind, Busking Busking, Footsteps, Conversation, Distant traffic
8. Park Square Birdsong, Traffic, Conversation, Shouting Workmen, Traffic, Conversation, Birdsong

Table 1: Details of the sound sources present in the two 30 second long clips (labelled A and B) recorded at each of the eight locations.

1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

Valence

Arousal

Natural

Human

Mechanical

Figure 3: Mann-Whitney test results for the preliminary listening test, comparing results for each of the five rating scales for each of the 16
test stimuli when presented as the soundscape alone and with accompanying still panoramic images. Dark squares indicate a significant
difference at 95% confidence (p < 0.05), and Light marked squares at 90% confidence (p < 0.1). White squares indicate no significant
difference at either confidence level.

For clip 2A a similar effect can be observed, due to the presence
of single car driving past. These results suggest that the visual
setting (greenery and trees, peaceful lake, big sky) results in a
significantly increased valence rating.

The significant increases in valence value for the audiovisual
presentation of clips 3A and 3B also show the same effect: the aural
information in these clips contains some natural sounds and traffic
noise that indicate little about of the surrounding countryside of the
North York Moors national park.

Likewise the soundscape of clip 8A contains some birdsong
alongside quiet traffic noise (and some sounds of human activity),
but the visuals recorded at that location show an inner city park
with foliage, flowers, and some trees. This green infrastructure is
clear when viewing the scene, but not evident in any explicit way
in the audio-only presentation, and is likely responsible for evoking
an alternative emotional state where reported valence levels (i.e.
how pleasant the scene is) are higher.

The significant differences in the natural rating scale support
this argument in part: clips 2A and 3A show a significant increase in
the natural rating with the presence of visual stimuli, which includes
a forest and countryside respectively. Clip 6A (recorded on a pedes-
trianised shopping centre street) also shows a significant increase in
the natural rating with the presence of visual information. This envi-
ronment contains some very minor elements of green infrastructure
in the form of a couple of trees in some small pots. Whilst this
cannot directly be correlated with a change in the valence rating for
the environment, it does indicate how even a very slight presence of
green infrastructure can change an individual’s experience and per-
ception of a location. This location also sees a significant decrease
in the human category rating for the audiovisual presentation of the
clip relative to the soundscape alone. This is possibly due to the
difference between reality and expectation of the visual setting: the
dominant sound sources in this clip are human sounds (including
very loud conversation, footsteps, and some shouting) with only

some distant traffic noise. However the visual setting is dominated
by concrete in the form a pavement, shop-fronts and some larger
inner city buildings reducing the impact of the human activity.

The two soundscapes showing a significant difference in the
mechanical category rating are 3A and 8B, both of which saw a
decrease in mechanical rating with the introduction of visual stimuli.
In a way these two clips can be considered as the corollary of one
another: clip 3A shows a natural environment ‘interrupted’ by the
presence of a busy road; and clip 8B shows a green-infrastructure (a
park) in the context of a large city. As such both of these soundscape
clips indicate little about the features of the visual settings, resulting
in a decreased mechanical rating for the audiovisual presentation.

3.3.2. Perceptual Noise Impact Rating

In order to further investigate the effect of certain visual features
on the emotional state evoked by a soundscape, the valence and
arousal rating scales can be combined to form a single measure of
the emotional state evoked by a noisy soundscape. This new mea-
sure is called the Perceptual Noise Impact Rating (PNIR) and was
introduced as part of this body of research in [40]. It is formulated
by:

PNIR = 1� 0.5(1�A+V) (5)

where A and V represent the Arousal and Valence scores respec-
tively (where the scores are normalised between 0 and 1).

Fig. 4 shows a summary of PNIR results from the preliminary
listening test. Indicated in this plot are the mean PNIR values across
all participants for each of the 16 stimuli for both the audio-only
and audiovisual listening conditions. These results show a trend in
the data towards three groups of PNIR values:

1. Clips 1A-2B: These soundscapes were recorded at two lo-
cations in Dalby forest, and are comprised of many natural
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sounds (birdsong, insects, wind) and visual features (trees, a
lake, open sky).

2. Clips 4A-7B: These soundscapes were recorded in highly
developed environments, including various locations in the
centre of the city of Leeds, and next to a road in the town of
Pickering. The most commonly identified sound sources in
these clips were traffic noise, other mechanical noise, and
human sounds (footsteps and conversation).

3. Clips 3A-3B and 8A-8B: These soundscapes were recorded
in environments that can be considered as being on the in-
terface between the recording locations of the two above
categories. Location 3 was next to a country road overlook-
ing a wide expanse of countryside, and location 8 was in
a park in Leeds city centre. Both of these environments
contained a mixture of mechanical and natural sounds (i.e.
relatively quiet traffic noise and birdsong) and visual fea-
tures (i.e. flowers, trees and other greenery alongside the
roads and buildings).

These three emotional groups were used alongside the Mann-Whitney
test results to identify which of the soundscape clips to use in the
main listening test.

Clips 1B and 2A were chosen to represent group 1: clip 1B
was recorded in Dalby forest and contains natural sounds and visual
elements; clip 2A was recorded at a nearby lake and again presents
many natural sounds and visual elements, as well as a single car
drive by.

Clips 6A and 7B were chosen to represent group 2: clip 6A
was recorded on a pedestrianised street lined with shops; clip 7B
was recorded next to a busy road in Leeds city centre. Both of these
clips contain mainly human and mechanical sounds, with little in
the way of natural sounds or visual elements.

Clips 3A and 8A were chosen to represent group 3: clip 3A was
recorded next to a road in the North York Moors national park; clip
8A was recorded in a small park in the centre of Leeds. As stated
above, these locations both represent something of an interface
between natural and developed habitats and contain both human
and natural sounds and visual elements, including the presence of
green infrastructure.

1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B
Soundscape Clip
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Figure 4: A summary of PNIR ratings from the preliminary listen-
ing test results.

4. MAIN LISTENING TEST

This section covers the creation of VR content and the test proce-
dure methodologies used in the main listening test.

4.1. Virtual Reality Content Creation

Fig. 5 depicts a flow diagram for the creation of full motion spheri-
cal audiovisual content ready for playback on YouTube, either via
a VR headset or on a standard computer monitor. Firstly Kolor
Autopano is used to stitch together the six feeds of GoPro footage
into a single equirectangular panoramic video [35]. FFMPEG [41],
a free software project designed for handling multimedia data, is
then used to add the FOA audio (with its channels in ACN, rather
than Furse-Malham, order) to the panoramic footage [42]. In order
for this file to then be uploadable to YouTube [43] the Spatial Me-
dia Metadata Injector [44] is used to indicate that the file contains
a panoramic video. For the ‘audio-only’ stimuli a still image of
equirectangular perspective lines was used as the visual component,
in order to give the test participants some sense of orientation [45].
The resultant content can be viewed in the following two YouTube
playlists: the audio-only playlist [46]; and the full audiovisual
playlist [47].

4.2. Main Test Procedure

For the main listening test there were 20 participants, split into two
groups of 10. Each group was exposed to the six chosen soundscape
recordings: one group experienced the audio-only soundscapes first,
and then experienced them with accompanying video footage; the
other group of participants experienced the stimuli with the order
reversed. Within each listening condition the presentation order was
randomised. As with the audiovisual stage of the preliminary listen-
ing test no demographic data were collected here. In each viewing
condition participants were encourage to pan and ‘look around’ the
environment, with YouTube updating the binaural rendering of the
FOA audio according to the visual perspective.

The soundscapes were presented as YouTube content embedded
in Qualtrics. The presentation order within each set of stimuli was
randomised. As with the preliminary test, each stimulus was rated
in terms of valence and arousal, and in terms of the three established
soundscape categories. Test participants were also asked to list the
sound sources and visual elements in the scene.

4.3. Main Test Results

This section presents an evaluation and analysis of the results of
the main listening test. As with the preliminary listening test, a
Shapiro-Wilks test for normality was used. Similarly only a very
small number of variables were shown to demonstrate a non-normal
distribution. The main listening test results were therefore suitable
to be compared using the Mann-Whitney U-test.

Initially the results for all test participants are all compared
with no consideration of the order in which the two sets of stimuli
were presented. Further analysis is then presented in order to
investigate how the order in which test participants were exposed
to the aural and audiovisual stimuli has affected their experience of
the soundscape.

4.3.1. Overall Comparison

Fig. 6a shows the results from Mann-Whitney U-test applied to the
main listening test results, comparing the results for the audio-only
soundscape presentations with the audiovisual ones.

As this figure indicates, there are relatively few significant
differences in any of the rating scales when comparing the two
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Autopano Video Pro
used to stitch together
the GoPro footage

Use Audactiy to reorder
B-format channels (WYZX)

Video uploaded to YouTube
for 360� and VR viewing

FFMPEG used to combine audio and video

Spatial Media Metadata Injector used to add
metadata to the file for YouTube compatibility

Figure 5: A flow diagram showing the method used in this study for VR content creation.

listening conditions. The clip that shows the most significant dif-
ferences are for clip 7B, which was recorded next to a busy road
in Leeds city centre. Compared to the audio only presentation
of this soundscape clip, the ratings for the audiovisual presenta-
tion show significantly increased valence and human ratings, and a
significantly reduced PNIR rating.

There are two aspects of the visual setting of this clip that
have likely contributed to these differences: firstly, it is hard from
listening to the soundscape alone to get a sense of how close to the
road the listener is, as the traffic sounds are very loud, whilst the
visual setting makes it clear that recording position is safely away
from the road; secondly, the square that this recording was made
at is lined with some trees which were clearly identified by test
participants as a major visual feature of the scene.

The only other significant difference shown in Fig. 6a is for
clip 3A, where the presence of visuals alongside the soundscape
results in a significantly higher natural rating (as expected from the
preliminary test results).

4.3.2. Order Dependence

Having now considered all of the results for both listening condi-
tions for both groups of test participants, a breakdown of results by
presentation order will now be considered.

Fig. 6b shows the results of applying the Mann-Whitney U-test
to just the first listening condition experienced by each group: i.e.
the audio-only results for the group that experienced those clips
first compared with the audiovisual results from the other group.

Firstly it is interesting to note that the significant differences
shown in this figure are not the same as those shown in Fig. 6a.
These results show that for clip 1B, recorded at Dalby forest, the
version of the clip presented with the accompanying visuals re-
ceived a significantly greater valence rating, and a significantly
lower mechanical rating. As with the preliminary test results, the
change in valence rating is most likely due to the pleasantness of
the trees and open sky in the visual setting. The mechanical rating
is also lower with the presence of visuals for this clip. The sound-
scape contains some ambiguous noise that may be distant traffic,
wind, or aircraft flying overhead. When presented with visual fea-
tures this ambiguity is resolved and the natural visual elements take
precedence.

A significant difference in mechanical rating can also be seen
for clip 7B; this is most likely due to the human elements (people
walking past) and minor elements of green infrastructure (some
trees lining the square) that reduce the impact of the mechanical

noise on the audiovisual experience of the soundscape.
Also shown in Fig. 6b are two significant differences in the

ratings for clip 6A: the audiovisual presentation of this clip received
significantly lower valence and human ratings than the audio-only
version. This is most likely due to, again, elements of the visual
environment that are not manifest in the soundscape itself: in this
case the inner city shopping district buildings. In the audio-only
presentation the dominant features are conversation and footsteps,
whilst in the visual presentation the large buildings are the dominant
feature. The presence of these buildings and paved streets also
possibly gives some orientation for the background noise in the
clip, grounding its otherwise ambiguous nature and indicating to
participants that there is some distant traffic noise present.

Fig. 6c shows the Mann-Whitney U-test results comparing the
two listening conditions for the group who experienced the audio-
only soundscapes first, followed by audiovisual presentation. For
clip 3A, recorded next to the Hole of Horcum in the North York
Moors national park, there is a significant increase in the natural
rating for the audiovisual presentation of the clip relative to the
audio-only version due to the rolling countryside (something not
obviously present in the soundscape itself).

The category ratings for all other soundscapes show no signifi-
cant differences between listening conditions, but for clips 7B and
8A there are some differences in the emotion ratings. For clip 7B
this means a significantly higher valence rating, and a significantly
lower PNIR, once again showing how the presence of a relatively
small amount of green infrastructure can improve the experience of
a location.

Also of note in Fig. 6c is that for clip 8A, recorded at an inner
city park in Leeds, there is indicate a significant decrease in the
PNIR for the clip presented with visuals relative to the audio alone.
This is interesting as neither the valence nor arousal ratings on
their own show significant differences, but when these ratings are
combined a significant difference can be demonstrated.

4.4. Discussion

When taken together the above results can be summarised as three
main findings. Firstly, many of the significant differences in emo-
tional or categorical ratings for the different soundscape clips are
(perhaps unsurprisingly) due to the visual features that are not
manifest in the soundscape clips. This makes clear the need for
a cross-modal approach to soundscape evaluation as any real-life
soundscape evaluation procedure will have to consider the visual
context of that soundscape.
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Figure 6: Mann-Whitney test results indicating significant differences between the two listening conditions. Plot (a) compares all of the
results from both groups for each clip (b) compares the results for the first listening condition experienced by each group, and (c) compares
only the results from the participants that experienced the soundscapes as audio-only first and then audiovisually. Dark marked squares
indicate a difference at 95% confidence (p < 0.05), and light marked squares indicate a difference at 90% confidence (p < 0.1).

Secondly, for many of the differences in perception of the
soundscape clips, the presence of elements of green infrastructure
can be identified. This lends credence to the idea that green infras-
tructure, whilst not necessarily resulting in a significant change to
an environment’s acoustic properties, can improve the experience
of that location.

Thirdly, the SAM, which has been examined thoroughly through-
out this research in terms of its usefulness for soundscape evalu-
ation, has been shown to be very useful in examining differences
between the emotional states evoked by different soundscape. The
PNIR, a combination of the valence and arousal dimensions of the
SAM into a single perceptual rating, has also been shown to be
useful in this study for discerning significant differences between
emotional states evoked by soundscapes.

5. CONCLUSION

This paper has presented the results of two listening tests, each
making use of soundscape recordings and images of the recording
locations to investigate how a cross-modal approach to soundscape
evaluation can be use to measure the impact of green infrastructure.
The SAM and category ratings were used to conduct this evaluation:
first in a preliminary test making use of stereo-UHJ renderings of
the soundscape clips and still images; and then in a main listening
test presenting the soundscapes in dynamically rendered binaural
audio accompanied by full motion panoramic video footage.

Whilst the results presented in this paper show some significant
differences in emotion and category rating between the audio only
and audiovisual clip presentation, further work should be conducted
comparing ratings for audiovisual soundscape presentation where
the visual setting is altered, for example through the addition of
trees or other aspects of green infrastructure. Such research would
build on the results presented here, which validate the methodology
in terms of the rating scales used, and the VR content creation and
presentation methods.
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ABSTRACT

Vacuum tube amplifiers, known for their acclaimed distortion char-
acteristics, are still widely used in hi-fi audio devices. However,
bulky, fragile and power-consuming vacuum tube devices have
also motivated much research on digital emulation of vacuum tube
amplifier behaviors. Recent studies on Wave Digital Filters (WDF)
have made possible the modeling of multi-stage vacuum tube am-
plifiers within single WDF SPQR trees. Our research combines
the latest progress on WDF with the modified blockwise method
to reduce the overall computational complexity of modeling cas-
caded vacuum tube amplifiers by decomposing the whole circuit
into several small stages containing only two adjacent triodes. Cer-
tain performance optimization methods are discussed and applied
in the eventual real-time implementation.

1. INTRODUCTION

Having been displaced by semiconductor technologies in almost
all areas of electronics, vacuum tube circuits are still widely used
in hi-fi audio amplifiers and high-end guitar amplifiers due to the
unique harmonic distortion characteristics produced by overdriven
tubes that are preferred by human ears. On the other hand, driven
by certain shortcomings of vacuum tube devices, such as large size
and weight, poor durability and high power consumption, digital
simulation of the behaviors of vacuum tube amplifiers, especially
tube guitar amplifiers, has been an emerging research topic since
the mid-1990s. In [1], Pakarinen and Yeh reviewed several digital
techniques that emulate vacuum tube guitar amplifier behaviors.

Introduced by Fettweis, Wave Digital Filters (WDF) [2] are a
class of digital filters that mimic classical filter structures, prefer-
ably lattice or ladder structures, by utilizing a wave-variable repre-
sentation. Because of their superior numerical properties and sta-
bility under finite-arithmetic conditions, WDF have been success-
fully applied in digital modeling of lumped electronic or physical
systems over the past few decades, as these systems can be typ-
ically represented by a set of blocks connected with each other
through electrical or physical ports. It is thus reasonable that in
recent years WDF have become widely applied in the field of non-
linear audio system modeling as a solid approach.

Digital modeling using classical WDF is able to handle series
and parallel circuits containing a single-port delay-free nonlinear-
ity. Reflection-free ports [3] are introduced to resolve the delay-
free loop created by port connections, and a single-port nonlinear-
ity [4] can be accommodated in a binary connection tree [5, 6].
However, the mathematical model of a vacuum tube triode is usu-
ally a dual-port or triple-port delay-free module. Moreover, cir-
cuits containing vacuum tube triodes usually cannot be simply de-

This work was supported by Stanford Art Institute 2017-18 Fellowship

composed into series and parallel topologies due to the feedback
around the ports. Previous practices [7, 8, 9, 10] broke the multiple
delay-free loops within WDF triode and JFET models by means of
ad hoc unit delays, at the cost of accuracy and even stability.

Recently, Werner et al. [11, 12, 13, 14] extended the classi-
cal WDF adaptors to include the R(Rigid)-type adaptor, a wave-
domain scattering matrix [15] formed by a general approach based
on Modified Nodal Analysis (MNA) [16] that resolves both arbi-
trary complex topologies [17] and multiple/multiport nonlineari-
ties. The K-method [18] was used to resolve the multiple delay-
free loops within these nonlinearities and thus make them tractable
through tabulation. However, multidimensional tabulation often
results in high memory-space consumption. Hence, while 1D non-
linearities are easily handled by linearly interpolated lookup ta-
bles [19], piecewise polynomial interpolation [20] or canonical
piecewise-linear representation [4, 21], multidimensional iterative
techniques [22] are typically used as an alternative to the tabu-
lation approach when there are several interacting nonlinearities.
Extending the previous binary connection tree containing three-
port WDF adaptors, the R-type adaptor has led to a new tree
structure—an SPQR tree [17], which is able to absorb multiple
nonlinearities into one single tree. Such a strategy was taken in
[23] to simulate a multi-stage tube guitar amplifier, whereas it still
remains to be improved for the sake of real-time capability, due
to the dramatically increasing complexity of solving multidimen-
sional nonlinear equations as the dimension increases. Although
recent works on system identification and gray-box modeling tech-
niques by Eichas et al. [24] are capable of modeling nonlinear gui-
tar amplifiers with relatively low computational load, they are not
based on the knowledge of the circuits and hence, cannot exactly
model the behavior of the knobs in amplifiers.

In this paper, a certain type of vacuum tube amplifier circuit—
cascaded vacuum tube amplifiers—are of concern, since a large
proportion of vacuum tube amplifiers, especially vacuum tube gui-
tar preamplifiers, appear to have a cascading structure. Previous
studies done by Mačák [25, 26, 27, 28] introduced a modified
blockwise method, which decomposes cascaded vacuum tube am-
plifiers properly into separate small stages to keep low the dimen-
sion of the local nonlinear system to be numerically solved each
time and therefore, reduce the overall computational complexity
of the whole simulation without affecting the mutual interactions
between adjacent amplifier circuits. Similar strategy was also de-
vised in [29] where two stages of the TR-808 bass drum were care-
fully separated. As a demonstration of combining WDF modeling
techniques with the modified blockwise method, a case study of
a vacuum tube guitar preamplifier in cascading structure is pre-
sented. Performance optimization methods that contribute to the
real-time behavior of the eventual implementation are discussed,
as well as simulation results.
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The remainder of this paper is structured as follows: Section
2 reviews the previous research on resolving multiple/multiport
WDF nonlinearities within a single SPQR tree. Section 3 illumi-
nates the details of the modified blockwise method and its signif-
icance to the modeling of cascaded vacuum tube amplifiers. The
case study is given in Section 4. Section 5 summarizes the results
and discusses future research directions.

2. PREVIOUS WORK

In this Section, recent developments in WDF modeling of nonlin-
ear circuits are reviewed. In particular, two approaches that resolve
the multiple delay-free loops within multiple/multiport nonlinear-
ities within R-type adaptors are discussed.

Previous studies [14, 17] have developed a general approach
that can decompose any given circuit into Series, Parallel, and
Rigidly connected WDF elements, and thus form a WDF SPQR
tree, which uses an R-type adaptor to absorb any complex (neither
series nor parallel) topologies. All nonlinearities are placed at the
“roots” of the SPQR tree, while the remaining subtrees contain-
ing series, parallel, or even other R-type connected linear elements
can be modeled using conventional WDF theory. Thévenin port
equivalents and Modified Nodal Analysis (MNA) [16] are utilized
to compute the wave scattering matrix S for each R-type adaptor:


bI

bE

�
= S


aI

aE

�
=


S11 S12

S21 S22

� 
aI

aE

�
, (1)

where aI and bI represent the vectors of internal incident and re-
flected waves from the nonlinearities, while aE and bE represent
the external incident and reflected waves from the subtrees.

Whereas the wave domain nonlinear relationship between aI

and bI can be represented by aI = Fw(bI), it is much easier to
obtain the Kirchhoff domain nonlinear relationship:

iC = Fk(vC), (2)

since the behaviors of most nonlinear electronic devices are usu-
ally defined in the Kirchhoff domain, while only some specific
nonlinearities can be modeled in wave domain using the Lambert
W function [30, 31, 32].

Therefore, the internal wave vectors aI and bI are converted
to the corresponding Kirchhoff vectors iC and vC using a w–K
converter matrix C:


vC

aI

�
=


C11 C12

C21 C22

� 
iC

bI

�
=


�RI I

�2RI I

� 
iC

bI

�
, (3)

where RI is a diagonal matrix of internal port resistances. Com-
bining (1) and (3) yields a new scattering relationship:


vC

bE

�
=


F E

N M

� 
iC

aE

�
, (4)

where 8
><

>:

E = C12(I+ S11HC22)S12

F = C12S11HC21 +C11

M = S21HC22S12 + S22

N = S21HC21,

(5)

with H = (I�C22S11)
�1.

Plugging (2) into (4) yields the delay-free loops within the R-
type adaptor:

vC = EaE + FFk(vC). (6)

The delay-free loops in (6) can be resolved using either K-
method or iterative techniques. In terms of high speed data access
and memory consumption, using multidimensional tables trans-
formed by K-method [12, 18] in real-time simulation becomes
more expensive as the dimension increases. In addition, the neigh-
bor searching and scattered interpolation of multidimensional table
data further aggravates the computational load. As a more gen-
eral approach, multidimensional iterative techniques solve instan-
taneous loops by finding numerical solutions to the given nonlinear
systems, and hence are applied in [22] to offer an alternative to K-
method. To solve for vC in (6), the following multidimensional
nonlinear equation can be constructed:

H(vC) = EaE + FFk(vC)� vC = 0. (7)

Several iterative approaches are available to obtain the numer-
ical solution to this equation. The simplest and typically most ef-
fective way is multidimensional Newton’s method. For the multi-
dimensional function H(vC), given an initial guess v

0
C in a suf-

ficiently close neighborhood of one of its zeros, a numerical ap-
proximation of the solution can be obtained iteratively by

v
k+1
C = v

k
C � JH(vk

C)
�1H(vk

C), (8)

where JH is the Jacobian matrix of H . The choice of the initial
guess v0

C is detailed in [22]. Although several advanced iterative
algorithms based on Newton’s method can be devised to achieve
a higher convergence rate, the overall computational complexity
within each iteration expands dramatically as the dimension of the
inverse Jacobian matrix J�1

H increases, especially in [23] where
four WDF triode models were involved in one single SPQR tree.

3. MODIFIED BLOCKWISE METHOD

As discussed in the previous section, performance degradation in
high-dimensional cases is dramatic in the multi-nonlinearity WDF
systems resolved by either K-method or iterative methods, while
such circumstances are inevitable when cascaded vacuum tube am-
plifiers are modeled as a whole. On the other hand, as a common
approach to deal with complex cascaded systems, simply decom-
posing cascaded tube amplifiers into minimal separate stages (i.e.,
one tube per stage) is also not applicable due to the strong mutual
interactions that comes from the loading effect between two adja-
cent tube amplifiers, although it minimizes the dimension of the
local nonlinear equations to be solved each time.

Triode 
Amp 1

Triode 
Amp 2

Triode 
Amp 2

Triode 
Amp 3

Triode 
Amp 3

Triode 
Amp 4

Figure 1: Decomposing cascaded vacuum tube amplifiers using
the modified blockwise method.
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In [28], the loading effects between three cascaded typical
common-cathode triode amplifiers have been measured and com-
pared. It has been proved that there is very small interaction be-
tween the first and the third amplifier and hence, it is sufficient
to consider only the second amplifier as the nonlinear load for
the first one, which lays the foundation of the modified block-
wise method. Applied in several previous practices [25, 26, 27]
on equation-based simulation of cascaded vacuum tube amplifiers,
the modified blockwise method decomposes the cascaded ampli-
fiers into several coupled triode amplifier stages that are modeled
separately as illustrated in Fig. 1. It is noteworthy that the extra
computational load introduced by the redundant triode amplifiers
involved in the simulation is far outweighed by the reduced overall
computational complexity of the whole system.

Vpp

V1

Rp1
Cblock

Rk1

Rg1

Rin1

Ck1

P1

P2

Vin

Vpp

V2

Rp2

Rk2

Rg2

Rin2

Ck2

Figure 2: Extracting the proper output signal of the first amplifier
in a coupled common-cathode triode amplifier stage.

The modified blockwise structure ensures that in each stage,
the nonlinear current flowing into the grid of the second triode is
taken into account and therefore, the output signal of the first triode
amplifier is correct and ready to be fed into the next stage. Fig. 2
points out the circuit node P1 where the output signal of the first
amplifier is usually extracted in a coupled common-cathode triode
amplifier stage. On the other hand, extracting the signal at P2 is
usually not applicable, although it cuts down the number of redun-
dant components in the next stage. Such a conclusion is drawn on
the basis of the triodes’ grid limiting behavior [33] illustrated in
Fig. 3. As the input voltage Vin to the triode amplifier is made
larger, the grid current Ig increases, causing an increased voltage
drop across the grid resistor Rin. This tends to make the grid volt-
age Vg increase much less than the input. As a result, the grid
resistor Rin is of great significance and hence cannot be simply
separated from the simulation unless the triode’s operating point is
not located in the grid limiting region under any circumstances.

VgRinVin

Ig

Figure 3: Grid limiting behavior of a vacuum tube triode.

4. CASE STUDY

As an example of combining multi-nonlinearity WDF modeling
techniques with the modified blockwise method, we study the pream-
plifier stage of the MESA/Boogie R� Mark II-BTM guitar amplifier,
which consists of five cascaded vacuum tube triode amplifiers. The
prototype of this circuit was patented by Smith [34] in 1980 as the
world’s first high gain dual mode channel switching amplifier.

4.1. System Decomposition

As shown in Fig. 5a and 5b, both “Clean” and “Lead” branches
are cascaded vacuum tube triode amplifiers that can be decom-
posed into small coupled triode amplifier stages using the mod-
ified blockwise method. The circuit nodes where signals should
be extracted are marked in these schematics. In Fig. 5a, the output
signal of Stage 3 is extracted at P2 rather than the node between ca-
pacitor C8 and resistor R4 simply because it is much easier to get
the plate voltage of triode V1B in the corresponding WDF SPQR
tree as presented in Fig. 6; whereas extracting signal elsewhere
requires extra subtraction. It is also worth mentioning that the cir-
cuit node P3 in both Fig. 5a and 5b is carefully chosen so that the
“Lead” and “Clean” branches can share the same coupled triode
output stage without extra computational load. Such a strategy is
based on careful measurements of the input and output signals of
Stage 5, a cathode follower which has no gain but a constant grid-
to-cathode voltage.

On the basis of the marked circuit nodes in Fig. 5, the refer-
ence circuit is decomposed into five coupled triode amplifier stages
organized in the modified blockwise structure and then modeled
using WDF techniques. Fig. 6 shows the resulting SPQR trees
of each stage and a diagram of the system structure at the top
right corner that illustrates the relationship between the dual tri-
ode stages in the modified blockwise structure and the original
cascaded circuit stages, where the original stages containing tri-
odes are marked with a darker color. All the linear elements in
the circuits are modeled using voltage wave variables. The active
sections of a potentiometer are treated separately and identified
by suffix numbers (e.g., the potentiometer “Volume” in Stage 3 is
separated into “Vol1” and “Vol2”).

DPDT

Figure 4: Internal structure of a wave-domain double-point,
double-throw (DPDT) switch.

In previous WDF modeling practices [29, 35], the single-pole,
single-throw (SPST) switch are usually modeled as non-adaptable
elements at the root of the trees. In this work, a wave-domain
double-point, double-throw (DPDT) switch is devised to model the
equivalent behavior of some circuits containing SPST switches.
The common port of a DPDT switch can only be connected with
one of the two sub-ports, as illustrated in Fig. 4. The two different
states of an SPST switch in a circuit will result in two different
local topologies. If the differences are within one subtree of an
R-type adaptor, then this wave-domain DPDT switch can be uti-
lized to adapt the two local subtrees derived from the two topolo-
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Figure 5: Schematic of MESA/Boogie R� Mark II-BTM guitar preamplifier in both “Lead” and “Clean” modes.

gies. In the process, some elements will inevitably appear twice
in the whole SPQR tree, therefore, the two identical elements are
distinguished from each other by an extra apostrophe in the la-
bels (e.g., the potentiometer “Middle” in Stage 2 has two identical
WDF models “M” and “M0” in two local subtrees).

4.2. Resolving Coupled Triodes

Although the modified blockwise decomposition of the reference
circuit reduces the dimension of the local nonlinear system from
8D/10D to 4D (coupled triode amplifiers), the size of a K-method-
transformed multidimensional lookup table is still too large for
real-time simulations. Thus, in this case study, multidimensional
Newton’s method is used to resolve the dual triodes within one
SPQR tree, which involves utilizing the Jacobian matrix J as a di-
rection to find the root of the nonlinear equations (7) formed by
the mathematical models of these triodes. However, previous tri-
ode models [36, 37, 38, 39] are all piece-wise nonlinear functions
that result in poor performance near the points of discontinuity.

Preferred by recent research [23, 28, 40, 41], the physically-
motivated Dempwolf triode model [42] smooths the discontinuity
by combinations of exponential and logarithmic functions:

8
>>>><

>>>>:

Igk = f(Vgk) = Gg · ( 1
Cg

log(1 + eCg ·Vgk ))⇠ + Ig0

Ik = g(Vgk, Vpk) = G · ( 1
C log(1 + eC·(

Vpk
µ +Vgk)))�

Ipk = Ik � Igk = g(Vgk, Vpk)� f(Vgk),

(9)

Table 1: Dempwolf triode model parameters of a 12AX7 tube.

Gg Cg ⇠ Ig0
6.177E-4 9.901 1.314 8.025E-8

G C � µ
2.242E-3 3.4 1.26 103.2

with grid-to-cathode voltage and current Vgk, Igk, plate-to-cathode
voltage and current Vpk, Ipk, cathode current Ik, and constant
model parameters such as perveances Gg , G, adaption factors Cg ,
C and exponents ⇠, �. For a typical 12AX7 tube, the model pa-
rameters are given in Table 1.

For dual triode amplifier stages, plugging (9) into (2) yields

iC =

2

64

Igk1
Ipk1
Igk2
Ipk2

3

75 = Fk(vC) = Fk(

2

64

Vgk1

Vpk1

Vgk2

Vpk2

3

75) =

2

64

f1
g1 � f1

f2
g2 � f2

3

75 , (10)

where fi denotes f(Vgki) and gi denotes g(Vgki, Vpki)�f(Vgki).
Hence, the multidimensional nonlinear equation (7) of each

dual triode amplifier stage can be expressed as

H(

2

64

Vgk1

Vpk1

Vgk2

Vpk2

3

75) = EaE + F

2

64

f1
g1 � f1

f2
g2 � f2

3

75�

2

64

Vgk1

Vpk1

Vgk2

Vpk2

3

75 = 0. (11)

DAFx-144
DAFx-144



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Stage 1 Stage 2 Stage 3

Stage 3 Stage 4a

Stage 4a Stage 5

Stage 5 Stage 6

Stage 3 Stage 4b Stage 5

“Lead” Branch

“Clean” Branch

Vol2

Rp2

Ck2

Rk2

R2 C5

M

C4

DPDT DPDT Vol1

DPDT M’

R3

B T2

Rk1

Rg1
Rp1

Ck1

C3R1

T1

C2

C1+C2

Vol1'

C6

1nΩ

Rp3

Cp3

DPDT

Rk3' Ck3

Rk2 Ck2 Rk3Rp2

C7+C8

DPDT

R3

Vol1'

C6 Vol1

Vol2

Cp4

R5 Rg4

C9 R6

Rk4Drive2
DPDT

Rk3' Ck3

Rk3

Rp3Cp3

Rp4_2

Rp4_1

C7+C8

R4+Drive1

Rk4

Rp4_2

Rp4_1
R9

DPDT

Rg5

Rp5

Cp4

Ck5Rk5

C11

R8

C12

MSTR

LMSTRMSTR'

Rk2 Ck2 Rp2

Cp4
R7C10

Rp4_2

Rp4_1

C7

R6

Rg4
Rk4

DPDT

R3

Vol1'

C6 Vol1

Vol2

408V

408V

408V

425V

425V

425V

425V

425V

425V

408V

1nΩ

1nΩ

1nΩ

V1A V1B

V1B V3A

V3A V2A

V2AV1B

V2A V2B

Drive2

R4+Drive1

Figure 6: Modified blockwise WDF model of MESA/Boogie R� Mark II-BTM guitar preamplifier.

The corresponding iteration expression (8) thus becomes

2
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), (12)

where the four-dimensional Jacobian matrix JH is given by

JH = FJFk � I, (13)

with

JFk =

2

66664
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@g1
@Vpk1
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0 0 @f2
@Vgk2
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0 0 @g2
@Vgk2
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@Vgk2

@g2
@Vpk2

3

77775
.

(14)

4.3. Performance Optimization Methods

Various methods can be used to optimize the performance of the
WDF simulation system to make it run in real time. A widely ap-
plied one is to tabulate the nonlinearity with a proper uniform inter-
val and introduce linear interpolation into the table lookup process
[19]. In this case study, the two nonlinear functions Igk = f(Vgk)
and Ik = g(Vgk, Vpk) in the Dempwolf triode model (9) are tab-
ulated into two one-dimensional lookup tables corresponding to a
pair of indices V1, V2 transformed through


V1

V2

�
=


1 0
1 1

µ

� 
Vgk

Vpk

�
. (15)

Combining (9) and (14) also yields

@g(Vgk +
Vpk

µ )

@Vpk
=

1
µ

@g(Vgk +
Vpk

µ )

@Vgk
. (16)

Thus, all the elements in the Jacobian matrix JFk (14) can also
be covered by two 1D nonlinear tables @f

@Vgk
and @g

@Vgk
correspond-

ing to the same pair of indices V1, V2 given in (15).
Linear interpolation is applied when utilizing the four 1D ta-

bles f(V1), @f
@Vgk

(V1), g(V2), @g
@Vgk

(V2). For a 1D table y[n],
given an accurate value x between two adjacent integer indices n
and n+ 1, the linear interpolation result y[x] is defined by

y[x] = y[n] + (x� n)(y[n+ 1]� y[n]), (17)

which can be further optimized by introducing a different table
�y[n] = y[n+ 1]� y[n] that replaces the extra subtraction:

y[x] = y[n] + (x� n)�y[n] (18)

Another approach to speed up the simulation process is devel-
oped from the perspective of matrix-operation performance tun-
ing. In this study, the open source C++ linear algebra library Ar-
madillo [43] is used to cover the basic matrix operations such as
addition, multiplication and inversion. However, when solving the
4D local nonlinear system (11) within each coupled triode ampli-
fier stage, the most time-consuming process in each iteration (12)
is the inversion of the 4D matrix JH , although the inversions of
small matrices up to 4D are carried out explicitly inside Armadillo.
This is due to the large overheads introduced by Armadillo wrap-
pers to take different measures according to different matrix di-
mensions. The same situation occurs when Armadillo is calling
the general matrix-vector multiplication (GEMV) in Basic Linear
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Figure 7: Comparison of WDF and SPICE’s time domain responses to different input signal levels.

Algebra Subprograms (BLAS), in which case more overheads is
introduced since BLAS is row-oriented so that an extra transpo-
sition is required when called by the column-oriented Armadillo.
Therefore, explicit 4D matrix inversion and 4D matrix-vector mul-
tiplication are implemented to avoid extra overheads.

Finally, to further increase the simulation speed, a certain level
of accuracy can be carefully sacrificed by increasing the error tol-
erance threshold TOL of the iterative root-finding process, which
serves as a termination criterion for iteration:

||H(vk
C)||  TOL (19)

4.4. Simulation Results

The modified blockwise WDF system was implemented in C++
language and tested on a MacBook Pro with 2.3 GHz Intel Core i5
and 8GB RAM at 4x oversampling of a typical audio sampling rate
of 44.1 kHz (176.4 kHz). After several successful initial offline
behavioral tests, the system was tested in real-time with a buffer
size of 256 samples and a 15.1% maximal CPU load.

To test the system’s time domain response, 1kHz sinusoids
with a small peak-to-peak voltage of 2mV, 5mV, 10mV and 20mV
were used as input signal to observe in particular the transition
from linear amplification to soft clipping in “Lead” mode. As pre-
sented in Fig. 7, the output waveforms of the WDF system show
excellent agreement with LTspice simulation results of the same
circuit. As the input amplitude increases gradually, the grid limit-
ing first starts to appear in the negative cycle of the output wave-
form, and when the input level is even higher, the positive cycle is
cut off. The error of a fully clipped output signal corresponding
to a 1kHz, 250mV peak-to-peak input sinusoid is shown in Fig. 8.
Most errors occur during zero-crossing with a maximum of 4.5V,
which might be introduced by the alignment deviation after resam-
pling SPICE results onto the time grid of the WDF simulation.

Fig. 9 shows the comparison of WDF and SPICE’s frequency
responses to a 1kHz, 250mV peak-to-peak input sinusoid. The
SPICE results have been offset by 50Hz to create clarity. The
first twenty harmonic peak frequencies of the WDF simulation
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Figure 8: Comparison of WDF and SPICE’s time domain re-
sponses (top) and error (bottom) for a 1kHz, 250mV peak-to-peak
input sinusoid.

agree well with the SPICE results. To verify the system’s behav-
ior across the audible range, exponential sine sweeps [44] between
20Hz and 20kHz is used as input signal, the response spectrograms
of “Clean” and “Lead” mode are presented in Fig. 10 and 11 re-
spectively. It is confirmed that the harder clipping in “Lead” mode
results in higher harmonics in the corresponding output signal.

Preserving a reasonably high accuracy of simulation, the mod-
ified blockwise WDF system shows superior performance advan-
tages when compared with SPICE and single WDF SPQR tree sys-
tem. For the “Lead” mode circuit containing five cascaded triode
amplifiers, given a 1-second input sinusoid, the modified block-
wise WDF system only spends around 370ms to finish the whole
simulation, while a single WDF SPQR tree model of the same cir-
cuit requires more than 20s, and the corresponding simulation time
of SPICE even exceeds 80s.
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Figure 9: Comparison of WDF and SPICE’s frequency responses, a 50Hz offset is applied to SPICE result for intelligibility.

Figure 10: Exponential sine sweep response spectrogram for 20-
20kHz 250mV peak-to-peak input signals (“Clean” mode).

5. CONCLUSION AND FUTURE WORK

In this paper, the modified blockwise method is applied to the
WDF modeling of cascaded vacuum tube amplifiers to reduce the
overall computational complexity of solving high-dimensional non-
linear systems. The cascaded tube amplifier was decomposed into
several small stages containing two adjacent triodes. With the help
of several performance optimization methods, such as lookup ta-
bles with linear interpolation and explicitly implemented matrix
operations, the resulting modified blockwise WDF simulation sys-
tem preserves a reasonably high precision in both time and fre-
quency domains while exhibiting extremely high simulation speed
on a standard laptop and hence, is capable of running in real-time.

As stated in the previous sections, the K-method transformed
nonlinear multidimensional lookup tables are currently not com-
petitive due to their high memory consumption and slow data-
access speed. However, given enough memory, a table-lookup
will be much faster than the iteration process. Sparse memory
techniques [45] can be pursued, but they must ultimately be less

Figure 11: Exponential sine sweep response spectrogram for 20-
20kHz 250mV peak-to-peak input signals (“Lead” mode).

expensive than Newton iterations. We therefore believe that fu-
ture research could focus on 4D nonuniform tabulation, and high-
speed 4D nearest neighbor searching algorithms. Unlike most vac-
uum tube preamplifiers in cascading structures, most vacuum tube
power amplifiers are push-pull tube circuits that cannot be sim-
ulated by simply applying the strategies mentioned in this paper.
Hence, further research can be done in this direction as well.
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ABSTRACT

Time warping is an important paradigm in sound processing,
which consists of composing the signal with another function of
time called the warping map. This paradigm leads to different
points of view in signal processing, fostering the development of
new effects or the conception of new implementations of existing
ones. While the introduction of time warping in continuous-time
signals is in principle not problematic, time warping of discrete-
time signals is not self-evident. On one hand, if the signal samples
were obtained by sampling a bandlimited signal, the warped sig-
nal is not necessarily bandlimited: it has a sampling theorem of its
own, based on irregular sampling, unless the map is linear. On the
other hand, most signals are regularly sampled so that the samples
at non-integer multiples of the sampling interval are not known.
While the use of interpolation can partly solve the problem it usu-
ally introduces artifacts. Moreover, in many sound applications,
the computation already involves a phase vocoder. In this paper
we introduce new methods and algorithms for time-warping based
on warped time-frequency representations. These lead to alterna-
tive algorithms for warping for use in sound processing tools and
digital audio effects and shed new light in the interaction of time
warping with phase vocoders. We also outline the applications of
time warping in digital audio effects.

1. INTRODUCTION

Time warping is, in principle, a simple operation consisting in the
composition of the time signal with another function of time called
the warping map. As a result, the signal is deformed and its plot
vs. time appears as if the original time axis had been warped.

Together with its dual operation defining frequency warping,
time warping allows for the introduction of new or known effects,
which are often described adopting different points of view, and
allows for the mapping of signal representations into other repre-
sentations. For example, the introduction of vibrato in a signal
can be either seen as a result of passing the signal through a time-
varying delay line or as a result of time warping the signal. Adding
the original signal to a collection of time warped versions of the
same signal, one can achieve different realizations of flanging and
chorus effects. Even frequency or phase modulation as in FM syn-
thesis could be considered as a version of time warping, where the
warping map is one-to-one only for small values of the modulation
index.

Used in conjunction with time-frequency or time-scale rep-
resentations, invertible time and frequency warping help allocat-
ing analysis time intervals and / or frequency bands which dif-
fer from the ones provided by the original representative elements
[1, 2, 3, 4, 5]. This makes it possible to obtain, e.g., non-uniform
resolution from the uniform resolution of the original represen-
tation, or more sophisticated allocations than the ones sketched

by rigid and simplified mathematical rules. In recent times, non-
stationary Gabor frames were introduced [6, 7] and linked to time
and frequency warping operators subject to redressing methods
[8, 9].

In phase vocoder based schemes, time-warping of the win-
dows can be considered as a building block for time stretching
sound signals; another building block being the adjustments of the
phases to provide alignment of the sinusoidal components across
the overlapping stretched windows. In the most conventional im-
plementations, a constant stretching as defined by a linear time-
warping map is applied. However, the use of a piecewise linear
or curvilinear map generally achieves better results in which, e.g.,
only the stationary part of the signal is stretched or compressed
while the transients, especially at the attack of sounds, are left un-
altered.

This paper is organized as follows. In Section 2 we recall the
definition of warping as an operator and of its unitary version. We
explore useful maps for audio processing and effects in Section
2.1 and evaluate the warped sampling expansion as an algorithm
for time warping in Sections 2.2, 2.3 and 2.4. In Section 3 we
introduce original methods for time-warping and consider the in-
teraction of time-warping with Gabor frames or phase vocoder in
Section 3.1. Two original algorithms for warping are shown in
Section 3.2 and 3.3, respectively, where the results of experimen-
tation shown in Section 3.4 provide an assessment of the SNR with
test signals together with an analysis of the computational costs
found in Section 3.5. In Section 4 we give a brief outline of the
use of time warping for time stretching and pitch shifting audio
signals. Finally, in Section 5 we draw our conclusions.

Examples and experimental code will be made available at the
author’s web page:

http://members.chello.at/~evangelista/
under the Sound Examples tab - Time Warping.

2. TIME WARPING OPERATORS

Given a function of time �, which will play the role of the warping
map, a time warping operator W� is identical to a composition-
by-� operator C� acting in the time domain. Thus, we have:

stw = W�s = C�s = s � �, (1)

where stw is the time-warped version of the signal s, � is the time
warping map and � denotes function composition. Thus, for any
signal s(t) we have

stw(t) = s(�(t)). (2)

Conditions that guarantee the boundedness and invertibility of the
warping operators can be found in [8] and references therein.
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The conditions for the definition of unitary warping / compo-
sition operators are generally less strict than those for the bound-
edness and invertibility of the non-unitary warping operators (see
[8] and references therein). If the warping map � is almost every-
where strictly increasing, one-to-one and differentiable then one
can define a unitary time-warping operator U� simply by multi-
plying the non-unitary operator W� in (1) by the square root of
the magnitude derivative of the map, in which case:

stw(t) = [U�s] (t) =

�����
d�
dt

����s(�(t)). (3)

For simplicity, we assume that the warping maps � of inter-
est are almost everywhere increasing, so that they are invertible
[8], and that both the first derivatives of � and ��1 are essentially
bounded from below. Since the maps are increasing, their deriva-
tives are positive so that the magnitude sign under the square root
in (3) can be dropped.

2.1. Some Maps of Interest for Audio Effects

Time warping with arbitrary maps can be used per se as an au-
dio effect, introducing simultaneous pitch modulation and local or
global stretching or compression of the signal. The warped sig-
nal can also be mixed with the original signals and / or with other
differently warped versions of the signal. As it will be shown in
Sections 3 and 4, time warping can also be employed in conjunc-
tion with time-frequency representations in order to obtain alterna-
tive algorithms for warping and to build modified phase vocoders
for time stretching or pitch shifting of audio. In this section we
illustrate some time-warping maps that are of interest for the con-
struction of new or known audio effects.

Usually we are only interested in the shape of the map for non-
negative values of time. If needed, in order to define a map over
the entire real axis we may extend the generic map by enforcing
odd parity: �(�t) = ��(t).

The simplest time-warping map is linear, also known as affine
transformation:

�lin(t) = �t + c, (4)

with inverse
��1

lin(t) =
t � c

�
, (5)

where � �= 0 and c are constants.
In the linear map (4), the parameter � is usually chosen as

positive in order to maintain the direction of time, while a neg-
ative value produces time reversal effects useful, for example, in
granular synthesis. With the generic linear map, each sinusoidal
component of the signal at frequency f0 is brought to frequency
f1 = �f0. Time-wise, the signal is dilated by a factor 1/�, which
means it is stretched if � < 1 and compressed if � > 1.

Usually, one selects c = 0 in order to map the time origin into
itself. However, it is always possible to let c be a negative number
in order to introduce a time delay, which might be useful, for ex-
ample, for online computation of time warping. Indeed, as shown
in Fig.1, the identity line g(t) = t, which represents the present
(the loci of time instants that map into themselves), divides the past
(the loci of time instants that map into previous times) from the fu-
ture (the loci of time instants that map into subsequent times). In
the same figure, shown is the map �(t) = t � d, where d is a
positive number, which completely lies in the past and introduces
a uniform delay d. For a nonlinear warping map �(t), such that

�(t) � t is bounded, it is possible to introduce a delay through
composition with a linear delay map so that the whole map does
not have points belonging to the future, which makes causal com-
putation possible. That is, given the map �(t), such that �(t) > t
in some region, we form the causal map �̃(t) = �(t) � d where
d � sup

t
(�(t) � t), which has no points in the future.

future

past

γ (t) 
=  t -

 dpre
sen

t

td
w
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Figure 1: Subdivision of the time-warped time plane into past,
present and future. Also shown is a linear map introducing a delay
d.

Piecewise linear maps can also be exploited in order to pro-
duce dynamic warping effects in a simple way, where several ver-
sions of (4) and (5) are used on contiguous finite disjoint intervals
and their mapped intervals, respectively. In that case, the constant
c of each map is chosen to guarantee continuity, where the initial
value of the map matches the final value of the previous adjacent
map.

Another class of maps of interest is given by the chirps, exam-
ples of which are

�l(t) = t + �lt
2, (6)

which, when applied to a sinusoidal signal component produces a
linear chirp and

�q(t) = t + �qt
3, (7)

which gives a quadratic chirp.
When applied to audio signals, the chirp maps produce glis-

sandos. The linear chirp map brings any sinusoidal component of
the signal of frequency f0 to a signal having instantaneous fre-
quency f0(1 + 2�lt). The parameter �l can be selected to achieve
a target frequency f1 after a time interval of duration � , in that case
we set �l = (f1 � f0)/2f0� . It is convenient to express �l in a
form that does not depend on f0 as follows:

�l =
� � 1
2�

, (8)

where � it the ratio of frequency change in the lapse � . Only values
of � > 1, corresponding to �l > 0, guarantee the invertibility
of the map at all times. This is the case of upward chirps where
the frequency increases. Downward chirps with �l < 0 can still
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be used on finite length intervals provided that one checks, for
invertibility, that the derivative of the map does not change sign.

For �l > 0 the inverse of the linear chirp map is

��1
l (t) =

�1 +
�

4�lt + 1
2�l

. (9)

This map can also be used, by exchanging the roles of the direct
and inverse maps, to produce downward chirps, which are, how-
ever, not linear.

The quadratic chirp warping map (7) dynamically maps the
frequency f0 to the instantaneous frequency f0(1 + 3�qt

2). Here
again, for complete invertibility we require �q > 0 and we can
express this parameter in terms of the frequency change ratio � in
the lapse � as follows:

�q =
� � 1
3�2

, (10)

with � > 1 for an upward chirp. For �q > 0, the inverse of the
quadratic chirp map is given as follows:

��1
q (t) =

3

�
2

3�q

Q�q (t)
�

Q�q (t)
3
�

18�2
q

(11)

which gives a downward chirps, where

Q�q (t) = 3

��
81�2

q t2 + 12�q � 9�qt. (12)

To conclude our exploration of relevant warping maps, we
consider the phase modulation map

�pm(t) = t + Imsin(2 � �fmt), (13)

where fm is the modulating frequency and Im is the modulation
index expressed in multiples of the carrier frequency, i.e., of the
frequency fc of the sinusoidal component of the signal to which
the map is applied. As it is easy to check from its derivative, this
warping map is invertible only if Im < 2�fm. It is useful for pro-
ducing vibratos, for small values of the modulating frequency and
for phase modulating audio signals as a special FM effect where
the carrier is not a necessarily single sinusoid. The inverse map
of (13) cannot be expressed in closed form. When an inverse is
desired, one can resort to linear interpolation from the direct map
by exchanging the abscissae with the ordinates. Alternatively, one
can numerically find for each time point t of interest the zero of
the function �(x) � t.

Yet another possibility is given by the approximation of the
phase modulation map by means of the invertible map

�apm(t) = t +
1

�fm
tan�1

�
bm sin(2�fmt)

1 � bm cos(2�fmt)

�
, (14)

which is inspired from the phase response of a first order real all-
pass filter. The inverse map of (14) can be readily found by chang-
ing the sign of bm. This parameter controls the modulation index
and can be optimized for the map to approximate (13). By match-
ing the points of maximum deflection from the linear component t
of (13) with the values of (14) at the same points, i.e. at the points
2�fmt = �/2 + 2k�, k � Z, one can see that a good estimate for
bm is b̂m = tan(�fmIm). The detail of the approximation of the
phase modulation map with the map is shown in Fig.2. This way
we obtain an invertible map in closed form that is more practical
for phase modulation effects.
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Figure 2: Detail of the approximation of the phase modulation map
with the map �apm in (14).

2.2. Sampling Theorem for Time-Warped Bandlimited Sig-
nals

Assume that stw(t) = s(�(t)) as in (2), where the function � is in-
vertible. If the original signal s(t) is bandlimited to

�
� fs

2 , + fs
2

�
,

where fs/2 is the Nyquist frequency, then it admits a sampling
reconstruction formula

s(t) =
�

n

s(nT )sinc

�
t
T

� n

�
, (15)

where sinc (t) = sin �t
�t and T = 1/fs is the sampling interval.

With the simple observation that stw(��1(t)) = s(t) one can con-
clude that s(nT ) = stw(��1(nT )). Thus, by time-warping both
sides of (15) one obtains the following sampling reconstruction for
the warped signal:

stw(t) =
�

n

stw(�n)sinc

�
�(t)
T

� n

�
, (16)

where �n = ��1(nT ) are sampling instants that are not regularly
spaced unless the map is linear. However, as conjectured in [10], if
�(t) is an invertible function, the time-warped signal s(�(t)) is not
guaranteed to be bandlimited, unless �(t) is an affine map (4). This
conjecture is shown to be true for a wide class of maps, including
the ones arbitrarily close to a linear map and the piecewise linear
ones [11, 10, 12].

The warped sampling expansion (16) constitutes an important
algorithm for time-warping discrete-time signals. In fact, knowing
that s(nT ) = stw(�n) and disregarding possible aliasing, one can
compute the discrete-time time-warped signal by evaluating (16)
at uniformly spaced sampling instants tr = rT , for any r � Z:

stw(rT ) =
�

n

s(nT )sinc

�
�(rT )

T
� n

�
. (17)
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Since in computations the sinc function is impractical as it extends
over the entire time axis, one can approximate it by a windowed
sinc interpolating kernel like the Lanczos kernel

�L(t) =

�
sinc

�
t
L

�
sinc(t) t � [�L, +L[

0 otherwise
(18)

or the von Hann windowed sinc [13]:

�L(t) =

�
cos2

�
t

2L

�
sinc(t) t � [�L, +L[

0 otherwise
(19)

Here L is an integer parameter which controls the extension of the
approximation interval. In both cases, and in many other simi-
lar choices of window function, we have lim

L��
�L(t) = sinc(t).

Thus,

stw(rT ) �
�

n

s(nT )�L

�
�(rT )

T
� n

�
(20)

is a discrete-time approximation of the time warped signal, which
is increasingly better as L grows.

The time and frequency domain characteristics of both the
Lanczos interpolating kernel and the von Hann windowed sinc are
shown in Fig.3. While the two interpolating kernels are very sim-
ilar in the time domain, the magnitude Fourier transform of Lanc-
zos’ kernel shows a slightly steeper frequency roll-off of the main
lobe.
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Figure 3: Lanczos and von Hann windowed sinc interpolating ker-
nels: time domain and magnitude Fourier transforms.

2.3. Experimental Results

In order to assess the quality of the approximation (20) we per-
formed tests with artificial signals which have an analytic closed
form and we measured the SNR. The error is estimated as the dif-
ference of the signal warped as in (20) and the one obtained by
applying the warping map function directly to the artificial signal.
Clearly, the results depend on the map and on the signal. In Fig.4
we plot the SNR as a function of the width parameter L for both

the Lanczos and the von Hann windowed sinc kernels, choosing
as warping map the linear function �(t) = �t.

The test signals consisted of 1 KHz sinusoids with smooth en-
velopes and we chose a sampling rate of 44.1 KHz for the sam-
pling expansion. Varying the parameter � of the warping map,
we concluded from the observations that for � � 1 a 255 dB
SNR (not shown in the figure) was achieved in all cases, which
means no error above machine precision. The worst cases are for
� � 1; the values of the SNR shown in the figure are computed
with � = 1/16, which warps the 1 KHz sinusoid down to 67 Hz.
The intuition about the lower performance at lower map deriva-
tives lies in the fact that the sample instants �n of stw in the RHS
of (16), of which (20) is an approximation, are linked to the in-
verse map ��1(t) = t/�. Thus, since �n = nT/�, their density
is lower for smaller values of � and so is the quality of the ap-
proximation. However, increasing the sampling rate did not show
great benefits. This might be due to the fact that we are dealing
with sinusoids still within average Nyquist rate, while increasing
the sampling rate proportionally increases the number of the terms
in the sampling expansion estimate (20), which brings a propor-
tionally higher approximation error.
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Figure 4: SNR characteristics of Lanczos and von Hann windowed
sinc kernels as a function of the support width parameter L.

From Fig.4 we remark that for values of L > 3 the von Hann
windowed sinc outperforms the Lanczos interpolating kernel. A
choice of L = 5 or larger leads to good approximations where the
artifacts are inaudible at 56 dB SNR or better, reaching 106 dB for
L = 11.

The SNR results in Fig.4 were confirmed up to the first deci-
mal digit in other tests we performed using the linear and quadratic
chirp maps described in Section 2.1. We also tried their inverses,
which give downwards chirps, achieving similar SNR and acoustic
results.

2.4. Computational Complexity

The computational complexity of the warped sampling expansion
can be easily estimated by observing that in (20), in order to pro-
duce the output, any input sample is multiplied by the sinc window
kernel and these are added together with the shifted windows of
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previous and future samples within the window length. The exten-
sion of the warped window depends on the warping map. Given
an increasing warping map � and the window extension factor K,
we have that the sampled support of the warped window is the set
of r � Z such that:

��1((n � L)T )
T

� r <
��1((n + L)T )

T
. (21)

For a linear warping map �(t) = �t the width of the support
is approximately 2L/� samples. For the generic map, in order to
compute the average complexity, � can be replaced by the average
derivative of the map:

�̄ =
1
�

��

0

d�
dt

dt =
�(�)

�
, (22)

over a finite interval of duration �, where we have assumed
�(0) = 0, or by its limit as � � �, if it exists, for the infinite
interval.

In conclusion, the average complexity of the warped sampling
theorem based algorithm for time warping is proportional to 2L/�̄
per sample.

3. TIME WARPING AND TIME-FREQUENCY
REPRESENTATIONS

The warped sampling expansion illustrated in the previous sec-
tion is not the only algorithm for time warping signals. In fact,
the expansion of the signal in any set of complete orthogonal or
biorthogonal functions of time in L2(R) can be used and so is the
expansion into any time domain frame in the same space, provided
that either the analysis or the synthesis functions can be expressed
in closed analytic form.

In this paper we consider a new approach to the time warping
of discrete-time signals based on Gabor frame expansions. While
in [14] we considered a similar approach based on filter banks for
the computation of frequency warping, time warping has different
requirements, which deserve a separate discussion, and the impor-
tant computational advantage that finite-length windows are still
finite-length after warping. Moreover, for audio processing pur-
poses, the filter bank approach to time-warping allows one to con-
trol the output bandwidth simply by limiting the number of fre-
quency components.

3.1. Gabor Frames

In this paper, we consider the signal expansion over a Gabor
frame1 whose representative elements are obtained by modulating
and time-shifting a suitable window function hs(t):

�(s)
n,m(t) = [TnaMmbhs] (t) = hs(t � na)ej2�mb(t�na), (23)

where T� is the shift by � operator and M� is the modulation by
� operator which consists in multiplication by ej2��t. The con-
stants a and b respectively represent the time-shift sampling in-
terval (hop size) and the frequency sampling interval (distance of

1Throughout this paper we use an equivalent definition of Gabor frames
and STFT which includes time shift (na or � ) in the complex sinusoids, so
that windows are synchronous with the phase of the exponentials.

the frequency bins), with ab � 1 a necessary condition for the set�
�(s)

n,m(t)
�

n,m�Z
to form a frame.

We recall that the sequence of functions {�n,m}n,m�Z in
L2(R) is called a frame if there exist two positive constants A
and B such that

A�s�2 �
�

m,n

|�s, �n,m�|2 � B�s�2 �s � L2(R), (24)

where �s�2 = �s, s� is the norm square of the signal.
For the Gabor set (23) one can show that perfect reconstruction

(PR) is guaranteed if there exists an analysis window ha(t) such
that �

n

ha

�
t +

r
b

� na
�
hs(t � na) = b�r,0, (25)

where �r,0 is the Kronecker delta and the analysis frame is given
by

�(a)
n,m(t) = [TnaMmbhs] (t) = ha(t � na)ej2�mb(t�na). (26)

General necessary and sufficient conditions for compact supported
and exponentially decaying windows to generate a Gabor frame
are given in [15]. For compact supported analysis and synthesis
windows with support smaller than 1/b, the popular overlap-add
condition must be satisfied for PR:

1
b

�

n

ha (t � na)hs(t � na) = 1. (27)

It is always possible, in this case, to modify the windows so that the
generated frame is tight (A = B) so that the analysis and synthesis
windows are identical.

If
�

�(s)
n,m

�

n,m�Z
forms a Gabor frame with dual frame

�
�(a)

n,m

�

n,m�Z
, any signal s(t) in L2(R) can be represented as

follows:

s(t) =
�

m,n

S(na, mb)hs (t � na)ej2�mb(t�na), (28)

where

S(�, �) =

� +�

��
s(t)ha(t � �)e�j2��(t��)dt (29)

is the Short-Time Fourier Transform of the signal with analysis
window ha(t), so that

S(na, mb) =
�
s, �(a)

n,m

�
(30)

is its sampled version on the uniform grid {na, mb}n,m�Z.
A discrete-time version of (28) can be obtained in the same

form by uniformly sampling time tk = kT and by choosing hop-
size a = NT and frequency sample interval b = 1/MT , where
both N and M are integers with M � N , where, in typical ap-
plications, M = KN , with the integer K controlling the overlap
factor. Furthermore, the summation over the frequency index m is
finite in the discrete case.
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3.2. Time Warping by Means of Phase Vocoder: Form I

By time-warping both sides of (28) one has the following expan-
sion for the continuous time time-warped signal:

s(�(t)) =
�

m,n

S(na, mb)hs (�(t) � na)ej2�mb(�(t)�na). (31)

Due to unitary equivalence [2] through the unitary warping opera-
tor U� , the set

U��(s)
n,m(t) =

�
�̇(t)hs (�(t) � na) ej2�mb(�(t)�na), (32)

where �̇(t) is the time derivative of the warping map, is a frame if
and only if the set in (23) is a frame. Thus, an alternate scheme for
warping a continuous-time signal consists of projecting the signal
over a Gabor analysis frame and compute the expansion (31) over
the time-warped frame (32).

An algorithm of interest for time-warping discrete-time sig-
nals can be obtained by discretizing (31):

s̃(k) =

+� M
2 ��

m=�� M
2 �

�

n

Sn,mhs (gk � nNT )ej 2�m
M ( gk

T �nN),

(33)
where gk = �(kT ), while s̃(k) = stw(kT ) = s(�(kT )) is the
discrete-time warped signal and

Sn,m =
�

k

s(kT )ha ((k � nN)T )e�j 2�m
M (k�nN), (34)

with n � Z and m = �
�

M
2

�
, ..., +

�
M
2

�
, are the Gabor ex-

pansion coefficients obtained by projection over the correspond-
ing discrete-time frame. We refer to this algorithm as the Form I
computation.

The computation of time warping by means of (34) and (33)
only involves the warping of the synthesis window and of the com-
plex exponentials, which are continuous-time functions expressed
in closed form so this operation does not pose any problem. As-
suming that the warping map is invertible, if the original syn-
thesis window hs(t) has compact support in

�
�KNT

2 , +KNT
2

�
,

the shifted warped windows hs (�(t) � nNT ) also have compact
support in

�
��1

��
n � K

2

�
NT

�
, ��1

��
n +

K
2

�
NT

��
. (35)

From this it is easy to find the samples instants kT for which the
warped window sequence in (34) is nonzero. Since the numbers
gk
T in (33) are not integer, the computation of the synthesis cannot

be performed by means of the IFFT.

3.3. Time Warping by Means of Phase Vocoder: Form II

An alternate algorithm for discrete-time time warping by means
of Gabor frames, can be obtained by computing the coefficients of
the warped signal by projecting it over a frame in the form (23).
Thus, we compute the scalar products

S̃(na, mb) =
�
U�s, �(a)

n,m

�
=

�
s,U��1�(a)

n,m

�
, (36)

where the last equality is due to the fact that the warping operator
is unitary and its adjoint corresponds to unitary warping with the

inverse map ��1. Thus, (36) is equivalent to projecting the signal
over the inversely warped frame, whose elements are:

U��1�(a)
n,m(t) =

�
�̇�1(t)ha

�
��1(t) � na

�
ej2�mb(��1(t)�na).

(37)
For the synthesis one uses the dual frame

�
�(s)

n,m

�

n,m�Z
. Passing

to discrete time as in Section 3.2, we have the following algorithm
to compute (unitary) warping:

s̃(k) =

+� M
2 ��

m=�� M
2 �

�

n

S̃n,mhs ((k � nN)T )ej 2�m
M (k�nN),

(38)
where s̃(k) =

�
�̇(kT )s(�(kT )) is the discrete-time unitarily

warped signal and

S̃n,m =
�

k

dks(kT )ha (gk � nNT )e�j 2�m
M ( gk

T �nN) (39)

with n � Z and m = �
�

M
2

�
, ..., +

�
M
2

�
, are the expansion

coefficients obtained by projection over the discrete-time analogue
of (37), where dk =

�
�̇�1(kT ) and gk = ��1(kT ). We refer to

this algorithm as the Form II computation of discrete time warping.
Since the numbers gk

T in (39) are not integer, the computation of
the analysis coefficients cannot be performed by means of the FFT.

3.4. Experimental Results

In this section we provide an assessment of the quality of the algo-
rithms proposed in Sections 3.2 and 3.2 for computing discrete-
time time warping by means of generalized Gabor expansions,
namely, through Form I in (33) and (34) or through Form II in
(38) and (39). For comparison, we used the same sets of closed
form signals to evaluate the SNR as we did in the evaluation of the
sampling expansion based method in Section 2.3.

The average results for Form I are shown in Fig.5. Here again,
the SNR results did not show great variability across the warping
maps we tested in our experiments, from linear map to linear and
quadratic chirps.

The results obtained by varying the overlap factor K from 2
to 8 and for several values of the hop-size factor N from 64 to 512
are a bit erratic but most of the SNRs are above 100 dB, which are
sufficient for most audio applications. The quality of the results
generally improves with the length of the window KN . We note
that at equal window lengths but different overlap factors, e.g., on
the N = 512 curve with K = 2 and the N = 256 curve with
K = 4, we obtain similar SNRs.

In both Form I and Form II algorithm one should choose suit-
ably long windows, as these are time-warped, in the analysis algo-
rithm for Form II and in the synthesis for Form I. Thus, for a given
choice of the fixed window length, the warped versions can be-
come too short. The dilation factor of the window locally depends
on the time derivative of the map. With this into consideration,
with dilation factors smaller than 1 we obtained similar results for
Form II to those for Form I at the cost of generally larger window
lengths. Typical characteristics of the SNR for the Form II are
shown in Fig.6, where we used a linear map (4) with coefficient
� = 0.7 and c = 0. We notice that while the window length is
modulated in the analysis, the windows size remains constant in
the synthesis, thus involving an extra amount of operations, also
depending on the overlap factor.
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Figure 5: Average SNR characteristics for the Form I algorithm as
a function of the overlap parameter K, for several values of the
hop size factor N .

3.5. Computational Complexity

The computational complexity of the phase vocoder based time-
warping algorithms is generally higher than the sampling expan-
sion based algorithm. In fact, in either Form I or Form II algo-
rithms, the analysis and the synthesis cannot be both computed by
means of FFT. Thus, a matrix DFT-like form computation is nec-
essary to obtain the warped Fourier transform for each time shift of
the window. Due to the variable support of the warped windows,
this computation requires on the average an order of M2/�̄ opera-
tions in Form I and an order of �̄M2 operations in Form II, where
�̄ is the average derivative of the map (see discussion in Section
2.4) and M is the number of frequency bins. Each of these com-
putations generates N samples, where N is the hop size.

Thus, the computational complexity of Form I is proportional
to MK/�̄ operations per sample and that of the Form II to �̄MK
operations per samples, where K is the overlap factor such that
M = KN . Comparing these results with the complexity of the
windowed sinc kernel interpolation in Section 2.4, we see that
since to achieve similar SNR values, the width factor L of the ker-
nel can be chosen to be smaller than the length M of the window
in Form I and Form II, the latter are computationally less efficient.
However, in many audio applications a phase vocoder could al-
ready be part of the computational structure of the effect. In that
case, time warping can be introduced with little extra effort in or-
der to build dynamic effects.

4. TIME WARPING IN TIME STRETCHING AND PITCH
SHIFTING

Time warping stretches or compresses signals altering both their
pitch and their duration. Often, in sound processing, it is desirable
to time stretch the signal without changing the pitch or to pitch
shift the signal while preserving its original duration [16]. In the
previous parts of this paper we have been considering time warp-
ing at the input or output signal level. However, it turns out that
for time stretching, time warping in the STFT domain is the best
approach.
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Figure 6: SNR characteristics for the Form II algorithm for a lin-
ear map �(t) = 0.7 · t as a function of the overlap parameter K,
for several values of the hop size factor N .

In order to time stretch a sound signal without altering its
pitch, one wishes to scale or time-warp the envelopes of the par-
tials without altering the oscillation time. We are going to perform
a similar derivation of the stretching algorithms to the one for uni-
form STFT albeit in the warped framework. In order to have an
idea of the operations involved, first consider the STFT S(�, �)
(29) of a sinusoidal signal of frequency f with a slowly-varying
envelope a(t):

s(t) = a(t)ej2�ft. (40)
If, for any shift � , the envelope is approximately constant over the
support of the shifted analysis window ha(t � �), then we have

S(�, �) � a(�)Ha(� � f)ej2�f� , (41)

where Ha(�) is the Fourier transform of the analysis window.
Thus, for the simple signal (40), the time characteristics of the
magnitude STFT only depends on the amplitude envelope and the
time characteristics of the phase only depends on the frequency of
the sinusoid. If we time warp only the magnitude STFT, i.e., we let

S̃(�, �) = ã(�)Ha(� � f)ej2�f� where ã(�) =
�

˙�(t)a(�(�)),
and perform reconstruction via the usual synthesis form:

s̃(t) =

� +�

��
d�

� +�

��
d� S̃(�, �)hs(t � �)ej2��(t��), (42)

under the assumption that the warped envelope ã(t) is still ap-
proximately constant over the support of the shifted windows, we
obtain

s̃(t) � ã(t)ej2�ft, (43)
which is the dynamically stretched sinusoid with the original fre-
quency f .

An alternate equivalent form of (42) consists of pre-unwarping
the phase of the STFT with the inverse map ��1, then warp the re-
sult with the map � and finally perform the synthesis. Clearly, by
the unitarity of the warping operator, this is equivalent to perform-
ing inverse warping, with respect to time-shift � , on the synthesis
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windows:

s̃(t) =

� +�

��
d�

� +�

��
d� ˜̃S(�, �)h̃s(t, �)ej2��(t���1(�)) (44)

where
h̃s(t, �) =

�
�̇�1(�)hs(t � ��1(�))

and
˜̃S(�, �) = a(�)Ha(� � f)

�
�̇�1(�)ej2�f��1(�).

The latter form (44) can be recognized as a generalization of
the most common phase vocoder approach for time stretching.
There, for the synthesis we change the hop-size with respect to
the original analysis hop-size. This can be seen as a time warping
of the hop-size with a linear map.

Once obtained the dynamically time stretched version of the
signal from (42) or (44), the dynamically pitch shifted version can
be obtained simply by time warping the result with the inverse map
��1.

By superposition, if the signal partials fall in sufficiently dis-
tant frequency bins, which can be adjusted by properly choosing
the frequency resolution, our derivation easily extends to signals
made out of several enveloped sinusoids. Of course, in reality,
things get a bit more complicated than this outline. In fact, just
as in the ordinary phase vocoder, multiple sinusoidal partials can
interfere within common analysis bins and make the phase of the
STFT have a more complicated dependency on the frequencies of
the single partials. Unstable pitch due to vibrato or glissando and
transients can alter the simple result. Moreover, in practice, one
attempts to time stretch signals directly from a sampled version of
the STFT given by the phase vocoder.

Sampled counterparts of (42) and (44) can be readily defined.
The measures for robustly adapting these methods for use in time
stretching and pitch shifting will be the object of forthcoming
work.

5. CONCLUSIONS

In this paper we have considered the problem of time-warping
discrete-time signals. We compared the algorithm based on the
warped sampling expansion with two new methods, Form I and
Form II, obtained from the interaction of time warping with a
phase vocoder. While the latter require a higher number of oper-
ations, all the methods considered achieve high quality in terms
of SNR. The phase vocoder based methods have a more flexi-
ble design in terms of window length and even transformation
scheme. Their use in audio effects could be desirable when a phase
vocoder is already present in the computational structure of the ef-
fect. Moreover, in conjunction with phase vocoders, time warping
is part of the algorithms for time stretching and pitch shifting.
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ABSTRACT

In the context of efficient synthesis of wind instrument sound, we
introduce a technique for joint modeling of input impedance and
sound pressure radiation as digital filters in parallel form, with
the filter coefficients derived from experimental data. In a series
of laboratory measurements taken on an alto saxophone, the in-
put impedance and sound pressure radiation responses were ob-
tained for each fingering. In a first analysis step, we iteratively
minimize the error between the frequency response of an input
impedance measurement and that of a digital impedance model
constructed from a parallel filter structure akin to the discretiza-
tion of a modal expansion. With the modal coefficients in hand,
we propose a digital model for sound pressure radiation which
relies on the same parallel structure, thus suitable for coefficient
estimation via frequency-domain least-squares. For modeling the
transition between fingering positions, we propose a simple model
based on linear interpolation of input impedance and sound pres-
sure radiation models. For efficient sound synthesis, the common
impedance-radiation model is used to construct a joint reflectance-
radiation digital filter realized as a digital waveguide termination
that is interfaced to a reed model based on nonlinear scattering.

1. INTRODUCTION

For robust and efficient sound synthesis, many digital waveguide
models [1] of wind instruments approximate their air columns as
being cylindrical. In a typical digital waveguide model, the air
column of an ideal instrument constructed from a cylindrical pipe
and a bell can be represented by a pair of delay lines simulating
pressure wave propagation inside the pipe, and a termination that
includes two digital filters: one that lumps frequency-dependent
propagation losses and dispersion, and another one emulating the
frequency-dependent bell reflectance. In these efficient schemes,
the reed-valve end termination of the pipe is often modeled via a
nonlinear scattering element that is interfaced to the air column
model through decomposed pressure traveling waves P+ and P �,
respectively going into and reflected back from the pipe input in-
terface. Approximations with conical elements are possible [2] but
often result in inharmonic resonance structures that are difficult to
tune for sound synthesis [3].

To account for realistic, non-ideal instrument air column shapes,
one could treat the entire air column as a resonant load, observe
its linear behavior from frequency-domain experimental data, and
propose a modal expansion formulation that characterizes the air
column as a series association of second-order ordinary differential
equations nonlinearly coupled to a partial differential equation mod-
eling the behavior of the valve [4]. Using a state-space formulation,

the valve-resonator coupling used in such framework relies on im-
plicit integration schemes that may cause numerical dispersion and
require high computational cost. For sound synthesis purposes, our
digital waveguide approach is based on coupling the valve (a nonlin-
ear scattering element) to the resonator via pressure traveling waves.
Frequency-domain measurements are used to design an air column
load input impedance filter model Z(z) (i.e., an input impedance
filter) for simulation so that the pressure wave P � reflected off the
air column entrance can be obtained from the incident wave P+ via

P �(z) = R(z)P+(z), (1)

where R(z) is a digital reflectance model derived from Z(z). The
input impedance frequency response

Z(�) =
P (�)
U(�)

, (2)

where P (�) and U(�) respectively correspond to the frequency
response of the sound pressure and flow, both at the entrance of
the air column. In a previous work [5], a frequency-domain mea-
surement of an air column input impedance is used to construct a
discrete-time reflection function r[n] that is suitable for a traveling-
wave numerical scheme based on convolution. In that paper, the
authors propose a workaround method to evade time-aliasing and
other numerical problems that naturally arise from estimating r[n]
via inverse Fourier transform of a frequency-domain measurement
signal.

This work avoids the aforementioned problems by proposing
a methodology for translating an input impedance measurement
directly into a recursive digital filter Z(z) of moderately low order,
with the added advantage that efficiency is improved with respect to
discrete convolution. Moreover, we are interested in using external
sound pressure measurements to design a sound pressure radiation
filter E(z) able to model how the flow at the entrance of the air col-
umn is related to the sound pressure radiated to an external position
in the vicinity of the instrument. This paper is an extension of a re-
cent preliminary work [6] were we used the saxophone impedance
measurement of a sole fingering position to propose a methodology
for designing an impedance parallel filter, and its realization as a
reflectance. Here, after taking a full set of measurements including
input impedance and sound pressure radiation for all fingering po-
sitions, we propose a radiation model in parallel form and revise
the reflectance filter formulation to include radiation, leading to
a joint reflectance-radiation digital filter formulation with similar
properties to those of a recently introduced admittance-radiation
model for string instruments [7]. Moreover, we propose a simple
model for fingering transitions that is based on linear interpolation
of impedance and radiation digital filters. For completeness, this
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paper revisits the methodology for designing the impedance filter
already introduced in [6].

In a hemi-anechoic space, alto saxophone input impedances
were measured using a six-microphone probe calibrated with three
non-resonant loads via a least-mean square signal processing tech-
nique as described in [8]. Simultaneously, an external measurement
microphone was placed near the bell of the instrument to record
the radiated sound pressure signal. A sound pressure radiation
frequency response E(�) was defined in the frequency-domain as

E(�) =
T (�)
U(�)

, (3)

where frequency-domain functions T (�) and U(�) respectively
correspond to the radiated sound pressure signal at a point in the
external radiation domain (i.e., the signal recorded with the mi-
crophone) and the signal of the flow at the entrance of the air
column. With this in mind, we aim at constructing a radiation
modeling filter E(z) such that the (external) radiated sound pres-
sure T (z) can be obtained from the simulated scalar flow U(z) as
T (z) = E(z)U(z).

In Figure 1 we display the magnitude response of some of the
measurements, in particular for fingerings E-5 (natural E5), Bb4
(B4-flat), and C#6 (C6-sharp). In the top plots appear the impedance
transfer functions, normalized to the characteristic wave impedance
of the air column input. As the resonance amplitudes decrease with
frequency, the normalized impedance tends to a value of 0 dB, i.e.,
total transmission. In the bottom plots appear the corresponding
radiation transfer functions, where it is possible to observe a shared
modal structure with the impedance. This observation motivates the
pursuit of a joint formulation for impedance and radiation modeling,
and that constitutes the main focus of this work.

The outline is as follows. In Sections 2 and 3 we re-introduce
our input impedance model and its optimization-based design tech-
nique as it was first described in [6], with slight nomenclature
changes that will help in following the rest of the paper. Then, we
follow in Section 4 by introducing the sound pressure radiation
model. Section 5 provides details on how to jointly realize the input
impedance and external radiation models as a common parallel
filter in the form of a digital waveguide reflectance. In 6 we present
a simple model for emulating the transition between two fingering
positions. In Section 7 we briefly describe how to couple the filter
to a valve model for efficiently obtaining sound. We conclude in
Section 8 by pointing to future experiments and extensions.

2. INPUT IMPEDANCE MODELING

From observation of the resonance structure exhibited by the input
impedance and sound radiation measurements, we propose a digital
filter formulation akin to the discretization of a modal expansion.
Thus, instead of relying on a digital waveguide representation of
the air column, we use a different modal structure for each of the
F fingering positions analyzed. For each f -th fingering case, we
construct an input impedance parallel model Z|f (z) by creating a
basis of M |f parallel sections each corresponding to a mode, and
use the basis over which to project impedance measurements. In
the f -th input impedance model, each m-th modal basis parallel
section H|f,m(z) is defined as

H|f,m(z) =
1 � z�1

(1 � p|f,mz�1)(1 � p̄|f,mz�1)
, (4)

which corresponds to a one-zero, two-pole resonator with the zero
locked at DC. The resonator is defined by a pair of complex con-
jugate poles p|f,m and p̄|f,m, which we relate to the correspond-
ing modal frequency �|f,m and bandwidth �|f,m (both expressed
in Hz) by 2��|f,mTs = �p|f,m and �|f,m = � log(|p|f,m|)/�,
with Ts being the sampling period. The impedance model Z|f,m(z)
is then formulated in parallel as

Z|f (z) =

M|f�

m=1

(b0|f,m + b1|f,mz�1)H|f,m(z), (5)

where b0|f,m and b1|f,m are real-valued coefficients that allow con-
trol of both the amplitude and the phase of the the m-th resonator.
The main reason behind the choice for our parallel resonator struc-
ture is that, while enabling the control of the relative phase between
resonators, it imposes a gain of zero at DC irrespective of the co-
efficients b0|f,m and b1|f,m. Next we introduce an optimization
technique to find the pole positions and numerator coefficients of
model (5) given an impedance measurement. For simplicity, in
Section 3 we omit the use of the sub-index f for indicating the
fingering case, as the methodology presented therein applies to all
F fingering cases.

3. INPUT IMPEDANCE FILTER DESIGN

Departing from a target input impedance measurement Ẑ, the prob-
lem of designing the coefficients of the impedance filter model of
M digital resonators which approximates the measurement can
be stated as the minimization of an error measurement �(Z, Ẑ)
between the measurement and the model, with parameters being a
vector

p = {p|1, · · · , p|m, · · · , p|M} (6)

of complex poles each corresponding to the m-th resonator of the
model, and vectors

b0 = {b0|1, · · · , b0|m, · · · , b0|M} (7)

b1 = {b1|1, · · · , b1|m, · · · , b1|M} (8)

of respective numerator coefficients. We solve this problem via
sequential quadratic programming [9]. At each iteration only pole
positions are exposed as the variables to optimize: once they are
decided, zeros (i.e., numerator coefficients) are constrained to min-
imize an auxiliary quadratic cost function, resulting in a simple
closed-form solution. The positions of the poles are optimized iter-
atively: at each step, an error function is successively evaluated by
projecting the target frequency response over a basis of frequency
responses defined by the pole positions under test. We add a set of
linear constraints to guarantee feasibility and to ease convergence.
This routine is extended from the filter design technique of [10] as
used in [7] to model string instrument input admittances.

3.1. Impedance measurement pre-processing

As it can be observed in the grey curves of Figure 2, the high-
frequency region of an impedance measurement typically presents
artifacts caused by noise and limitations of the measurement method.
It is important to remove those artifacts so that the target normalized
impedance effectively tends to 1 as frequency increases. This is
needed to help the fitting process in providing an impedance model
design for which the normalized impedance also tends to 1 in the
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Figure 1: Magnitude response of impedance (top) and radiation (bottom) measurements for different fingering positions in an alto saxophone.

high frequency region; otherwise, a derived air column reflectance
filter would deliver reflected pressure waves with significant energy
around Nyquist, and therefore cause undesired behaviors in the
reed-valve nonlinear scattering model. To this end, we perform
cross-fading between the normalized impedance measurement and
a constant value of one, as illustrated in Figure 2.

3.2. Optimization problem setup

We initialize the model parameters via finding a set of initial pole
positions by attending to the magnitude response of the impedance
measurement. First, resonance peak selection in the low-frequency
region is carried out through an automatic procedure that iteratively
rates and sorts spectral peaks by attending to a salience descriptor.
For estimating modal frequencies, three magnitude samples (re-
spectively corresponding to the maximum and its adjacent samples)
are used to perform parabolic interpolation around selected peaks.
For estimating bandwidths, the half-power rule [1] is applied using
a linear approximation. For the high-frequency region we spread an
additional set of poles, uniformly distributed on a logarithmic fre-
quency axis. This leads to a total M modes, each parameterized by
a complex pole pair in terms of its angle parameter w|m = |�p|m|
and its radius parameter s|m = � log(1 � |p|m|). This leads to
two parameter sets: a set w = {w|1 · · · w|m · · · w|M} of angle
parameter values, and a set s = {s|1 · · · s|m · · · s|M} of radius pa-
rameter values. With the new parametrization, we state the problem
as

minimize
w,s

�(Z, Ẑ)

subject to C,
(9)

where C is a set of linear constraints, and numerator coefficients
have been left out as they are not exposed as variables in the op-
timization. A key step before constraint definition is to sort the
pole parameter sets so that linear constraints can be defined in a
straightforward manner to ensure that the arrangement of poles
in the unit disk is preserved during optimization, therefore reduc-
ing the number of crossings over local minima. Elements in sets
w and s are jointly sorted as pairs (each pair corresponding to a
complex-conjugate pole) by ascending angle parameter w|m.

From ordered sets w and s, linear constraints C are defined as
follows. First, feasibility is ensured by 0 � s|m and 0 � w|m � �.
Second, to aid convergence we constrain the pole sequence order
in set w to be respected. This is expressed by w|m�1 < w|m <
w|m+1. Moreover, assuming that initialization provides an already
trusted first solution, we can bound the search to a region around
the initial pole positions. This can be expressed via the additional
inequalities w|�m < w|m < w|+m and s|�m < s|m < s|+m, where
’�’ and ’+’ superscripts are used to respectively indicate lower and
upper bounds.

3.3. Error estimation

At each i-th step of the optimization, the error �(Z, Ẑ) is estimated
as follows. Given K samples of the target impedance frequency
response Ẑ(�) and the set p of M complex poles defining the
modes at the i-th step, numerator coefficient vectors b0 and b1 can
be obtained via least-squares by

minimize
b

�Hb � ẑ�2, (10)
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Figure 2: Magnitude response of an alto saxophone impedance
measurement (Bb3 fingering), normalized by the characteristic
impedance of the input of the air column. Thin and thick curves
are respectively used for raw and pre-processed data. Top: full
band, with cross-fading region delimited by vertical lines. Bottom:
cross-fading region.

where b = [bT
0 bT

1 ]T is a real-valued vector; ẑ contains K
frequency-domain samples of the impedance measurement Z(�) at
frequencies 0 � �k < �, i.e., ẑk = Ẑ(�k); and H is a K � 2M
matrix of basis vectors constructed as

H = [h0|1 · · · h0|m · · · h0|M h1|1 · · · h1|m · · · h1|M ] (11)

with column vectors h0|m and h1|m containing the sampled fre-
quency responses of H|m(z) and z�1H|m(z) respectively. With
numerator coefficients, we evaluate the frequency response of the
model and compute the error measure as the l2-norm of the differ-
ence vector, i.e., �(Z, Ẑ) = �Hb � ẑ�2.

3.4. Final solution

Once poles have been optimized, numerator coefficients of model
(5) are found by solving again problem (10). In Figure 3 we display
the magnitude and phase responses (top and middle plots) of three
example impedance models, respectively obtained from normalized
impedance measurements after pre-processing. Although in prin-
ciple the model (5) is not guaranteed to be positive-real, fitting to
measurements of positive-real functions generally provides positive-
real designs, as it can be observed from the phase responses. This
is important for the stability of the sound synthesis model, as the
impedance is going to be realized as a reflectance filter.

4. SOUND PRESSURE RADIATION FILTER

Given the shared modal structure observed in the input impedance
and radiation measurements of each fingering, we opt for a radiation
model that shares the parallel resonator structure of the impedance
model Z|f (z). We define the sound pressure radiation filter E|f (z)

of the f -th fingering position as

E|f (z) =

M|f�

m=1

(d0|f,m + d1|f,mz�1)H|f,m(z), (12)

where the M |f modal basis parallel sections H|f,m(z) are shared
with the impedance model (see (4) and (5)), and d0|f,m and d1|f,m

are real-valued coefficients.
Once the pole positions that define all H|f,m(z) resonators

have been found through optimization of the input impedance model
Z|f (z) (see Section 3), numerator coefficients of E|f (z) are esti-
mated by least-squares. First, in a pre-processing step, all radiation
transfer functions are converted to minimum-phase using the real
cepstrum [1]. Then, in an analogous manner as for the numerator
coefficients of the input impedance model, d0|f,m and d1|f,m are
arranged into vectors d0|f and d1|f as in (7), (8) and found by
solving

minimize
d|f

�H|fd|f � ê|f�2, (13)

where d|f = [d0|Tf d1|Tf ]T is a real-valued column vector; ê|f
contains K frequency-domain samples of the radiation measure-
ment E|f (�) at frequencies 0 � �k < �, i.e., êk|f = Ê|f (�k);
and H|f is the K � 2M matrix of basis vectors in (11) that was
used for solving the impedance projection problem (13) correspond-
ing to the f -th fingering case. In Figure 3 we display the magnitude
responses (bottom plots) of three example radiation models, along
with their corresponding impedance models, overlayed on the mea-
surements. A similar quality of approximation was also observed
in all other fingering positions.

5. JOINT REALIZATION AS A WAVEGUIDE
TERMINATION

From the input impedance model (5), we construct a reflectance
that keeps the state of the air column as a resonating element,
and allows us to obtain reflected waves from its interface. The
formulation that we propose involves the computation of the flow
as an intermediate step, therefore allowing us to obtain the external
radiated sound pressure as T (z) = E(z)U(z) via model (12).
Since both the impedance model and the sound pressure radiation
model are constructed so that they share the exact same set of
parallel resonators, obtaining the radiated sound comes at a very
low additional cost. Thus, via a single set of M |f resonators
corresponding to the f -th fingering position, we are able to model
pressure wave reflectance, radiated sound pressure, and (implicitly)
energy loss from input transmittance to non-radiating modes and
dissipation.

5.1. Reflectance realization

Following the digital waveguide formulation for loaded parallel
junctions [1], we can compute the scalar flow U(z) at the input of
the air column solely from the input pressure wave P+(z) as

U(z) =
2YcP

+(z)
1 + YcZ|f (z)

(14)

where Yc is the characteristic admittance of the input of the air
column, and Z|f (z) is the input impedance model corresponding
to the f -th fingering position. From the flow U(z), it should be
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straightforward to compute the scalar pressure P (z) at the input of
the air column via

P (z) = Z|f (z)U(z). (15)

Finally, from the air column pressure P (z) it is possible to obtain
the (reflected) outgoing pressure wave P �(z) by means of

P �(z) = P (z) � P+(z). (16)

Because the formulation of the model (5) presents a parallel
structure that we want to maintain, inverting Z|f (z) as it appears in
equation (14) is impractical. To overcome this problem in the real-
ization of the reflectance, we reformulate the impedance in a similar
manner as we did for the input admittance of string instruments [7]
(inspired by [11]). First, we rewrite each resonator H|f,m(z) of
equation (5) as

H|f,m(z) = 1 + z�1Hp|f,m(z), (17)

with

Hp|f,m(z) =
c0|f,m + c1|f,mz�1

1 + a1|f,mz�1 + a2|f,mz�2
, (18)

c0|f,m = �1 � a1|f,m, and c1|f,m = �a2|f,m. Note that de-
nominator coefficients are related to pole radius and angle by
a1|f,m = �2|p|f,m| cos(�p|f,m) and a2|f,m = |p|f,m|2. We
now can rewrite the impedance model as

Z|f (z) = B0|f +z�1B1|f +z�1H0|f (z)+z�2H1|f (z), (19)

with

B0|f =

M|f�

m=1

b0|f,m, B1|f =

M|f�

m=1

b1|f,m, (20)

H0|f (z) =

M|f�

m=1

b0|f,mHp|f,m(z), (21)

H1|f (z) =

M|f�

m=1

b1|f,mHp|f,m(z). (22)

With this new formulation, we rewrite (14) and (15) as

U(z) =
2YcP

+(z) � z�1YcV |f (z)U(z)
1 + YcB0|f

(23)

and
P (z) = B0|fU(z) + z�1V |f (z)U(z), (24)

where

V |f (z) = B1|f + H0|f (z) + z�1H1|f (z). (25)

It is important to notice that now the parallel structure appears in the
numerator terms H0|f (z) and H1|f (z) as part of V |f (z), making
possible its implementation. Moreover, H0|f (z) and H1|f (z) can
be jointly implemented as a sole bank of parallel resonators. Finally,
it is worth mentioning that the term z�1V |f (z)U(z) appears in
both equations (23) and (24) but does not need to be implemented
twice–once it has been computed to obtain U(z) via equation (23),
it can be reused to compute P (z) via equation (24).
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5.2. External radiation realization

For the realization of the external radiation model, we take advan-
tage of the fact that the flow U(z) is available as an intermediate
step in the computation of the reflected pressure vave P �(z). Us-
ing the decomposition described in (21) for each of the common
resonators H|f,m(z), we rewrite the f -th radiation model E|f (z)
in (12) as

E|f (z) = D0|f + z�1D1|f + z�1L0|f (z)+ z�2L1|f (z), (26)

with

D0|f =

M|f�

m=1

e0|f,m, D1|f =

M|f�

m=1

e1|f,m, (27)

L0|f (z) =

M|f�

m=1

e0|f,mHp|f,m(z), (28)

L1|f (z) =

M|f�

m=1

e1|f,mHp|f,m(z). (29)

With this, the radiated sound pressure signal T (z) is computed as

T (z) =
�
D0|f + z�1D1|f + z�1L0|f (z) + z�2L1|f (z)

�
U(z).

(30)
Please note that all four terms H0|f (z), H1|f (z), L0|f (z), L1|f (z)
share inputs and parallel structure: each resonator Hp|f,m(z) is
present in all four expressions (21), (22), (28), (29) and driven by
the flow signal U(z). Therfore, only one bank of M |f resonators
needs to be implemented for the joint realization of the f -th finger-
ing reflectance and external radiation models.

6. MODEL MIXING FOR FINGERING TRANSITIONS

So far, we have treated the impedance and radiation models of
each f -th fingering as two parallel structures sharing a bank of
resonators. Then we have derived a joint reflectance-radiation filter
that simultaneously implements both models and can be interfaced
to a reed model as a loaded waveguide termination. Such f -th ter-
mination filter replicates the behavior of the air column as observed
during the f -th measurement. This means that for each fingering
position we have a different termination filter, and in the context of
sound synthesis this creates a fundamental problem: how to swap
filters when a fingering transition happens? To avoid such an abrupt,
non-physical operation we propose to reformulate our air column
model as follows.

We define a sole impedance model Z(z) that accounts for all
F fingerings simultaneously, via a linear combination of all F
single-fingering impedance models. This is expressed as

Z(z) =
F�

f=1

w|fZ|f (z), (31)

where w|f are mixing weights. Assuming that all F models
Z|f (z) are positive-real, we guarantee that the multi-fingering input
impedance model Z(z) will be positive-real if all mixing weights
are non-negative. With this, Z(z) will lead to a passive termination
irrespective of the weights applied in the linear combination. Thus,
since fingering transitions are expected to happen at a sufficiently
slow speed so that during each simulation step the whole system
can be assumed to be quasi-static, a simple time-varying linear

mixing of any two impedance models can be used for a smooth,
stable transition between fingerings.

For the external radiation model we apply the same idea, lead-
ing to a sole radiation model

E(z) =
F�

f=1

w|fE|f (z), (32)

where w|f match those used for impedance mixing. Now it is
straightforward to rewrite the expressions for the joint reflectance-
radiation realization. First, the impedance model is written as

Z(z) = B0 + z�1B1 + z�1H0(z) + z�2H1(z), (33)

where each of the terms is simply a linear combination of each of
single-fingering terms in (20) through (22), leading to

B0 =
F�

f=1

w|fB0|f , B1 =
F�

f=1

w|fB1|f , (34)

H0(z) =
F�

f=1

w|fH0|f (z), (35)

H1(z) =
F�

f=1

w|fH1|f (z). (36)

With this, we also rewrite (23) and (24) as

U(z) =
2YcP

+(z) � z�1YcV (z)U(z)
1 + YcB0

(37)

and
P (z) = B0U(z) + z�1V (z)U(z), (38)

where
V (z) = B1 + H0(z) + z�1H1(z). (39)

An analogous transformation is applied to the radiation part of the
model, leading to

E(z) = D0 + z�1D1 + z�1L0(z) + z�2L1(z), (40)

where

D0 =
F�

f=1

w|fD0|f , D1 =
F�

f=1

w|fD1|f , (41)

L0(z) =
F�

f=1

w|fL0|f (z), (42)

L1(z) =
F�

f=1

w|fL1|f (z), (43)

and the radiated sound pressure is again computed via

T (z) =
�
D0 + z�1D1 + z�1L0(z) + z�2L1(z)

�
U(z). (44)

In Figure 4 we display the input impedance magnitude, input
impedance phase, and external radiation magnitude response of
the model during a transition from E-5 to Bb4. It is worth noting
that, although the complete model will in principle be constructed
from all F resonators banks, its run-time operation logic can be
implemented as follows: when no transition is happening, one bank
of resonators is active; during a transition, two resonator banks are
active.

DAFX-6

DAFx-162
DAFx-162



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

103 104

Frequency (Hz)

-200

-150

-100

-50

0

|Z
/Z

c|
(d
B
)

Impedance magnitude E-5 to Bb4

103 104

Frequency (Hz)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

̸
Z
/Z

c
(r
ad

)

Impedance phase E-5 to Bb4

103 104

Frequency (Hz)

-150

-100

-50

0

|E
|(
d
B
)

Radiation magnitude E-5 to Bb4

E-5
E-5 E-5

Bb4
Bb4

Bb4

Figure 4: Impedance and radiation model responses during a fingering transition, from E-5 to Bb4 positions. A linear mixing of 5 steps is
performed from the corresponding impedance and radiation models, with M = 32 parallel sections each. Thick lines are used to depict the
original E-5 (top) and Bb4 (bottom) models, and thin lines are used for the intermediate models. For clarity, impedance magnitude responses,
impedance phase responses, and radiation magnitude responses were respectively offset by -30 dB, � radians, and -20 dB per step.

7. DIGITAL WAVEGUIDE SOUND SYNTHESIS

We construct an efficient sound synthesis scheme by interfacing
our joint reflectance-radiation model and a modified version of the
digital waveguide reed scattering model used in [12] as follows.
At each iteration, two main computations are interleaved: the reed
scattering update and the air column reflectance update. During the
reed scattering update, the differential pressure driving both the reed
motion and the reed channel flow relation (see [12]) is first com-
puted as the difference between the mouth pressure and the value of
the scalar air column pressure obtained in the previous reflectance
update (see Section 5.1). Then, the pressure wave obtained from
the reed scattering is used to feed the next reflectance update. For
an average of 32 resonators per fingering, a sampling frequency of
48 kHz, and fingering transitions sparsely happening for about 10%
of the simulated time, this model runs at a speed above 30 times
faster than real-time in one core of a laptop computer.

In Figure 5 we display the control signals (mouth pressure,
fingering weights) and radiated sound of a synthesis example in-
volving two fingering transitions: Bb4 to E-5 and E-5 to A-4,
respectively happening at around 1.4 and 2.0 seconds. The first
of these transitions involves nominal regimes in both fingerings,
while for the second case the high mouth pressure drives the system
into its higher octave regime after the transition. With respect to
the transition happening at around 0.6 seconds, it does not involve
any fingering change but is caused by the system falling from its
higher-octave regime to its nominal regime. In Figure 6 we display
the reed channel flow (see [12]), the air column input pressure, and
the radiated sound during the Bb4 to E-5 transition of the example

in Figure 5. The synthetic radiated sound corresponding to this
example can be heard online1.

8. OUTLOOK

Albeit still exploratory and in need of a thorough calibration via
automated playability analysis, our results open a promising route
for efficient, yet realistic sound synthesis of wind instrument sound
with potential applications both in rendering music and in analyzing
the timbre and playability of real air column prototypes. Besides
the application of this method to modeling other wind instrument
air columns, a clear next stage of development involves the use of
more sophisticated reed representations, and also the exploration
of lip-driven excitation models. Perhaps through subjective tests, it
is still necessary to investigate the effects of using more (or less)
resonators per fingering, and also different fingering weight profiles.
Perhaps through measurements, we could elucidate how well the
cross-fading of models during fingering transitions simulates the
actual case. Another of the extensions that we are considering
involves coupling this model to a vocal tract model also realized as
a reflectance that is interfaced to the valve model.
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ABSTRACT

This paper is a continuation of our first studies on AM/FM digital
audio effects, where the AM/FM decomposition equations were
reviewed and some exploratory examples of effects were intro-
duced. In the current paper we present more insight on the signals
obtained with the AM/FM decomposition, intending to illustrate
manipulations in the AM/FM domain that can be applied as in-
teresting audio effects. We provide high-quality AM/FM effects
and their implementations, alongside a brief objective evaluation.
Audio samples and codes for real-time operation are also supplied.

1. INTRODUCTION

In previous papers [1] [2] we presented our first studies on AM/FM
Digital Audio Effects. The AM/FM decomposition enables an
analysis-processing-resynthesis approach to work with audio sig-
nals. Effects can be implemented by manipulating signals obtained
with a decomposition scheme that unravels the original audio time-
based representation to an analogous representation based on a pair
of new time-based signals with complementary information.

The AM/FM decomposition was firstly adopted in musical
processing for synthesis purposes [3], where similarities with the
FM synthesis [4] where drawn. More recently, a lot of research
was devoted to AM/FM for speech analysis, in the area of works
known as Modulation Filtering [5] [6] [7]. Back to the context
of music signal processing, in the Modulation Vocoder series of
works [8] [9] [10] the decomposition was adopted in order to ex-
plore applications like audio codification (compression), control of
roughness of audio signals, and pitch transposition. AM/FM de-
composition was also used as an extension of sinusoidal modelling
for audio analysis/synthesis purposes [11].

In [1] the impact of smoothing in the AM/FM domain was as-
sessed considering different configurations of smoothers and dif-
ferent psychoacoustics metrics. Then, in [2] we investigated ef-
fects based on manipulating the AM/FM domain signals with well-
known time-domain manipulations of well established effects like
octaver, chorus, wah-wah, etc. In the present paper, Section 2 will
briefly review the AM/FM Hilbert-based decomposition with an
intuitive explanation about the technique, so that manipulations in
the AM/FM domain can lead to the design of interesting audio ef-
fects. In Section 3 AM/FM effects will be presented alongside au-

dio examples that are available for downloading1, where the reader
will be able to assess the quality of the effects obtained from this
study. In Section 4 a brief evaluation of the effects, based on com-
parisons using audio descriptors, will be presented. Finally, we
conclude and point our current and future work. Audio files will
be referenced in the paper with the symbol [�filename].

2. AM/FM DECOMPOSITION

2.1. Envelope and instantaneous frequency

The idea behind the AM/FM decomposition is to understand the
input signal as a single sinusoidal tone modulated both in ampli-
tude (AM) and frequency (FM). Given an input signal x(t), we
want to find a pair of functions (a(t), f(t)) such that

x(t) = a(t) cos

�� t

0

f(�)d�

�
. (1)

The amplitude modulator signal a(t) is estimated with the decom-
position as an envelope of the input signal, and the frequency mod-
ulator signal f(t) is estimated as the instantaneous frequency (IF)
of the input signal. In order to apply audio effects we might pro-
cess a(t) or f(t) and consider the altered versions aFX(t) and
fFX(t) in a resynthesis process

xFX(t) = aFX(t) cos

�� t

0

fFX(�)d�

�
. (2)

Notice that the argument for the cosine in Eq. 1 is the instanta-
neous phase, which is the integral of the instantaneous frequency.
This is tied to the concept of a phasor (Figure 1), in which the
phase (current angle) is given by increments from an initial posi-
tion (initial angle) in the unit circle.

The increments in the phase are represented by the integral
in Eq. 1. If a(t) and f(t) are constant, we will have equal steps
around the circle (unit circle if a(t) = 1, �t), and thus a sinusoid
will be obtained with the projection of the phasor onto the x axis
(as in Fig. 1). However, if a(t) or f(t) vary, a different kind of
signal will be obtained. This leads us to a useful interpretation for
the IF, understanding this value as the frequency of a sinusoid that
locally (at each time instant t) fits the original signal x(t) [12].

1https://www.ime.usp.br/~ag/dl/dafx18.zip
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Figure 1: A regular phasor.

It is interesting to notice the local aspect of the instantaneous
frequency, estimated from an infinitesimal neighborhood of each
sample, as opposed to frequencies of sinusoidal components present
in the signal spectrum, which have a global scope (the analysis
window). It should be noted that the IF might even not be present
in the spectrum of a signal, and is sometimes higher than the high-
est component present in a signal [13]. While additive synthe-
sis [14] would provide a classic example of how to think globally
about a signal, there are many situations where a local/instantaneous
model of the signal is more appropriate, e.g. in the operation of
adaptive devices such as limiters, which measure/change signal
values constantly within a feedback loop (lacking knowledge of
the whole process) [15]. In order to grasp a good intuition for
developing AM/FM effects, this local information is the main con-
cern of this study.

2.2. Ambiguity in the decomposition

Different techniques are available for obtaining an AM/FM de-
composition, and as we are unraveling a single signal to a combi-
nation of two other signals, an inherent ambiguity permeates this
decomposition. Given an input signal x(t) we can find both

x(t) = a(t) cos (�(t)) (3)

and
x(t) = b(t) cos (�(t)) (4)

in such a way that b(t) �= a(t) and �(t) �= �(t) [13]. Actually we
might think of two extreme (and undesirable) cases for the decom-
position:

• a(t) = x(t), �t; and
�(t) = 0 � cos (�(t)) = 1, �t;
in this case all the information is coded in the AM portion.
The resynthesis would be represented by a pure amplitude
modulation, as the cosine value would be constant;

• a(t) = 1, �t; and
�(t) = cos�1 (x(t)), �t;
in this case the information would go to the FM portion of
the decomposition. The resynthesis would be a pure fre-
quency modulation, as the envelope would be constant.

In the development of audio effects we are not really interested in
these extreme cases, for in such cases we could work directly on
the original time-domain signal. What we usually want is a de-
composition that allocates non-trivial information both to the AM
and FM portions, so we can develop processing routines that will
bring interesting modifications to the dry signal after resynthesis.

2.3. Implementation

In our work we focused on the analytic signal based decomposi-
tion, although other techniques, for instance based on energy sep-
aration [16] [17] [18] are also available. The analytic signal is a
complex signal without any negative frequency components [19].
Given a real signal, its analytic counterpart shows a similar spec-
trum considering the positive frequencies, but a null contribution
from the negative frequencies. For instance, a regular sinusoidal
signal cos (�0t) contains two components in its spectrum, local-
ized at +�0 and ��0 [20]:

cos (�0t) =
1
2

�
ei!0t + e�i!0t

�
. (5)

Notice that if we consider only the positive component we get
the regular phasor represented in Fig. 1 as the analytic signal for
cos (�0t).

Now, by eliminating the negative components of any real sig-
nal x(t) we get its analytic signal z(t) as

z(t) =
1
2�

� +1

0

X(�)ei!td�, (6)

where X(�) is the Fourier Transform of x(t) [20]. Eq. 6 can be
thought as a superposition of an infinite number of phasors, each of
them spinning with its own frequency � and radius X(�). Figure 2
represents this view, considering three phasors; the projection onto
the x axis gives the original signal x(t).

Figure 2: Superposition of three phasors with different frequencies
and radii.

Considering this negative frequency components elimination
perspective, one of the possibilities to obtain the analytic signal is
via the Fourier Transform: we can transform the real signal x(t),
attribute zero to the negative portion of the spectrum, then apply
the inverse transform to obtain z(t) [21]. Another possibility is
by applying the Hilbert Transform to x(t), which gives x̂(t), a
quadrature version of x(t), where all the components are shifted
by 90� [22]. We then can build the analytic signal as

z(t) = x(t) + ix̂(t), (7)

where i =
�

�1.
The AM/FM decomposition is a matter of finding the envelope

and the instantaneous frequency of the analytic signal. Notice that
z(t) can be written as

z(t) = x(t) + ix̂(t) = a(t)ei�(t), (8)
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where the envelope is given by

a(t) =
�

x2(t) + x̂2(t) = |z(t)|, (9)

the instantaneous phase is given by

�(t) = arctan

�
x̂(t)
x(t)

�
, (10)

and by differentiating this quantity we obtain the IF

f(t) = �̇(t) =
x(t) ˙̂x(t) � ẋ(t)x̂(t)

x2(t) + x̂2(t)
. (11)

Eq. 8 helps us visualize the relation between the concepts of
analytic signal, envelope and instantaneous phase and frequency.
In the case of a sinusoidal x(t) we will have z(t) as a simple har-
monic motion, with constant radius and frequency, so the incre-
ments in the angle are always the same. However, for a more gen-
eral x(t), z(t) will exhibit unequal increments, i.e., in each sample
the angle covered around the circle will not be the same; likewise,
the radius will not be constant, so we will have a movement that
alternates between shrinking and expanding spirals. Notice that
the projection of this movement onto the x axis generates x(t).

3. NEW AM/FM DAFX

In order to apply AM/FM effects we must modify a(t) and/or f(t)
and then proceed to a resynthesis process. For the modifications
we will be dealing with filters, compressors/expanders, and mod-
ulators. As these modifications depend on the choice of values for
parameters like thresholds, cut-off frequencies, etc., it is important
to have an idea about the ranges involved in the original signal.
The values will then be chosen according to musical intentions.

In this paper our examples will be focused on a short gui-
tar phrase consisting of a bend and a vibrato2. Its varying fun-
damental frequency represents an important test for the AM/FM
decomposition. The waveform in shown in Fig. 3; the envelope
and instantaneous frequency signals estimated with the method de-
scribed in Section 2 are shown in Figures 4 and 5, respectively.
Notice that extreme values for the IF are typically associated with
the occurrence of very small values in the envelope (the denomina-
tor in Eq. 11 is essentially the envelope squared). Figure 6 shows a
zoomed view of the IF, up to the value of 1200 Hz, showing that for
the length of the signal the IF shows a trend going from (around)
700 Hz to (around) 500 Hz, contaminated with spikes at instants
where the envelope values fade out.

The audio file [�resynth-hilb] was created with an AM/FM
analysis-resynthesis process, i.e., no manipulations on the enve-
lope and instantaneous frequency were applied. Notice that the
analysis is transparent, i.e., the reconstructed signal is identical to
the original audio file ([�bend-vibrato]).

3.1. Effects based on filtering

By filtering signals, we are choosing which components will re-
main unaltered and which will be amplified or attenuated to some
extent [23]. For instance, by not allowing high frequencies in the
signal we will prevent fast variations to occur, but slow fluctuations
remain unaltered.

2In the audio files provided, other examples with different musical in-
struments and phrases are also available.

Figure 3: Waveform of guitar phrase.

Figure 4: Envelope of guitar phrase.

Figure 5: Instantaneous frequency of guitar phrase.
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Figure 6: Instantaneous frequency of guitar phrase (zoom).

However, modifications in the IF of signals generally have a
different meaning. If we, for instance, low-pass filter an IF sig-
nal, we will prevent sharp transitions occurring in the IF signal.
This will result in a muffled sound, with less articulation, as the
IF signal will only keep its slow variations. Thus, in the resynthe-
sis, the phasor will have its increments constrained. We can check
this effect by comparing the audio files [�lowp-if-1000] (cut-off
frequency set at 1 KHz) and [�lowp-if-500] (cut-off at 500 Hz)
with the dry signal [�resynth-hilb]. Fig. 6 shows that the IF val-
ues lie around 600 Hz, so the cut-off at 1 KHz will not cause a
huge impact, but at 500 Hz it will3.

Notice that the range of variations in the IF signal is not the
matter here, but the frequency with which they occur. Large varia-
tions will still exist, but will happen slowly over time. An interest-
ing effect can be achieved by setting the cut-off at extreme values,
e.g. 1 Hz. The file [�lowp-if-1] will reveal a chirp, because the
sweeping through the IF signal will happen with a limited speed.

By low-pass filtering the envelope component, a different kind
of effect is achieved. High frequencies in dynamics are related
to percussive sounds, which brings the sensation of the onset of
a sound. So, by limiting the envelope only to low frequencies,
sounds with a smooth onset, resembling a bowed violin, are ob-
tained, as in the file [�env-lowpf-10] (Butterworth low-pass filter
with cut-off frequency at 10 Hz, applied to the envelope).

3.2. Effects based on dynamics processing

Instead of acting on the range of frequencies present in a signal,
the manipulation of the dynamics of the envelope and IF signals
imparts a selection of the actual values that we allow for these sig-
nals. For instance, if we use a limiter to prevent values for the IF
higher than an specific threshold, we will prevent, in the resynthe-
sis, angle increments higher than this threshold. In such a way, we
can condition the excursion of the signals within a desired range.

Depending on the configurations, similar results can be ob-
tained by using distortion, limiting, or compression [23]. These
effects are all used to attenuate large values (higher than a thresh-
old) in the input signal, differing only in the way they operate.

3Check also the audio examples considering different instruments (they
come in separate folders and are named using the same convention).

Dynamics processing of the envelope or the audio signal itself
will have similar results, but working on the IF signal brings inter-
esting musical applications. For instance, as we know (Fig. 6) our
IF values lie around 600 Hz, so applying a distortion with a thresh-
old at 400 Hz ([�if-ortion-400]) will result in a sound similar to
the one obtained by changing the IF value to a constant equal to
400 Hz ([�fix-if-400]). This will lead, in this example, to a per-
ception of a drone note between a G4 and a G�4.

3.3. Effects based on modulation

Another family of effects that we will describe is based on altering
the value of the IF signal with a LFO (Low Frequency Oscillator)
approach. We can both ring modulate the IF, i.e. directly multiply
it with a modulator, or apply classic amplitude modulation instead,
where the modulation will occur around the IF signal (an offset is
added to the modulator signal) [23].

The former case represents the possibility for a very aggressive
effect. As we saw in the previous sections, acting on the IF will
probably result in pitch modifications. Therefore, a direct mul-
tiplication of the IF will result in aggressive transposition in the
resynthesised signal.

A slow setting for the modulation frequency will result in a
perception of glissandos ([�gliss-if] 4), while a higher modulation
frequency will bring a very unstable kind of pitch variation, since
the rapid excursion will sweep a range from the deep lows to the
top highs ([�aggress-if] 5).

In the context of a classic amplitude modulation applied to the
instantaneous frequency signal, different types of effects might be
achieved depending on the modulator signal configuration. A deep
modulation will tend to produce aggressive effects as well, but a
more gentle variation might be interesting to create a detuning ef-
fect ([�d-if-tune] 6) or a vibrato ([�v-if-brato] 7).

4. EVALUATION

In addition to the intuition established with the theory and audi-
tion of the audio samples, an objective evaluation based on audio
descriptors helps in the development and refinement of the effects.

Audio descriptors are quantities extracted directly from the au-
dio signal, and might be related to models (e.g. psychoacoustic
models) or to mathematical manipulations in order to derive some
alternative perspective on the signal [24]. We will analyse two
descriptors:

• Spectral centroid: indicates the position for the “center of
mass” of a signal spectrum, the point that divides the spec-
trum in two balanced portions [25]. This quantity is strongly
related to the brightness of a sound;

• RMS (root mean square): indicates the power, given by the
averaged sum of the squared values of the signal [24], being
therefore related to the perception of intensity.

The spectral centroid and RMS descriptors were extracted for
both the dry signal (the audio with no effect applied) and the wet
signals (the resynthesized signals) and compared. The Essentia [26]
library was used via its Python API. All the audio samples were
generated with Csound [27] [28].

4Glissando effect implemented via IF processing.
5Aggressive pitch modulation implemented via IF manipulation.
6Detuning effect implement via IF processing.
7Vibrato effect implemented via IF processing.
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Despite the fact that low-pass filtering of the IF would not af-
fect the range of values the IF signal, but only how fast variations
can occur, Figure 7 shows that the operation lowered the spectral
centroid, as a direct low-pass filtering of the original signal would
do. The RMS (Figure 8) is not affected by such an operation; it is
actually more influenced by manipulations on the envelope.

Figures 9 and 10 show the influence in the spectral centroid
when the IF signal is fixed at a constant value. Knowing that the
IF signal in our guitar signal example varies around 600 Hz, a
2 KHz fixed IF results in a higher centroid when compared to the
dry signal, and an IF fixed at 200 Hz results in a lower centroid.

The gentle modulations effects do not seem to have much im-
pact on the location of the spectral centroid, because the variations
are small and are close to the original IF. Figure 11 shows the v-if-
brato case. A little less smooth version of the effect is represented
in Figure 12. The slow ring modulation commences with null val-
ues for the modulator causing the centroid to start at null values,
and the centroid progressively reaches the original centroid values
as the modulator values become close to 1. Figure 13, however,
shows a more extreme effect where the ring modulation is deep
and fast, which causes the centroid values to oscillate between zero
and the original centroid values for the dry signal.

5. CONCLUSIONS

The incoherent mono-component Hilbert Transform based decom-
position has received lots of criticism, specially in the speech anal-
ysis literature. We emphasize that the decomposition is transpar-
ent, i.e., the signal obtained with an analysis-resynthesis procedure
is identical to the original, but the intermediate step of processing
in the AM/FM domain can be dangerous, regarding the potential
of introducing noise or artifacts into the resynthesised version.

However, we generated many examples where the resynthesis
produced a clean signal, without any noise that would invalidate its
musical usefulness. In some cases where artifacts do appear after
resynthesis, the so-called intelligibility requirement (important in
speech analysis) could be loosened in many musical contexts, so
the noisy sonorities obtained might also be interestingly explored.

There is a huge potential for the AM/FM approach to be con-
sidered as an alternative to other classic modulation effect tech-
niques, like the vocoder [29]. The scheme considered here can be
easily applied to a melodic signal, i.e., signals with melodic lines
like those created with many wind instruments, guitar solos, bass
lines, voice, among many other examples. However, a lot of care
should be taken with the envelope and instantaneous frequency
signals interpretation, which should not be regarded as simple am-
plitude (AM, envelope) and frequency/pitch (FM, instantaneous
frequency) components, but instead should be acknowledged as
signals controlling a single sinusoidal oscillator, which adapts it-
self to represent all sorts of complex musical signals.

In this paper we focused on low-pass and dynamic range com-
pression examples, but high-pass, band-pass, and expansion of the
dynamic range of the envelope or IF work in a similar way. Em-
phasis was given to processing of the IF signal in the AM/FM rep-
resentation, but processing the envelope can also lead to interesting
effects, especially exploring roughness issues.

The low-pass IF filtering examples were important not only to
obtain audio effects per se, but also for showing that the perceptual
brightness of a sound is somehow linked to the possibility of the IF
signal to vary quickly in an AM/FM representation, in a sense that
limiting this speed will produce a perception of a muffled sound.

This would not be evident a priori, since the IF can still sweep
through all the possible frequencies after being filtered.

Dynamics processing and modulations in the IF will result
in pitch modifications on the original signal, a side-effect which
should be taken into account when implementing these effects,
specially considering the musical scenario where it will be used.
Modulation can also modify the pitch of the signal.

The configuration for the parameters’ values is challenging,
since the very same technique can result in effects from the very
subtle to the very aggressive. Evidently, both aesthetic concerns
and practicalities of the instruments (dry audio signals sources)
will come into play in the design of AM/FM DAFx.

6. FUTURE WORK

We are currently working on effects that explore the separation
of the input signal in different bands. After the separation, the
AM/FM decomposition can be applied to all bands, and multi-
layer effects based on different band-wise configurations of the
same effect might lead to interesting results. We are also pro-
ceeding to a more thorough evaluation, considering more objec-
tive parameters that can elucidate our comprehension between the
decomposition-manipulation of the estimated signals and the re-
sulting effect. Subjective evaluations considering instrument play-
ers, DJs, and also music appreciators might lead to useful results
about the quality and musicality of AM/FM-based effects.
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Figure 11: Spectral centroid after amplitude modulating the IF (14 Hz of modulation depth and modulation frequency at 15 Hz) versus
spectral centroid of the dry signal (blue).

Figure 12: Spectral centroid after ring modulating the IF (modulation frequency at 0.1 Hz) versus spectral centroid of the dry signal (blue).

Figure 13: Spectral centroid after ring modulating the IF (modulation frequency at 4 Hz) versus spectral centroid of the dry signal (blue).
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ABSTRACT

We present a new approach for audio bandwidth extension for mu-
sic signals using convolutional neural networks (CNNs). Inspired
by the concept of inpainting from the field of image processing, we
seek to reconstruct the high-frequency region (i.e., above a cutoff
frequency) of a time-frequency representation given the observa-
tion of a band-limited version. We then invert this reconstructed
time-frequency representation using the phase information from
the band-limited input to provide an enhanced musical output. We
contrast the performance of two musically adapted CNN architec-
tures which are trained separately using the STFT and the invert-
ible CQT. Through our evaluation, we demonstrate that the CQT,
with its logarithmic frequency spacing, provides better reconstruc-
tion performance as measured by the signal to distortion ratio.

1. INTRODUCTION

Audio signals are often low-passed, encoded or compressed before
transmitting them through phone lines and Internet streams. This
results in the loss of high frequency content and compromises au-
dio quality. Narrow-band audio signals which have information
up to a certain frequency cutoff can be perceptually enhanced by
reconstructing the higher frequency content. This research task,
known as audio bandwidth extension, attempts to increase the per-
ceived or real frequency spectrum of audio signals [1, 2, 3, 4, 5].

Audio bandwidth extension methods have been applied to
speech signals in an unsupervised and supervised manner. The for-
mer are typically statistical approaches which model the relation-
ship between low and high frequency spectral content by relating
lower and upper harmonics [1]. For instance, the linear predictive
coding (LPC) method in [2] analyzes the lower frequency spectra
to synthesize high frequency components. It relies on a codebook:
a dictionary of wide-band envelopes, which are matched with the
envelope of narrow-band spectral frames. Spectral band replica-
tion [6] on the other hand transposes up harmonics from lower and
midrange frequencies to higher bands.

Supervised methods learn priors from wide-band signals
which are later used to recover the high frequency content of
narrow-band signals. Matrix decomposition methods such as non-
negative matrix factorization (NMF) [3, 5] treat the magnitude
spectrogram as combinations of priors in the form of non-negative
bases. At the test stage, these bases are kept fixed and are used to
estimate the NMF parameters which best explain the narrow-band
signal.

� Marius Miron is currently a post-doctoral researcher at the European
Commission Joint Research Center

Methods using neural networks learn priors from features de-
rived from time-frequency representations to predict high-band
spectral envelopes [7, 8]. Bandwidth extension with deep neu-
ral networks has been shown to increase the robustness of speech
recognition [8]. In addition, the resolution of raw audio signals, re-
garded as time series, can be increased using convolutional neural
networks (CNNs) [9].

In this paper we seek to estimate high frequency components
in time-frequency representations of music signals. Compared
to speech, music signals are often complex mixtures, comprising
a variety of instruments, both percussive and harmonic, singing
voice, and non-linear audio effects. Thus, music signals have
broader, richer, and perceptually more relevant high frequency
content, which is therefore more difficult to estimate.

While the aim of bandwidth extension for speech is tightly
coupled with signal compression and band-limited communica-
tion channels, for music signals there are important distinctions
both in terms of the constraints of the problem and the potential
applications. First and foremost, our aim is to perform bandwidth
extension up to CD quality (i.e., 44.1 kHz sampling rate with a
Nyquist rate of 22.05 kHz). Given the absence of harmonic infor-
mation in high frequency musical content (e.g., above 10 kHz), our
proposed musical bandwidth extension will be required to recon-
struct percussive-type content. Depending on the bandwidth of the
narrow-band input signal, it may also be required to reconstruct
the upper partials of harmonic content present in the narrow-band
signal. In this way, perceptually accurate musical bandwidth ex-
tension could be used to replace high-band information typically
lost via lossy compression in audio formats such as MP3 and AAC,
and thus reduce the bandwidth overhead when streaming music, or
allocate a higher bit rate for lower frequency information.

Our specific long term goal is to explore a more creative appli-
cation of audio bandwidth extension, namely towards the restora-
tion of old music recordings. To this end, we seek to renew old
recordings (in particular, jazz from the 1940s and 50s) and thus
allow modern-day listeners to experience this music in high audio
quality as performed by the original musicians. Towards this ambi-
tious goal, we first investigate the feasibility of full-bandwidth ex-
tension for music signals under more controlled conditions, which
can be more readily evaluated via access to both the full- and band-
limited versions.

Similar to the concept of image inpainting or completion
[10, 11], for which CNNs have been shown to be particularly
adept, we aim to learn localized features in order to recover the
missing higher frequency regions of short-term Fourier transform
(STFT) and constant-Q transform (CQT) stereo magnitude spec-
trograms [12]. However, since the time and frequency axes in
STFT and CQT representations do not correlate in the same way
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Figure 1: Illustrative overview of our proposed approach for bandwidth extension. (a) The CQT of a short musical audio input sampled at
44.1 kHz. (b) The band-limited version resulting from a low-pass filter with a cutoff frequency of 7500 Hz. (c) The high frequency output of
the CNN1. (d) The enhanced output signal obtained by combining the band-limited and CNN reconstruction.

as the axes of an image, we explore two musically motivated CNN
architectures: bottleneck and stride [13, 14] rather than more stan-
dard square filters in image processing.

For our musical inpainting problem, we aim to reconstruct or
“complete” a strip covering the highest frequency bins of a time-
frequency, for which an illustrative example is shown in Figure 1.
While this is conceptually related to the idea of filling temporal
gaps (i.e., missing vertical strips) [15, 16] these methods exploit
temporal redundancy via repetition in the musical input, where as
in our approach, the high frequency region is never observed.

A particular novelty of our proposed approach is to leverage
implicit knowledge of musical structure by the use of the constant-
Q spectrogram. For bandwidth extension, the CQT has a poten-
tially advantageous property over the STFT, which is that, due to
the logarithmic spacing of the CQT bins, we can make a richer ob-
servation of the narrow-band (i.e., low-frequency) region in order
to reconstruct a smaller amount of higher frequency information.
Comparing the STFT and CQT in matrix form (where rows corre-
spond to frequency and the columns to time) this means that for an
identical cut-off frequency (e.g., of fs/4), and a roughly equal total
number of frequency channels, a far smaller amount of data must
be reconstructed for the CQT than for the STFT. Until recently,
such potential benefits remained theoretical due to the absence
of an inverse CQT transform. However, recent work leveraging
the non-stationary Gabor transform (NSGT) [17, 18] has demon-
strated that perfect reconstruction of the CQT is both possible and
executable in reasonable computation time.

For this initial work, our primary focus is towards the recon-
struction of magnitude spectrograms, thus we do not attempt any
automatic reconstruction of the phase spectrogram. Instead we
make use of the original phase from the band-limited version,
without any subsequent modification. Our evaluation focuses on
the measurement of the signal to distortion ratio (SDR) for the en-
hanced and band-limited versions. In this way, the extent of the
enhancement provided by our approach can be assessed by the in-
crease in SDR over the band-limited versions.

The remainder of this paper is structured as follows. In Section
2 we contrast our approach with existing work in audio bandwidth
extension. In Section 3, we detail our proposed method using con-
volutional neural networks, which we evaluate in Section 4, and
provide discussion and conclusions in Section 5.

1While the CNN outputs a full wide-band spectrogram, the region be-
low the cut-off has been attenuated for greater visual clarity.

2. RELATION WITH PREVIOUS WORK

With the exception of [5, 9, 19], most previous research in audio
bandwidth extension has been applied to speech signals. Regard-
ing the methodology, the deep learning approaches in [8, 9] are the
closest to our proposed method. In the same way as [9], which uses
a similar approach to image super-resolution [20], we are inspired
by recent advancements in image processing using CNNs [10, 11].
Unlike [7] we eliminate all accompanying heuristics and estimate
the high-frequency spectra directly with the neural networks.

In contrast to the NMF speaker-specific spectral bases used in
[3, 19] or the codebook of the LPC approach [2], we are concerned
with the generalization capabilities of our trained model and do
not seek to tailor our approach for specific individual pieces of
music. Furthermore, we do not tune any method-specific hyper-
parameters or weighting coefficients which were previously used
in [2] as a part of a chain of signal processing heuristics.

Similar to the convolutional NMF approach in [3], the hidden
Markov models (HMM) in [21], and the time-series CNN in [9],
we consider cross-frame contextual dependencies. These short-
term dependencies are learned by CNNs using horizontal filters
for a given time-context, while timbre features are learned using
vertical filters [13, 14].

The CNN approaches used in image restoration, completion,
or inpainting [22, 10, 11] are exposed to the entire image and not
just to the missing patches in order to perform the reconstruction.
In a similar fashion, we use the observation of the lower frequen-
cies to better reconstruct the higher frequencies.

3. METHOD

3.1. Overview

An overview of our proposed method, which comprises two
stages: training and enhancement, can be seen in Figure 2. For
training we require a dataset comprising full-bandwidth music
recordings and narrow-band versions which lack high frequency
content above a specific cutoff frequency. We obtain narrow-band
versions by applying a low-pass filter to the original recordings.
Then, we compute the desired time-frequency representation, us-
ing the STFT or CQT, and extract the respective magnitude spec-
trogram for each channel of the stereo recordings. Additionally,
we apply the data processing heuristics described in [23] and train
the CNNs with the architectures described in Section 3.3 and the
training procedure in Section 3.4.

The enhancement stage is detailed in the Section 3.5, where
the high-frequency content is obtained by feeding the magnitude
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Figure 2: Overview of our bandwidth extension system. (a) The
training stage has access to full-band and band-limited music sig-
nals. (b) The enhancement stage only observes the band-limited
signals. Boxes shaded in grey indicated processes, where as those
in white correspond to data. The term data processing is used to
encapsulate the partitioning of the data into overlapping chunks.
The dashed arrow and box indicate optional processing which is
not undertaken in this work.

spectrograms forward through the previously trained CNN. The
phase spectrogram of the band-limited version is retained to com-
pute the inverse STFT or CQT.

3.2. Feature computation

We calculate the STFT or the CQT [18] of the stereo audio mixture
as Xi(t, f) where i = 1, 2 are the stereo channels, t is the time
axis and f is the frequency axis. In order to focus on the recon-
struction of the magnitude spectrum, we discard the phase when
computing the training features for the neural network.

The CNN architectures used in this paper require a fixed input
size (T, F ), where T is the temporal context in time frames and F
is the total number of frequency bins corresponding to the STFT
or CQT magnitude spectrograms. To obtain magnitude spectro-
grams of fixed duration, the variable-size magnitude spectrograms
of each music piece are split into overlapping chunks of fixed size
T time frames with an overlap of O frames. In addition, splitting
the input signal into chunks leads to a smaller network, with fewer
parameters to train, and thus a lower computational burden. These
data processing heuristics adopted prior to training are described
in detail in [23] and were used previously for the task of audio
source separation for full length musical recordings [14, 23, 24].

3.3. Convolutional autoencoders

We present two musically motivated CNN autoencoder architec-
tures, the CNN bottleneck in Section 3.3.1 and the CNN stride-2
in Section 3.3.2. Since time and frequency in magnitude spec-
trograms have different meanings than the horizontal and vertical
axes in images, we should not adopt image-processing square fil-
ters. Instead, we follow [13, 14] by using vertical filters to model
frequency components and horizontal filters to model their tem-
poral evolution. A further distinction is that the magnitude spec-
trograms of audio signals are sparse [25]. Thus, we use a sparse
activation function between the layers, specifically, rectified lin-
ear units (ReLU) [26]. In addition, the CNN bottleneck architec-
ture has a dense bottleneck layer with a low number of units to
compress, or reduce, the learned features. On a related note, the
CNN stride-2 architecture comprises successive convolutions with
a stride2 of two which is the equivalent of learning features by suc-
cessively downsampling the inputs by a factor of two.

The inputs to both the CNN architectures are multiple mag-
nitude spectrograms of size (T, F ), across the channel dimension
i. In our case, the learned feature maps are shared between the
two input channels [26]. We argue that the CNN can learn more
diverse filters from music mixtures with a wide stereo image and
therefore we provide magnitude spectrograms for both channels as
input. In a further parallel with image processing, this can be con-
sidered similar to using the RGB layers of colour images rather a
single greyscale image.

The CNN autoencoders comprise an encoding and a decod-
ing stage. The encoding stage contains convolutional and feed-
forward layers, while the decoding stage performs the inverse op-
erations of the convolutions in the reverse order such that the out-
put of the CNN has the same dimensions as its input, (2, T, F ).
Note, we do not use a soft-mask as in music source separation,
but instead we directly estimate the magnitude spectrogram with
enhanced high-frequency content, X̂. In addition, we assume that
the frequency content to be recovered does not have higher energy
than the low frequency content. To this end, we limit all the values
of X̂i(t, f) to the maximum value in channel i at time frame t of
the input Xi(t, f).

3.3.1. CNN bottleneck

conv1
f(1,F)
s(1,1)

conv2
f(T,1)
s(1,1)

dense1
64

inverse
conv2

inverse
conv1

(2,T,F) (2,T,F)

(N,T,1) (N,1,1)

dense2
Nx1x1

(N,T,1)(N,1,1)

Figure 3: CNN bottleneck autoencoder architecture [14]. For each
layer we give the shape of the filters, strides and feature maps.

We test a version of the CNN bottleneck successfully used in
music source separation [14, 24, 23]. A diagram of the architec-
ture is depicted in Figure 3, and comprises a horizontal convolu-
tion, conv1, a vertical convolution conv2, a bottleneck dense layer

2The stride controls how much a filter is shifted on the input.
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Figure 4: CNN stride-2 autoencoder architecture. For each layer we give the shape of the filters, strides and feature maps.

dense1, and another dense layer dense2 to recover the dimension-
ality needed to perform the inverse operations of conv2 and conv1.
We have N filters for conv1 and conv2.

3.3.2. CNN stride-2

Small successive convolutional layers with a stride of two have
been shown to reduce the number of parameters in a network
[27]. Therefore, in contrast to the CNN bottleneck, we target a
deep architecture comprising small convolutions. Moreover, time-
frequency representations of musical signals often exhibit evenly
spaced harmonic components. By modeling frequency content in
strides of two we aim to capture high frequency harmonics learned
from their low frequency counterparts.

An overview of the stride-2 architecture is shown in Figure
4. For each layer k, the feature maps reduce their frequency size:
Fk = (Fk�1 � 5)/2 + 1, as explained in [24]. We have four
successive (1, 5) convolutions in frequency, followed by two, two-
dimensional (3, 3) convolutions to capture the time-frequency de-
pendencies, each considering the reduction performed by the pre-
vious layers.

3.4. Training procedure

Although the output of the CNN, X̂, contains a reconstruction
of the magnitude spectrogram across all frequency bins, the pa-
rameters of the autoencoder are trained according to a loss func-
tion which only considers the reconstruction in higher frequencies.
Thus, the loss function Lc depends on the cutoff frequency in bins
c and is defined in equation (1) as the mean-squared error (MSE)
between the target magnitude spectrogram X̄, and the estimated
magnitude spectrograms, X̂:

Lc =
X

t,f,i

ku(f � c)(X̄i(t, f) � X̂i(t, f))k2, (1)

where u(f � c) is the unit step function which is 0 for the bins
lower than c and 1 for the bins greater than or equal to c.

The parameters of the CNN are updated according to the loss
function Lc using mini-batch Stochastic Gradient Descent with the
Adamax algorithm [28].

3.5. Enhancement

When computing the STFT or CQT for enhancement, we retain
the phase and we split the magnitude spectrogram into overlap-
ping chunks of size T time frames with an overlap of O frames as
in the training stage. For each chunk X we obtain an estimation
X̂. We then use the estimated chunks to reconstruct the enhanced
magnitude spectrogram through the overlap-add procedure as de-
scribed in [23] and as used in [14, 23, 24].

In contrast to deep learning source separation methods, the
estimated spectrogram is not the result of Wiener filtering [29]
which ensures that the spectrograms of the sources sum to the
input spectrogram. Instead, we need to ensure that the original
low-bandwidth content is preserved. To this end, we blend the
high-frequency part of the estimations yielded by the network, X̂,
with the low-frequency part of the input, X:

X̃i(t, f) = (1 � rc(f))Xi(t, f) + rc(f)X̂i(t, f) (2)

where rc(f) = max(0, min(1, f �c)) is a ramp function depend-
ing on the the cutoff frequency in bins c.

As specified in Section 1, we only attempt to reconstruct the
magnitude spectrum – without access to phase information when
training. However, in order to invert either the reconstructed STFT
or CQT we must provide phase information. To this end, we use
the phase spectrogram from the band-limited version, as shown
in Figure 1(b). Finally, the bandwidth extended audio signals are
obtained using with an inverse overlap-add STFT or inverse CQT
[18].

4. EVALUATION

The basis of our evaluation is to compare the reconstruction from
the STFT and CQT, with the two different CNN autoencoder mod-
els: bottleneck and stride-2, and across two cutoff frequencies of
3500 Hz and 7500 Hz. In total, this creates eight reconstruction
conditions for comparison.

4.1. Experimental setup

We test our approach on the publicly available Medleydb dataset
[30] comprising 121 multi-tracks from which we use the stereo
mixes (in uncompressed .wav format sampled at 44.1 kHz and
with 16-bit resolution). The dataset covers the following gen-
res: Singer/Songwriter, Classical, Rock, World/Folk, Fusion, Jazz,
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Pop, Musical Theatre, Rap. There are 52 instrumental tracks and
70 tracks containing vocals. We randomly split the dataset in train-
ing and testing subsets with a ratio of 0.8 (i.e., 80% for training and
20% for testing).

4.1.1. Evaluation metrics

As the basis for the evaluation, we use the BSS_Eval framework
[31], a widely used tool to objectively evaluate the quality au-
dio source separation. Within BSS_Eval, the Source to Distor-
tion Ratio (SDR) measures the distortion between a target and
the estimated multi-channel audio sources. With respect to high-
frequency reconstruction, BSS_Eval gives more weight to lower
frequency bands and penalizes more frequency content which is
not in the target audio, even though this content might be percep-
tually relevant. In this sense, we recognise that a subjective listen-
ing experiment would be a critical important component of future
work, but for this initial research, we adopt the SDR as our pri-
mary objective measure for this context. It is important to note
that we exclude other metrics related to the artifacts, interference,
and spatial distortion from BSS_Eval as these are designed partic-
ularly for source separation. The SDR is reported for each of the
overlapping chunks of 30 seconds with a 15 second overlap.

4.1.2. Time-frequency transform parameterisation

The STFT is computed using a Hann window of length 1024 sam-
ples, which at a sampling rate of 44.1 kHz corresponds to 23.2
milliseconds (ms), and a hop size of 512 samples (11.6 ms).

The CQT is computed with the MATLAB toolbox in [18] us-
ing the default parameterization, with a minimum frequency of
27.5 Hz, and a frequency resolution of 48 bins per octave. Up
to the Nyquist rate of 22.05 kHz this gives 463 logarithmically-
spaced frequency bins. Perfect reconstruction via the inverse CQT
comes at the expense of high redundancy in time and results in
647 time frames per second, i.e., a temporal resolution of 1.5 ms
which is much finer than that of the STFT, while retaining a similar
number of frequency bins (463 compared to 513).

Since our goal is to reconstruct the higher frequency end of
the magnitude spectrograms, we must contend with the fact that
signal energy typically is much lower at higher frequencies than at
the lower end. In the context of our convolutional neural network
approach this creates a difficulty, since the high frequency magni-
tude spectrum we seek to predict may have very small values. To
partially circumvent this issue, we can apply a logarithmic scaling
to both the STFT and CQT magnitude spectrograms prior to train-
ing (and subsequently revert back to linear magnitude scaling prior
to the eventual output signal reconstruction). However, before ap-
plying such a logarithmic scaling we must ensure all magnitude
spectrum values (for both the STFT and CQT) are greater than 1,
since any values below 1 will be negative after taking the loga-
rithm, and thus ignored by the ReLU. To this end we apply the
logarithmic scaling as follows: Xlog = log10(� + �X), where X
refers to either the STFT or CQT. For the CQT we set � = 1 and
� = 4, where as for the STFT no scaling is required thus we set
� = 1 and � = 1. The final stage of the pre-processing relates
to deep learning methods usually requiring data to be normalized
to an interval or include a batch-normalization step. Thus, we nor-
malize all the training data to be between 0 and 1 by multiplying
with a scale factor, which we set as the maximum of the training
data.

To create the band-limited, i.e., low-pass filtered versions of
the music pieces for training (and subsequent reconstruction), we
use an 8th order Butterworth filter. In order to explore two different
conditions, we create one low-pass filtered version with a cutoff of
3500 Hz and another at 7500 Hz (approximately fs/12 and fs/6).
For both, we seek to reconstruct the full remaining frequency range
of the original recordings up to the Nyquist rate of 22.05 kHz).

We split the STFT or CQT into overlapping chunks of T = 30
time frames with an overlap of O = 10. Chunks are randomly
grouped each epoch into batches of 32. For a fair comparison
between bottleneck and stride-2 we use N = 175 of filters for
bottleneck and N = 40 filters for stride-2, such that the number
of parameters is equal for both of the architectures (1.8 million).
The STFT is trained for 100 epochs. Since CQT has a higher time
resolution, we generate more training data and we only train the
network for 32 epochs. The initial learning rate is 0.001 for STFT
and 0.0001 for CQT.

4.1.3. Implementation details

The code used in this paper is built on top of Pytorch, a frame-
work for neural networks 3. We ran the experiments on an Ubuntu
16.04 PC with GeForce GTX TITAN X GPU, Intel Core i7-5820K
3.3GHz 6-Core Processor, X99 gaming 5 x99 ATX DDR44 moth-
erboard. Training a condition took 16 hours for the STFT and 44
hours for the CQT; by contrast, the enhancement stage runs faster
than real-time on the same hardware. To ensure reproducibility,
a fixed seed controls the pseudo-random number generation in
Python. This is used when initialize the parameters of the CNN
and to randomly split the dataset into training and testing. The
results presented in Section 4.2 are for seed 0.

4.2. Results

The results for the bottleneck and stride-2 are shown in terms of
SDR in Figure 5a and 5b for the CQT and STFT respectively.
In each figure we present the SDR across the cutoff frequencies
of 3500 Hz and 7500 Hz and show the difference in performance
for examples in the training set versus those withheld for testing.
Since we want to measure how much the quality of the reconstruc-
tion improves with respect to the low-pass input, we include the
SDR for all the low-pass versions of the pieces in the dataset.

On inspection of the figures we can see that the best overall
performance for the test set is obtained using the stride-2 architec-
ture for the cutoff of 3500 Hz and the bottleneck architecture for
the cutoff of 7500 Hz. In both of these conditions there is a negligi-
ble difference between the SDR on those musical recordings used
for training, compared to those withheld for testing. In addition to
the highest overall mean SDR values, we can additionally observe
the greatest relative difference over the mean SDR of the low-pass
filtered versions. For both approaches there is a relative increase
in SDR of over 4 dB. Since the SDR calculation is made directly
on the waveforms, this suggests that relevant high frequency infor-
mation from the original recordings is being reconstructed based
soley on observing the band-limited versions.

When looking across the two architectures for the CQT re-
sults, we can observe that the stride-2 approach is less effective for
the higher cutoff of 7500 Hz. This may be due to the lower propor-
tion of harmonic content above this cutoff, and hence the reduced
impact of the stride’s ability to model harmonic relationships.

3http://pytorch.org
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Figure 5: SDR for (a) CQT and (b) STFT representations. The results compare the difference in SDR for training and testing sets, and the
low-pass filtered condition (without enhancement), for the bottleneck and stride-2 CNN architectures and the cutoff frequencies of 3500 Hz
and 7500 Hz. The black vertical lines represent the 95% confidence intervals.

Looking at the comparison between the CQT and STFT, we
can identify two main differences. First, the absolute SDR for
the STFT enhanced versions are lower than for the CQT across all
conditions, and in turn, the relative improvement over the low-pass
filtered versions is also reduced. This behaviour is in line with our
original hypothesis concerning the advantage of using the CQT,
where, although the frequency range to reconstruct is the same for
both time frequency representations, the number of missing rows
of the CQT is far smaller than that of the STFT. This is also con-
sistent with results from image completion, in which larger image
patches are more difficult to recover than smaller ones [10]. An-
other important factor may be the difference in temporal resolu-
tion for the two time-frequency representations, which is greater
by a factor of approximately 8 to 1 for the CQT compared to the
STFT; that while both process overlapping chunks of T = 30 time
frames, the reconstruction of the CQT is much more localised in
time than the STFT. We intend to explore this effect in future work
by increasing the frame overlap in the STFT to a comparable level
to that of the CQT. However, any significant increase in the fre-
quency resolution of the STFT, e.g., by using a larger window size
would drastically increase the size of the model to be trained, and
thus negate the approximately equal number of frequency channels
in the STFT and CQT in our current setup.

To complement these objective results, we provide a set of
short sound examples covering the eight reconstruction conditions,
together with the original and two low-pass filtered versions. Fur-
thermore, for the two best performing conditions: CQT stride-
2 3500 Hz and CQT bottleneck 7500 Hz we provide an infor-
mal comparison of different approaches for phase reconstruction.
To this end, we include phase reconstruction using: i) the low-
pass filtered version (our proposed method); and ii) using low-
pass filtered version below the cutoff and random phase above it.
All of the sound examples are available at the following website:
http://telecom.inesctec.pt/~mdavies/dafx18/

5. DISCUSSION AND CONCLUSIONS

We presented a new deep learning method to reconstruct the high
frequency content of music recordings. Our evaluation demon-
strates that due to to the logarithmic spacing of frequencies, the
CQT offers a better time-frequency representation for this prob-
lem than STFT in terms of SDR. It is important to stress that these
are initial experiments are performed under highly controlled con-
ditions. Due to the high computational cost of training (which took
several days using powerful GPUs), we only explored two cutoff
frequencies, and used the same type of low-pass filter throughout.
On this basis, we do not have sufficient evidence about the gener-
alisation capacities of our trained networks to function under more
arbitrary filtering conditions. This is especially important when
considering our long term goal of the restoration of old record-
ings, for which we cannot assume any specific filtering conditions.
Furthermore, in this scenario no stereo version of the recording
may exist, which would require additional modifications to our
approach.

Another important constraint within this study was the treat-
ment of the phase in the reconstruction. While we do not provide
unobservable information (e.g., the phase of the original, full-band
signal), our approach for using the low-pass filtered version phase
could almost certainly be improved via the use of phase recon-
struction techniques [32]. Since these are typically applied for
an STFT-like representation, we intend to explore the means for
doing this directly for in the invertible CQT representation in fu-
ture work. Furthermore, we recognise the potential of using other
time-frequency representations – provided that there is a method to
invert them, e.g., using Wavenet as a vocoder [33]. Furthermore,
generative adversarial networks have recently became popular in
image recovery and super-resolution [10] and can synthesize more
realistic time-frequency content, which may yield further improve-
ments to the quality of the signal reconstruction.

With respect to the evaluation, we acknowledge that BSS_Eval
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has been primarily designed for audio source separation, and fur-
ther perceptual experiments are needed to better understand the
subjective performance of our proposed method. Furthermore,
BSS_Eval metrics do not always correlate with the perceived qual-
ity of separation [34]. In contrast to magnitude spectrograms, re-
constructed images can be evaluated more directly because the in-
herent structure in the pixels can be understood in terms of the
geometric and textural properties of scenes and objects. However
in our approach the images correspond to time-frequency repre-
sentations which are non-trivial for non-experts to visually inter-
pret, and require an additional transformation stage to be audible.
Within our training stage, the loss function relates to the mean
squared error between the original magnitude spectrogram and
the reconstruction, however our objective evaluation measures the
SDR of the reconstructed audio signals, which explicitly includes
phase information. Thus, we also intend to explore alternative loss
functions (perhaps by using phase information directly) and sub-
sequently investigate their correlation with perceptual ratings of
audio quality from trained listeners. As part of this comparison we
we intend to incorporate existing approaches for bandwidth ex-
tension which have been shown to be effective for music signals
sampled at 44.1 kHz.
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ABSTRACT
This paper addresses a phase-related feature that is time-shift in-
variant, and that expresses the relative phases of all harmonics
with respect to that of the fundamental frequency. We identify the
feature as Normalized Relative Delay (NRD) and we show that
it is particularly useful to describe the holistic phase properties
of voiced sounds produced by a human speaker, notably vowel
sounds. We illustrate the NRD feature with real data that is ob-
tained from five sustained vowels uttered by 20 female speakers
and 17 male speakers. It is shown that not only NRD coefficients
carry idiosyncratic information, but also their estimation is quite
stable and robust for all harmonics encompassing, for most vow-
els, at least the first four formant frequencies. The average NRD
model that is estimated using data pertaining to all speakers in our
database is compared to that of the idealized Liljencrants-Fant (L-
F) and Rosenberg glottal models. We also present results on the
phase effects of linear-phase FIR and IIR vocal tract filter models
when a plausible source excitation is used that corresponds to the
derivative of the L-F glottal flow model. These results suggest that
the shape of NRD feature vectors is mainly determined by the glot-
tal pulse and only marginally affected by either the group delay of
the vocal tract filter model, or by the acoustic coupling between
glottis and vocal tract structures.

1. INTRODUCTION

DFT-based phase processing of speech and musical sounds has
been addressed since the birth of signal processing, early in the 60s
of the 20th century. As a strong motivation, the theory of Fourier
analysis of continuous and discrete signals was already well estab-
lished, in particular concerning periodic signals, whose spectrum
consists of a harmonic structure of sinusoidal components. How-
ever, owing to i) the discrete nature of the DFT and its underlying
circular properties, ii) the specificity of popular and practical opti-
mization metrics which emphasize quadratic measures, and iii) to
a belief that to a considerable extent the ‘human ear is insensitive
to phase’, phase processing in DFT analysis has not received as
much attention as magnitude-based processing. A clear evidence
of this reality is given by the simple fact that most front-ends for
speech recognition and even speaker identification rely on the ex-
traction of acoustic features that are based on spectral magnitude
information only. Another reason explaining this reality involves
the meaning of phase, especially the meaning in a psychoacoustic
sense. Here again, the psychoacoustic meaning that is associated

� This work was financed by FEDER - Fundo Europeu de Desenvolvi-
mento Regional funds through the COMPETE 2020-Operacional Pro-
gramme for Competitiveness and Internationalization (POCI), and by Por-
tuguese funds through FCT-Fundação para a Ciência e a Tecnologia in the
framework of the project POCI-01-0145-FEDER-029308.

with the spectral magnitude is quite obvious and appealing: for ex-
ample, it helps to explain pitch (i.e. the fundamental frequency),
timbre, dark sounds (low-pass signals) and bright sounds (high-
pass signals). On the contrary, phase was never associated with
such a clear psychoacoustic interpretation and, in a large number
of signal processing applications, such as spectral subtraction in
noise reduction, phase is either ignored or simply discarded.

In this paper, we provide an illustrated motivation to the im-
portance of phase as a relevant holistic feature for locally periodic
signals, and we focus on its importance to characterize the peri-
odic component of the glottal excitation. Although an in-depth
treatment will be addressed in a forthcoming paper, here we use
both synthetic and natural voice signals, notably vowel sounds, in
order to illustrate holistic phase patterns that reflect idiosyncratic
traits due mainly to the periodic glottal source, to illustrate the hu-
man diversity in vocal fold operation, and to evaluate how close
popular models of the glottal pulse are to practical results.

In this section, we will briefly mention how phase has been
looked at and acted upon notably in such areas as speech coding
[1, 2] and time-scale modification of speech [3, 4].

Work in speech coding, during the 60e and 70s of the 20th cen-
tury, especially in the area of frequency-domain coding of speech,
has regarded phase as a frequency-domain parameter that could be
quantized and coded or replaced by a synthetic phase, on a DFT
coefficient basis. With the help of real transforms, such as the Dis-
crete Cosine Transform (DCT), phase was even avoided -at least
explicitly- and the focus was rather concentrated on adaptive quan-
tization schemes defining how coarsely or finely the DCT coeffi-
cients should be quantized such as to minimize an objective dis-
tortion, or such as to minimize the perceptual impact of the quan-
tization and coding noise. Later on, in the 70s, 80s, and 90s, these
same principles were applied to wideband speech and high-quality
audio coding. In this context, explicit phase-based processing was
also avoided by using the Modified DCT [5].

An important class of speech algorithms dealing directly with
the DFT phase representation involve time-scale and pitch modi-
fication of voiced regions in speech [6, 7]. Although first meth-
ods were oriented to phase processing on a DFT coefficient by
coefficient basis, the associated subjective quality was considered
poor as it was characterized by signal smearing, reverberation and
‘phasiness’ [8]. Techniques addressing this problem implemented
phase modification while preserving certain phase relationships
among neighboring DFT channels (or bins) in the region of a lo-
cal maximum in the magnitude spectrum, a technique known as
‘phase locking’ [8, 9]. Another category of phase modification
involved the harmonics of a periodic waveform. The goal was
to preserve the local shape of the waveform even when its dura-
tion is artificially modified while preserving the fundamental fre-
quency, or when its fundamental frequency is modified while pre-
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serving the duration. To a significant extent, shape-invariance was
implemented in order to avoid the typical poor subjective quality
of vocoders and other frequency-domain methods that focused on
magnitude modification in the Fourier domain. Phase processing
tried as much as possible to preserve the local phase relationships
among harmonic frequencies, especially near pitch pulse onset
times, because these instants were believed to represent the time
‘at which sine waves add coherently’ [7, 497], i.e. when they are
presumed to be in phase. To our knowledge, this assumption was
never really demonstrated and in fact chances are that at pitch pulse
onset times the different harmonic frequencies are combined with
the same phase relationship, but not necessarily in phase. Further-
more, these methods also depended on robust phase-unwrapping
algorithms [10], not only to estimate pitch, but also to create ex-
tended phase models allowing to modify the time and frequency
scales of a periodic waveform.

With exception of a few works including Di Federico [11] and
Saratxaga [12] that we will address in the next section, those phase
locking rules, as well as the shape-invariant harmonic phase modi-
fication criteria, were not framed as an interpretable holistic phase-
related feature, or model, that is amenable to statistical analysis,
modification and re-synthesis.

The same remark can also be made regarding the use of phase-
related information in speaker recognition. Attempts have been
made to include phase directly extracted from a DFT analysis of
the speech signal [13], or by first processing it such as to compute
a Group Delay Function (GDF) [14]. However, even in this case,
phase has been looked at as an additional signal feature convey-
ing information that complements that already provided by classic
Mel-Frequency Cepstral Coefficients (MFCCs) [15], and that au-
thors believed to be linked to the glottal source excitation. Yet, a
psychophysical meaning was not attached to those phase-related
features. In addition, it is quite intriguing that phonetic-oriented
segmentation is typically not used to govern phase estimation in
this context, which would be particularly meaningful in voiced re-
gions of the speech.

In this paper, we briefly describe and illustrate, with the help
of practical examples, a holistic phase-related feature, or model,
that is linked to the harmonic phases of a periodic waveform, and
that is (time) shift-invariant and independent on the pitch.

The reminder of this paper is organized as follows. In Sec. 2
we explain the nature of NRD and we illustrate it with a simple
practical example. In Sec. 3 we illustrate NRD estimation with
real vowel sounds. In Sec. 4 we use synthetic and natural signals
to characterize the influence of the vocal tract filter on the phase
characteristics of the glottal excitation. Section 5 discusses NRD
models that may be used to describe the periodic part of the glottal
excitation of humans. Finally, Sec. 6 summarizes the main results
of this paper and discusses future work.

2. A SHIFT-INVARIANT PHASE-RELATED FEATURE

The holistic phase feature we focus on in this paper emerges di-
rectly from the Fourier analysis of the harmonics of a periodic
wave. A meaningful way to introduce it is by means of a simple
practical example [16]. We use the well known sawtooth wave-
form which is synthesized using the Fourier series comprising L
terms:

x(t) =
L�

�=1

A
��

sin
2�
T

�t , (1)

where A represents amplitude and T represents the reciprocal of
the pitch. Although the NRD coefficients can be found directly
form any periodic wave, for illustration purposes we use the deriva-
tive of the sawtooth waveform which can be easily obtained as

d
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This form is very convenient because it highlights the phase at the
sinusoidal onset of each harmonic. Let us now split this result in
a part consisting of the fundamental frequency, and another part
grouping all harmonics:
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where t0 = T�0/(2�) and t� = T��/(2��) represent the ab-
solute time-shifts of the different terms of the Fourier series. If
we concentrate on the second part of this development, we may
conveniently introduce a relative time-shift:
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In Eq. (3), NRD� denotes Normalized Relative Delay (NRD) and
expresses a relative delay between harmonic � and the fundamen-
tal, which is further normalized by the period of the harmonic [17].
Although the acronym is reminiscent of the way each NRD coef-
ficient is computed in practice, NRDs reflect simply a normalized
value in the range [0.0, 1.0[ which depends on a difference involv-
ing the phase of the harmonic and the phase of the fundamental.
Thus, the number of NRD coefficients equals the number of har-
monics. Other important properties of the NRD coefficients are as
follows:

• as a relative phase-related feature, the NRD of the funda-
mental is zero by definition,

• because NRDs express phase differences, the concepts of
phase wrapping and phase unwrapping also apply, in this
paper unwrapped NRDs are used since this facilities mod-
eling and understanding,

• NRDs are intrinsically time-shift invariant, and are also in-
dependent on the fundamental frequency.

Hence, NRDs express phase relationships that, in addition to the
magnitude of the harmonics, explain the shape of a specific peri-
odic waveform, and thus completely define its shape invariance.

The NRD concept has been independently introduced in [17],
and has found practical application in singing voice analysis [18],
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glottal source modelling [19], speaker identification [16], paramet-
ric audio coding [20] and dyspohonic voice reconstruction [21]. It
was recently brought to our attention that a similar concept (Rela-
tive Phase Delay) had been presented in 1998 by Di Federico [11].
Other smooth phase descriptors for harmonic signals that are sim-
ilar to NRD were also proposed by Stylianou in 1996 (phase en-
velope [22, page 44]) and Saratxaga in 2009 (Relative Phase Shift
-RPS [12]). Our NRD estimation is closer to the method proposed
by Di Federico [11] (that estimates (t� � t0)/(T/�)) than that pro-
posed by Saratxaga [12] (that estimates �� � ��0).

To complete the illustration using our example, we use the
phase values in Eq. (2) to obtain NRD� = �/2���/2

2� = 1��
4 , � =

2, . . . , L. We have synthesized Eq. (2) using L = 20 harmon-
ics and 22050 Hz sampling frequency (FS). We obtained the NRD
numerical results using the algorithm described in [17] and they
are represented in Fig. 1. This algorithm uses phase unwrapping
and it can be seen that results are as expected. In particular, for
� = 20, the NRD becomes �4.75. This figure also represents the

Figure 1: Unwrapped NRD estimation results for the sawtooth
wave, its derivative and its negative derivative. Ideal (analytical)
and experimental results are overlapped.

experimental results regarding the waveform described by Eq. (1),
in which case all NRDs are clearly zero. We conclude the illustra-
tion of the NRD concept using another synthetic signal alternative.
Taking the negative of Eq. (2), we obtain

� d
dt

x(t) = �
L�

�=1

2A
T

cos
2�
T

� =
L�

�=1
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T

sin

�
2�
T

�t � �
2

�
,

(4)
which highlights that the phases at the sinusoidal onset of all har-
monics, are all equal to ��/2. It follows that NRD� = ��/2+��/2

2� ,
or NRD� = ��1

4 , � = 2, . . . , L. In particular, for � = 20, the
NRD becomes 4.75. This result is also illustrated in Fig. 1. The
experimental results are also shown and it can be seen that the
agreement is clear.

Although the NRD concept is a simple one to grasp, the actual
computation, or estimation, is less trivial. The major difficulty is
that the phases at sinusoidal onsets are not readily available from
the DFT or similar transform. What is available is phase infor-
mation that is referred to a time instant (or sample) corresponding

to the delay of the DFT filter bank, and which also depends on
the influence of the time analysis window prior to DFT transfor-
mation. Thus, this influence must first be compensated for, then
phase information (��) is converted into time delays (n�) which
are made relative to the time delay of the fundamental (n0), and
further wrapped using the period of each harmonic (P�). Finally, a
normalization by each harmonic period is applied [17]. Fig. 2 il-
lustrates the NRD estimation algorithm. We use the Odd-DFT [23]

Figure 2: NRD estimation algorithm [17].

instead of the plain DFT due to a number of interesting proper-
ties which facilitate accurate estimation of the frequencies, phases
and magnitudes of the sinusoidal components that exist in a signal.
Thus, accurate frequency and phase estimation of each individual
sinusoidal component [24] is very important to the reliability, ac-
curacy and robustness of the NRD estimation algorithm.

3. A HOLISTIC PHASE DESCRIBING VOICED SOUNDS

In this section, we present first results for a holistic phase-related
feature that consists of unwrapped NRD coefficients. These coef-
ficients are obtained from the accurate frequency analysis, as de-
scribed in Sec. 2, of the spectrum of voiced vowel signals. The
signals correspond to sustained vowel utterances produced by 37
subjects of which 20 are female, and 17 are male. The record-
ings that are included in the data base were obtained for forensic
purposes, focusing on speaker identification, and are described in
[25]. Figure 3 represents the magnitude spectrum of an /a/ vowel
segment uttered by a female speaker (upper panel), and an overlay
of all NRD vectors that are estimated in a sustained vowel region
(lower panel) lasting about 1 second. The harmonic structure is
signaled in the magnitude spectrum by means of vertical triangles.
The dashed line in this figure represents the LPC model (order 22)
of the spectral envelope defined by the peaks of all harmonics.

The overlay of NRD vectors suggest a few interesting conclu-
sions. First, a region of consistent and stable NRD coefficients
is apparent that involves the first 20 harmonics. These harmon-
ics happen to be the strongest before the spectral valley located at
around 4500 Hz. When harmonics have a very small magnitude
or are close to the noise floor, then accurate frequency, phase and
magnitude estimation is adversely affected in a significant way.
Higher order harmonics are also more prone to estimation inaccu-
racies because their period is quite short, in the order of 3 speech
samples or less. Since the period of each harmonic is individu-
ally estimated, accounting for some degree of inharmonicity, then
shorter periods are more likely to be affected by noise or inter-
ferences and, thus, the phase estimation also becomes more un-
reliable. The impact in terms of unwrapped NRD estimation is a
spreading of the NRD values as illustrated in Fig. 3 which may
generate visually appealing patterns. However, this spreading is
not problematic mainly for two reasons. First, the most impor-
tant voice formant frequencies are typically accommodated by the
NRD region that is stable. Secondly, and this is especially impor-
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Figure 3: Magnitude spectrum of a voiced /a/ vowel segment ut-
tered by a female speaker (upper figure). The vertical triangles
signal the harmonic structure. The lower figure represents all (un-
wrapped) NRD vectors found in a sustained /a/ vowel region and
that includes the represented magnitude spectrum. The thick ma-
genta line represents the average NRD vector up to harmonic 19.

tant for synthesis purposes -which is not discussed in this paper-,
the NRDs in the ‘wild’ region, i.e. the region where an exuber-
ant NRD spreading can be observed, can be replaced by the new
NRDs that are extrapolated from the stable NRD region.

Figure 4 represents a magnitude spectrum and a peculiar over-
lay of NRD vectors pertaining to a /u/ vowel uttered by a female.
Since this is a back vowel whose two relevant formants have a very
low frequency, then the NRD vector is stable only for the first few
harmonics, five in this case. Although for other speakers, the sta-
ble NRD region may be wider even for this difficult vowel, that has
no real relevance as just the first few harmonics define the vowel,
both linguistically and in terms of quality.

Figure 5 illustrates the magnitude spectrum and a overlay of
NRD vectors pertaining to a /o/ vowel uttered by a male. Since the
pitch is about one octave lower than in the case of a female voice,
the harmonic density is higher and NRD vectors may have as many
as 100 coefficients within the Nyquist range. It can be confirmed
in Fig. 5 that the first 4 formant frequencies are represented by the
first 42 harmonics, which corresponds to the stable NRD region.

Figure 4: Magnitude spectrum of a voiced /u/ vowel segment ut-
tered by a female speaker (top). The vertical triangles signal the
harmonic structure. The lower figure represents an overlay of all
(unwrapped) NRD vectors found in the /u/ vowel region. The thick
magenta line represents the average NRD vector up to partial 19.

The above results suggest that, in most cases, it is safe to
assume that the first 19 coefficients represent stable NRD vec-
tors. Figure 6 illustrates the average NRD vectors for sustained
vowel regions pertaining to five different vowels uttered by a male
speaker. Results are presented for two repetitions of the same
vowel exercise. It can be seen that the profile of the different aver-
age NRD vectors are in good agreement, which suggests that there
is a trend that is common even for different vowels uttered by the
same speaker. Rather than the vocal tract filter, which varies from
vowel to vowel realization, what is really common in these situa-
tion is the glottal excitation which is mainly characterized by a pe-
riodic part due to the vibration of the vocal folds. Thus, the NRDs
appear to be mainly determined by the shape of the glottal pulse. It
should be noted however that for some speakers, the NRD vectors
estimated from /i/ or /u/ vowel regions may deviate from the NRD
trend defined by the remaining vowels. As explained above, this
may be due to the fact that certain harmonics are very weak, such
as in the case of the /i/ vowel which has the largest F1-F2 formant
separation, or in the case of the /u/ vowel whose harmonics decay
quite strongly just after the F1 and F2 formants.
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Figure 5: Magnitude spectrum of a voiced /o/ vowel segment ut-
tered by a male speaker (top). The vertical triangles signal the
harmonic structure. The lower figure represents an overlay of all
(unwrapped) NRD vectors found in the /o/ vowel region. The thick
magenta line represents the average NRD vector up to partial 19.

4. VOCAL TRACT FILTER PHASE EFFECTS USING
SYNTHETIC AND NATURAL VOICED SOUNDS

According to the ideal source-filter model of voice production [26,
27], the signal generated at the glottis is the source signal and in-
cludes a stochastic and a periodic part. The supralaryngeal struc-
tures, including the oral and nasal cavities, shape the source signal
in time and frequency such as to convey a desired linguistic mes-
sage. This time and frequency shaping, which is mainly influenced
to the vocal tract resonant frequencies -also commonly referred to
as formants-, is modeled as a filter which may be considered as
stationary for sustained sounds, or locally stationary in running
speech considering the average syllabic duration, in the order of
10 to 20 ms. Most frequently, the filter is modeled as an all-pole
filter; in our experiments, as indicated in Sec. 3, we use a 22nd-
order LPC model. The filter may also include the radiation effect
due mainly to the lips and nostrils. The radiation effect is usually
modeled as a time differentiation operation that converts the air
flow into sound pressure.

A very interesting issue that to our knowledge has never been
clarified in the literature, deals with the phase contribution due

Figure 6: Average NRD vectors (19-dimensional) obtained from
sustained vowels uttered by a male speaker. Results are presented
for 5 vowels produced during two different conversations.

to the source excitation, and that due to the filter. The combined
effects are known to be additive in terms of phase or, equivalently,
in terms of group delay. However, the clarification of how much
the phase contribution -or group delay- due to the filter modifies
the phase of the source signal is an open issue.

Using the NRD concept and using the results that were illus-
trated in the previous section, we may shed some light on the issue.
In that regard, we will assume as a plausible periodic glottal source
excitation, the derivative of the Liljencrants-Fant model (L-F) of
glottal flow [28]. A 210 Hz fundamental frequency glottal exci-
tation using the L-F model has been conveniently generated using
the freely available Voicebox Matlab toolbox (FS=22050 Hz).

Figure 7 illustrates a few periods of the L-F glottal flow deriva-
tive (upper panel), the corresponding magnitude spectrum with all
harmonics signaled by means of vertical triangles (middle panel),
and the unwrapped NRD coefficients up to harmonic 50. This fig-

Figure 7: Analysis of the derivative of the L-F glottal flow model.
The top panel represents the time waveform and its magnitude
spectrum is represented in the middle panel. The harmonics are
signaled by red triangles and the unwrapped NRD coefficients per-
taining to the first 50 harmonics are represented in the lower panel.
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ure suggest that the NRD feature vector may be faithfully approx-
imated by means of a simple first order model that is given by

NRD� = �0.207431 + 0.335465�, � = 2, . . . , L. (5)

As indicated previously, by definition NRD� = 0, � = 1.
Concerning the filter model, we took advantage of all the LPC

models (order 22) that were obtained for all vowels from all speak-
ers. Figures 3, 4 and 5 represent examples of the magnitude fre-
quency responses of the IIR filters corresponding to those models.
We took the average of all models separately for vowels /a/, /e/ and
/i/. We considered female models only as the formant frequen-
cies characterizing a given vowel, are typically higher in female
voices than in male voices (due to anatomical differences between
male and female speakers). Then, using the average power spec-
tral density (PSD) of those models, we designed a linear-phase FIR
filter (500 taps) and an IIR filter (order 22) having a magnitude fre-
quency response approximating that PSD. The FIR filter has been
obtained using a single band Parks-MccClellan optimal equiripple
design. The IIR has been obtained using the Levinson-Durbin re-
cursion and after the autocorrelation coefficients are obtained from
the PSD using the Wiener-Khintchine theorem. Figure 8 repre-
sents the PSD of the average /e/ vowel, as well as the magnitude
frequency responses of the FIR and IIR filters. It can be seen that

Figure 8: Average model of the PSD of vowel /e/ uttered by female
speakers, and magnitude frequency responses of a linear-phase
FIR filter (order 500), and an IIR filter (order 22) approximating
that PSD.

both filters approximate well the PSD. An obvious (and intented)
difference lies however in the phase response of both filters. In
fact, the linear-phase FIR has a constant group delay response
(249.5 samples) while the IIR exhibits a non linear group-delay
response that is represented in Fig. 9. Assuming the L-F model
as a plausible excitation to the filter, we want to assess how much
the NRD coefficients at the output of the filter are affected by the
group delay of the filter, according to the two alternatives: linear-
phase FIR and IIR filter modeling. In other words, how much are
the phase properties of the source excitation affected by the phase
properties of the filter ?

To answer this question we filtered the source excitation illus-
trated in Fig. 7 using the two alternative filters and then, in each
case, we extracted the NRD feature vector of the output signals.

Figure 9: Group delay of the 22nd-order IIR filter approximating
the average PSD of the /e/ vowel uttered by female speakers.

As indicated above, we repeated the experiment for vowels /a/, /e/
and /i/. In rigour, prior to this operation, we should have compen-
sated the spectral magnitude of the excitation by its spectral tilt
such that the signal at the output of the filter exhibits a PSD which
corresponds to that of the original vowel PSD. Ignoring this step
has however no consequences regarding phase, is just produces an
output PSD which has a stronger spectral tilt than the original.

Figure 10 illustrates the NRD feature vector at the output of
both filters and taking as a reference the original NRD feature of
the excitation. It can be seen that, as expected, in the case of the
linear-phase FIR filter, because the group delay is constant, then
no modification takes place. However, in the case of the IIR filter,
then visible modifications take place, although these do not rep-
resent a dramatic modification of the trend defined by the source
excitation, exception for vowel /i/. In this case, a plausible expla-
nation is that the group delay of the corresponding filter is such
that it modifies significantly the NRD trend of the source exci-
tation. Further research is required to clarify this. Considering
however that this vowel represents an exception, it is interesting
to compare these results that presume a synthetic excitation sig-
nal, and the results displayed in Fig. 6 that were obtained for real
natural voices. In both situations, results suggest the vocal/nasal
tract filter modifies the phase properties of the glottal excitation
although not too strongly as the overall trend in the NRD feature
vector of the source excitation is essentially preserved. We be-
lieve this is an innovative result that emerges from experimental
data with NRDs. It can also be argued that the deviations to the
excitation NRD feature vector, after the filter, may be due to the
acoustic coupling between the glottis and the vocal/nasal tracts for
different configurations of the latter and which modify slightly the
shape of the glottal pulse. Clarifying this hypothesis would how-
ever imply complex and invasive experiments capturing the signal
near the vocal folds.

5. A MODEL OF THE HUMAN GLOTTAL PHASE

In this section, we discuss NRD models that may be used to de-
scribe the holistic phase structure of the periodic part of the human
glottal excitation.
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Figure 10: Illustration of NRD modification of the source excita-
tion due to the phase properties of the filter modeling the PSD of
three vowels: /a/, /e/ and /i/. When the filter is a linear-phase FIR
filter, no modification exists. When the filter is a 22nd-order IIR
filter, its group delay modifies slightly the original NRD feature
vector. A strong deviation is observed in the case of vowel /i/.

Figure 11 represents an overlay of all the average NRD feature
vectors that were obtained from the 5 vowel realizations by each
speaker. As our data base includes 37 speakers and each speaker
has produced two independent realizations for each vowel, Fig.
11 represents 74 true human average NRD data. This figure also

Figure 11: Overlay of all the average NRD feature vectors for
the 5 vowels uttered by each one of the 37 speakers in our data
base. The experimental NRD vector of the derivative of both ideal
Rosenberg and L-F glottal flow models are also represented.

represents the NRD feature vectors that have been obtained exper-
imentally from synthetic signals consisting of the derivative of the
ideal L-F glottal flow model, and the derivative of the Rosenberg
glottal flow model. Both models were generated using the Voice-
box toolbox. The L-F NRD model is well approximated by Eq.
(5) and has already been illustrated in Figs. 7 and 10. Figure 11
also represents the average NRD model of all human vowel real-

izations, its first order best approximation is given by

NRD� = �0.1522222 + 0.2025505�, � = 2, . . . , L . (6)

For the sake of completeness, the first order best approximation to
the Rosenberg NRD model is given by

NRD� = �0.014001 + 0.259785�, � = 2, . . . , L . (7)

It can be seen that the L-F NRD model deviates more from the ex-
perimental average human NRD model than the Rosenberg model.

To conclude this section, we present a verifiable example of
the capability of NRDs in representing the holistic phase proper-
ties of any periodic wave. We prepared two .mat Matlab files,
one of them (LFmag.mat) contains the first 20 harmonic magni-
tudes of the derivative of the L-F glottal flow model, and another
one (LFNRD.mat) contains the first 20 NRD values pertaining to
the corresponding harmonics, including the fundamental. These
experimental-based magnitude and NRD values are used to syn-
thesize the derivative of the L-F glottal flow model using

dgf(t) =
L�

�=1

LFmag� · sin

�
2�
T

�t + 2� · LFNRD�

�
. (8)

In this synthesis we use a fundamental frequency of 210 Hz and
FS=22050 Hz. The resulting signal is represented in Fig. 12. We

Figure 12: L-F idealized glottal flow wave and its derivative using
experimental data concerning the first 20 harmonic magnitudes
and NRD coefficients. Versions of these signals are also shown that
use a first-order NRD approximation. The Matlab code allowing
to generate this figure is available.

may then replace the accurate NRD coefficients LFNRD� by the
approximate first-order model given by Eq. (5). The result of this
approximation is also represented in Fig. 12. It can be concluded
that the resulting wave is a faithful approximation to the original.

On the other hand, it is known from basic Fourier theory that
if X(j�) is the Fourier transform of x(t), then the Fourier trans-
form of the integration of x(t) is given by X(j�)/(j�). This
means that the magnitude of the Fourier transform is divided by
the frequency, and �/2 is subtracted to the phase. Thus, the glottal
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flow model, by integrating Eq. (8) and except for a scaling factor,
is simply given by

gf(t) =
L�

�=1

LFmag�

�
· sin

�
2�
T

�t + 2� · LFNRD� � �
2

�
. (9)

This result, as well as its version when LFNRD� is approximated
by its first-order model are also represented in Fig. 12. In order
to facilitate the reproducibility of these results, the Matlab code
generating Fig. 12 is available 1.

We have shown that we know how the holistic phase of the
periodic part of the human glottal excitation looks like, future re-
search will leverage on this result to more accurately estimate the
spectral magnitude of the human glottal excitation.

6. CONCLUSION

We described in this paper how the NRD phase-related feature and
that is extracted from the harmonics of a periodic waveform, ef-
fectively acts as an important holistic glottal feature that carries id-
iosyncratic information. NRD coefficients were shown to be mod-
erately affected by the group delay of the vocal/nasal tract filters,
or by the acoustic coupling between glottis and supra-laryngeal
structures. We also identified several relevant first-order NRD ap-
proximation models, one of which represents the average NRD
feature of the glottal excitation of a human speaker. Future work
will include further research on phase effects of the vocal tract fil-
ter, the modeling of the glottal excitation spectral magnitude, and
the application of the NRD features in such areas as speaker iden-
tification, high-quality parametric speech coding and dysphonic
voice reconstruction.
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ABSTRACT

This paper is concerned with perceptual control strategies for phys-
ical modeling synthesis of vibrating resonant objects colliding non-
linearly with rigid obstacles. For this purpose, we investigate sound
morphologies from samples synthesized using physical modeling
for non-linear interactions. As a starting point, we study the effect
of linear and non-linear springs and collisions on a single-degree-
of-freedom system and on a stiff strings. We then synthesize real-
istic sounds of a stiff string colliding with a rigid obstacle. Numer-
ical simulations allowed the definition of specific signal patterns
characterizing the non linear behavior of the interaction according
to the attributes of the obstacle. Finally, a global description of
the sound morphology associated with this type of interaction is
proposed. This study constitutes a first step towards further per-
ceptual investigations geared towards the development of intuitive
synthesis controls.

1. INTRODUCTION

This paper is concerned with the perceptual control of environmen-
tal sound synthesis processes, based on the ecological approach
to auditory events [1],[2]. This approach, adapted from the eco-
logical approach to visual perception [3], supposes the existence
of invariant structures (specific patterns in the perceived signal)
that carry the necessary information for the recognition of sound
events. These structures can be split in two groups: the structural
invariants, which enable the recognition of properties of a sound-
ing object and transformational invariants, that describe the trans-
formations of the object. This theory was first exploited by War-
ren and Verbrugge concerning the auditory recognition of acoustic
events [4]. Then, some studies have identified invariants contain-
ing sufficient information to discriminate the material [5] or the
size [6] of impacted objects. More recently, This approach has in-
spired a conceptual description of sounds through an action-object
paradigm [7],[8],[9].

Research into sound invariants is of great interest for the per-
ceptual control of sound synthesis. Indeed, the definition of a mor-
phology corresponding to an invariant allows for simplified control
through the mapping of several synthesis parameters to one global
parameter described perceptually. Thus, it allows for the control of
sound synthesis processes using high level descriptors, according
to perceptual measures.

This conceptual description has led synthesis processes based
on the source-filter model. In [7],[8],[9] transformational invari-
ants are responsible for the evocation of a sound-producing action
(scratching, rolling), while structural invariants are responsible for
the evocation of the exited object (shape, material, size). Hence,
in the source-filter model the resulting sound is obtained by the
convolution between the transformational invariant defining the
source (action) and the structural invariant defining the filter (ob-
ject).

One aim here is to develop new tools for sound designers, giv-
ing them an alternative to databases of recorded sounds for differ-
ent applications such as video games. It leads to real-time synthe-
sis of sounds in virtual or augmented reality environments directly
controlled by the in-game events. In contrast to methods based on
the use of a database of recorded sounds, such a synthesis proce-
dure can adapt quickly to event occuring during gameplay. Also,
it opens the perspective of generating unheard sounds that carry
information contained in the sound invariants: "sound metaphors".

In previous studies, the mapping of perceptual features onto
synthesis parameters for an intuitive control of sounds has been
proposed [10]. Aramaki et al. developed an impact sound synthe-
sizer intuitively controlled with semantic labels describing the per-
ceived material, size and shape of the object [11],[12]. Here, the
authors defined several labeled structural invariants (material, size
and shape) in relation to signal properties (modes, damping). The
impact synthesizer was extended to continuous-interaction sounds:
rubbing, scratching, and rolling [9]. Here, transformational invari-
ants are characterized as a statistical description of the excitation
signal in relation to the perceived action. Also, Thoret et al. pro-
posed a description of the non-linear transitions between squeaks
and self-oscillation [13].

The aim of this study is to define the invariants relative to the
disturbance undergone by a vibrating resonant object when it col-
lides with a non-resonant obstacle. This kind of interaction are a
regular occurrence in daily life. For example, in the case of elec-
tronic vibrating objects, one can hear a "buzzy" sound whenever
they touch a stiff obstacle (washing machine, microwave, vibrating
phone...). It occurs as well in various acoustic musical instruments.
For instance, the particular timbre of the tanpura results from the
collisions between the strings and the bridge [14]. Also, guitarists
can produce a screaming tone by playing a pinched harmonic, and
a large range of sounds can be generated using prepared pianos
[15]. We can see here that this type of interaction includes a wide
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range of phenomena from a perceptual point of view. Indeed, we
perceive a vibrating phone on a table as a sequence of impacts, a
natural harmonic on a string produces a short "buzzy" sound fol-
lowed by a new modal state of the string, and in some other cases,
it may produce harmonic distortion, affect the sustain, the modes’
frequency or even change the type of interaction (e.g., transition
from squeak to self-oscillation on a glass).

As a first step towards define these invariants, we consider a
1-D resonant object (a stiff string) colliding with a clamped stiff
obstacle not located too close to the string ends. This would cor-
respond to the action of choking a string or playing a natural har-
monic if the obstacle is located at a specific position. In this case,
there is no possible coupling between the string and the barrier as
both of them are clamped to the ground and we do not study the
specific behavior when the obstacle is close to the bridge.

There are recent investigations into the numerical modeling of
collisions in musical instruments [16][17], but very little work on
the perceptual characterization of the synthesized signal.

Our approach consists in first gathering a database representa-
tive of the diversity of sounds that can be produced with this type
of interaction. We made the choice here to synthesize samples us-
ing a numerical solving of the differential equations that describe
the physical behavior of the system, as it allows the synthesis of
realistic sounds with a precise control over all the experimental
parameters. We then propose an empirical description of the sig-
nal related to the type of interaction. Finally, we make hypotheses
regarding the signal elements that seem to be significant for the
perception of the phenomena to characterize the related sound in-
variant.

The next step is to validate these hypotheses through listen-
ing tests that consist in comparing reference sounds synthesised
with the physical model to sounds synthesized with a signal model
reproducing precisely the sound morphologies that seem to be im-
portant for the perception of the phenomena according to our ob-
servations. The sounds will be synthesized to evoke different spa-
tial locations and structure of the obstacle.

Also, we may expand our study to include interactions close to
the string ends (e.g. tanpura), with coupling between the objects
(e.g. rattling elements) and apply these sound invariants to any
type of objects (shape, material and size). This will lead to other
perceptual tests and, it is hoped, to a real-time synthesis process
controlled by perceptual features according to the action-object
conceptual description of sounds. The final aim is to improve the
design of the source-filter synthesis process and the related con-
ceptual description of sounds to include this new type of interac-
tion.

This article is organized as follows: To introduce how non-
linear interactions modify the response of a system, a brief overview
of the effects of non-linear springs and collisions on a single-degree-
of-freedom system is presented in the next section. The following
section details the effect of springs and collisions on a stiff string,
and a description of signal morphology is proposed subsequently.
Conclusions and perspectives are presented in the last section.

Sound examples are available at https://drive.google.
com/open?id=1sNUu6krfWO-rCZD_vJV4SrZ4RUyloJfq

2. NON-LINEAR SPRINGS AND COLLISIONS ON A
SINGLE DEGREE-OF-FREEDOM SYSTEM

In this section, we aim to describe the effects of collisions on the
signal morphology for the simplest vibrating system: a 1 Degree-
of-Freedom (DoF) mass/spring/damper system. This is the first
step to understand how the signal is affected by collisions on a
rigid barrier.

2.1. Single degree-of-freedom system

Consider a mechanical damped harmonic oscillator, of mass M ,
stiffness K0 and damping constant �0, and with displacement u (t)
as a function of time t. The ordinary differential equation govern-
ing the displacement of the oscillator is

d2u
dt2

= �!2
0u� 2�0

du
dt

(1)

where !0 =
p

K0/M . For underdamped conditions (as is usually
the case in musical systems), the general solution is

u (t) = e��0t (A cos(!t) +B sin(!t)) (2)

where ! =
p

!2
0 � �2

0 , and for some constants A and B deter-
mined by initial conditions.

In discrete time, consider the time series un, representing an
approximation to u (t) at time t = nk, where k is the time step
(and Fs = 1/k is the associated sample rate). An explicit fi-
nite difference scheme approximating (6) above may be written,
in condensed operator form, as:

�ttu
n = �!2

0u
n � 2�0�t·u

n (3)

where

�ttu
n =

1
k2

�
un+1 � 2un + un�1� , �t·un =

1
2k

�
un+1 � un�1�

(4)
This scheme may be written more explicitly as a recursion al-

lowing the calculation of un+1 from un and un�1:

un+1 = (un(2� k2!2) + un�1(�1 + k�0))/(1 + k�0) (5)

2.2. Effect of a non-linear spring

As we model the barrier as a unilateral non-linear spring, it is of
interest to take a look at a classic non-linear spring (see figure1):

u(t)

K0 K1

M

Figure 1: Damped harmonic oscillator with a cubic spring of stiff-
ness coefficient K1.

d2u
dt2

= �!2
0u� 2�0

du
dt

�H(t� t0)!
4
1u

3 (6)
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With !1 = 4

q
K1
M , K1 the stiffness of the cubic spring,H(t) the

Heaviside step function, and t0 the time of appearance of the non-
linear spring (here, we set t0 = 1s).

We solve the problem with the following scheme[18]:

�ttu
n = �!2

0u
n � 2�0�t·u

n �H[n� t0
k
]!4

1(u
n)2µt·u (7)

with µt·u = (un+1 + un�1)/2, H[n] the discrete Heaviside step
function.

The appearance of the non-linear part in a second time allows
us to visualise the linear behavior (for t < t0) and the non-linear
behavior (t > t0) on the same spectrogram.

Figure 2: Spectrogram of u for the single-degree-of-freedom sys-
tem with a cubic spring term activated at t = 1s with !1 =
300m�1/2.s�1/2, initial conditions u0 = 1m, u1 = 1m.

One can notice two phenomena related to the appearance of
the non linear spring (see figure 2): the frequency of oscillation
changes abruptly to an higher value then decreases and harmonic
distortion appears (creation of the third harmonic). Thus, the fre-
quency of non-linear modes varies with the amplitude of vibration
of the spring (stiffness increases with amplitude, which is typical
of springs of hardening type), and the waveform is no longer sinu-
soidal.

2.3. Effect of Collisions

The modeling of collisions with a rigid barrier may be written as
the contact with a stiff unilateral non-linear spring (see figure 3),
of restoring force Fc = d�

du , � = Kc
↵+1 [u]

↵+1
+ ([16]).

With Kc the stiffness of the interaction, ↵ the non-linear exponent,
and [u]+ = (u+ |u|)/2 the positive part of u.

u(t)

K0 Kc

M

Figure 3: Damped harmonic oscillator colliding with a barrier of
stiffness Kc.

@2u
@t2

= �!2
0u

n � �0
@u
@t

� H(t� t0)
M

d�
du

(8)

We use the following scheme [16]:

�ttu
n = �!2

0u
n � 2�0�t·u

n �
H[n� t0

k ]

M
�t��

n+ 1
2

�t·un
(9)

with:
�n+ 1

2 =
1
2

�
�(un+1) + �(un)

�
(10)

It leads to the expression:

F(r) = r + b+
H[n� t0

k ]k2

M(1 + �0k)
�(r + a)� �(a)

r
= 0 (11)

Given:
r = un+1 � un�1,
a = un�1

b = (�2un + 2un�1 + !2
0k

2un
0 )/(1 + �0k)

This equation can be solved using a Newton-Raphson algo-
rithm at each time step.

We use the approximation �(r+a)��(a)
r ⇡ �0(a) when r < ✏.

Figure 4: Spectrogram of u for the single-degree-of-freedom sys-
tem with a stiff unilateral non-linear spring appearing at t0 = 1s.
Kc/M = 1.6 ⇤ 1010m�1/2.s�1/2, ↵ = 1.9 initial conditions
u0 = 1m, u1 = 1m.

The response for a unilateral non-linear spring is close to the
classic non-linear spring (see figure 4). We observe a frequency-
varying mode tending to the original mode as the amplitude tends
to zero, and important harmonic distortion as the deformation of
the waveform is abrupt.

To sum up, when a single-degree-of-freedom system collides
with a non-resonant obstacle, it increases the frequency of its mode
of vibration and creates harmonics. The frequency tends to its orig-
inal value and the harmonic distortion disappears as the amplitude
gets closer to zero.

As we switch the single-degree-of-freedom system to the stiff
string, we can expect mode coupling when the descendant modes
and their harmonics cross other modes of the structure, as we ob-
serve this kind of behavior on gongs and cymbals [19].

3. SPRINGS AND COLLISIONS ON A STIFF STRING

In this section, the linear model and the scheme used to synthesize
realistic sounds of a stiff string is presented. Then, we study the
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effects of linear and non-linear springs attached to the string on
the frequency content of the samples in order to introduce how
modes are impacted by perturbations. Finally, the collision model
is implemented, and a description of the resulting morphology is
presented.

3.1. Physical model of the stiff string and numerical scheme

The following partial differential equation describes the behavior
of a stiff string subject to forces. This linear model does not take
into account the variation of tension in the string (no pitch bend-
ing). it is commonly used for simulations and sound synthesis
[20][21][18].

@2u
@t2

= c2
@2u
@x2

�2 @
4u

@x4
�2�0

@u
@t

+2�1
@3u
@t@x2

+
1
⇢S

X

m

�(x�xm)Fm

(12)
with:

· u(x, t) the transversal motion of the string,

· c =
q

T
⇢S = 404.02m.s�1,

·  =
q

EIz
⇢S = 1.297m2.s�1,

· �(x) the Dirac function.

The signification and values of the parameters are defined in ta-
ble1.

We can solve the equation using the following explicit finite
difference scheme:

�ttu = c2�xxu� 2�xxxxu� 2�0�t·u+ 2�1�t��xxu+ Jm.Fm

(13)
The previous equation can be displayed in a matrix form:

¯̄Aūn+1 = � ¯̄Būn � ¯̄Cūn�1 + J̄mFm (14)

with:

· h the grid spacing, chosen at the stability limit,

h =

q
(c2k2+4�1k+

p
(c2k2+4�1k)2+162k2)

2 ,

· k the time step interval, k = 1/fs with fs the sampling
frequency,

· �xxu = 1
h2 (u

n
l+1 � 2un

l + un
l�1),

· un
l the discretized value of u(x, t) at the nth time step, and

the lth step of the string,

· �xxxxu = 1
h4 (u

n
l+2 � 4un

l+1 + 6un
l � 4un

l�1 + un
l�2),

· �t�u = 1
k (u

n
l � un�1

l ),

· ēm = [ 0
1

0
2

0
3

... 0
im�1

1
im

0
im+1

... 0
L

]

· J̄m = ēTm/h

· Fm is the scalar value of the force m.

The boundary conditions are simply supported at the end points
of the domain u(x = {0, L}, t) = 0 ; @2u

@x2 |(x={0,L},t) = 0.
As excitation force, we use a simple model for a plucked string

at x = xex:

Fe(t) =

⇢
Af ⇤ (�cos( ⇡

�t t) + 1) if 0  t < �t
0 else

String:
Diameter � = 1mm
Length L = 0.5m
Density ⇢ = 7800kg.m�3

Young Modulus E = 210GPa
Tension T = 1000N
Damping parameters: �0 = 0.05rad.s�1

�1 = 0.002rad.s�1

Sampling:
Sampling frequency fs = 176400Hz
Recording duration trec = 10s
Excitation:
Position xex = L/10
Duration �tex = 1ms
Amplitude Af = 100N
Behavior:
Maximum amplitude Umax = 0.0103m

Resonance frequencies fn = nc
2L

q
1 +

�
⇡n
c

�2

f1 = 410.7Hz

Table 1: Parameters used for the simulation

3.2. Spring on a stiff string

To observe the effects of a linear and a non linear spring on a stiff
string, we use the string model presented eq. 12 with a linear and
a cubic spring:

@2u
@t2

= c2
@2u
@x2

� 2 @
4u

@x4
� 2�0

@u
@t

+2�1
@3u
@t@x2

+ �(x� xs)Fs

(15)
with:

Fs = �!2
0u(xs, t)� !4

1u(xs, t)
3 (16)

We use the following scheme (see eq.13 for the stiff string, eq. 7
for the non-linear spring):

�ttu = c2�xxu� 2�xxxxu� 2�0�t·u+ 2�1�t��xxu+ Js.Fs

(17)
with:

Fs = �!2
0uis � !4

1(uis)
2µt·uis (18)

uis is the element of the vector ū at the point of application of the
spring on the string (on the node i = is).

We observe a modification of the frequency of several modes of the
string with a pure linear spring at x = L/2. These modifications
remain constant as the signal evolves and follow a specific pattern
(see figure 5): even harmonics remain approximately unchanged
as they have a vibration node located at the application point of the
spring, when odd harmonics get their frequency increased as they
get stiffer around their vibration antinode. The frequency value
of the odd harmonics gets greater with !0 but never exceed the
next even harmonic, and the increase get lower as the rank of the
harmonic get higher.
The quasi-harmonic string becomes in-harmonic, and those rela-
tively low variations of the frequency content cause a categorical
change of the perception: the system sounds like a linear plate or
a shell.

For the cubic spring at x = L/2, the behavior is consistent with the
previous observations: the even harmonics remain unchanged and
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Figure 5: FFT of the stiff string with a linear spring at x = L/2 for different values of !0.

Figure 6: Spectrogram of the stiff string with a cubic spring at
x = L/2 for !1 = 300m�1/2.s�1/2.

the frequency of the odd harmonics vary over time as the stiffness
decrease with the amplitude (see figure 6).
But other effects caused by non-linearity appear. For !1 =
300m�1/2.s�1/2, we can observe distinct frequency components
around the original modes of the string, but in a large number
due to harmonic distortion. Those new frequency components get
closer to the original modes as the amplitude decrease over time.
It is the same behavior that we observe on the single-degree-of-
freedom system unless the modes are duplicated.
When the stiffness gets to high values (figure 7), a lot of compo-
nents appear. This produces coupling between modes, resulting
in fast variation of amplitude and frequency of several modes. It
tends to chaotic behavior, creating a noisy-like signal at the begin-
ning of the signal.
The perceived signal sounds like non-linear plates such as cym-
bals.

3.3. Stiff string colliding with a point rigid barrier

Considering the size of the article, we do not model the barrier as
an object with its own dynamic but as a non-linear spring clamped

Figure 7: Spectrogram of the stiff string with a cubic spring at
x = L/2 for !1 = 1000m�1/2.s�1/2.

to the ground. We control the appearance of the barrier with the
Heaviside function, and we manage to turn on the collision func-
tion when u(xc) < 0 (xc define the location of the barrier). In this
case, the appearance of the obstacle does not create any transient
behavior.
We use the collision model (eq. 8910) with the model of the stiff
string (eq. 12 13).

@2u
@t2

= c2
@2u
@x2

� 2 @
4u

@x4
� �0

@u
@t

+ 2�1
@3u
@t@x2

+ �(x� xc)Fc

(19)

Fc = �H(t� t0)
⇢S

d�
du

|(x=xc,t) (20)

with � = K
↵+1 [uic ]

↵+1
+ and [u]+ = u+|u|

2 .

The corresponding scheme is presented bellow:

�ttu = c2�xxu� 2�xxxxu� 2�0�t·u+ 2�1�t��xxu+ Jc.Fc

(21)
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Figure 8: Spectrogram of the stiff string (u0
l = Amaxsin(⇡ lh

L )) colliding with a point rigid barrier (↵ = 1.6) at x = L/2, from t = 0.5s,
for different values of Kc. From the left: Kc = 5 ⇤ 104N.m�↵ ; Kc = 5 ⇤ 105N.m�↵ ; Kc = 5 ⇤ 107N.m�↵ ; Kc = 5 ⇤ 108N.m�↵.

with:

Fn
c = �

H[n� t0
k ]

M
�t��

n+ 1
2

�t·un
, �n+ 1

2 =
1
2

�
�(un+1

ic ) + �(un
ic)

�

(22)
uic is the element of the vector ū at the point of application of the
collisions (on the node i = ic).
the finite difference scheme at the local point of the collision (node
ic) gives the following non-linear equation:

F(r) = r(1 + �0k) + b+
H[n� t0

k ]k2

⇢Sh
�(r + a)� �(a)

r
= 0

(23)
Given:
r = un+1

ic
� un�1

ic
,

a = un�1
ic

,
b = < ēc , (�2 � c2k2�xx + 2k2�xxxx � 2�1k�xx)ū

n >
+ < ēc , (2 + 2�1k�xx)ū

n�1 >

We use a Newton-Raphson algorithm to solve the scheme at this
particular point.

4. SIGNAL MORPHOLOGIES DUE TO COLLISIONS ON
STIFF STRINGS

4.1. Simulations and investigations

In order to make it easier to understand how the collisions mod-
ify the frequency response, we study the response of the sys-
tem without excitation force with the following initial condition:
u0
l = Umaxsin(⇡ lh

L ) (see figure 9).

Figure 9: Representation of the initial condition of the transverse
displacement of the string.

Here the string initially vibrates only on its first vibration mode
until it collides with the barrier at t0 = 0.5s. Then, we can ob-
serve a new distribution of the energy due to the frequency shift

of the mode, harmonic distortion and mode coupling (figure 8). If
we observe the left figure, we distinct clearly a frequency gap as
the obstacle appears and a few harmonics of this mode are gen-
erated. Then, a few other modes of the string are excited due to
mode coupling. This process expands itself as K gets higher. For
a really stiff barrier, very high frequency components are gener-
ated (up to 25kHz for K = 5 ⇤ 108N.m�↵) causing important
losses. Thus, all the components but the even harmonics disappear
quickly, creating a vibration node at the location of the obstacle
(here L/2).
The perceived sound is similar to a natural harmonic played on
a guitar for high values of K. For low values of K, the string
sounds like a bell as the barrier appear, and the frequency shift
bring back the sound to a regular string.

Figure 10: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at x = L/3, from t0 = 0, 5s, for Kc = 5 ⇤
108N.m�↵, and ↵ = 1, 6.

We study more specifically the cases that sound like a natural har-
monic (K � 1.108) because it is a clearly identified type of inter-
action and we are able to specify a pattern corresponding to this
behavior. The sounds generated for low values of K are peculiar
and it is hard to recognize what is the source of it. We describe
the pattern for the natural harmonic as following: if the considered
mode of the string does not have a vibration node at the exact lo-
cation of the obstacle, its frequency increases of a constant value
(⇠ f0/3 for xc = L/2) and a component appears in a symmetric
way below with a lower amplitude. Harmonic distortion and mode
coupling provoke the apparition of higher frequency components
in the whole audible frequency band (and above) corresponding to
other modes of the system {String + Rigid barrier}. These newly
excited modes provoke the apparition of higher frequency compo-
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nents themselves. This chain reaction induces important losses,
and lasts for a short duration after which only the modes with a
vibration node at the location of the obstacle remain.
From a perceptual point of view, the simultaneous presence of
frequency components created by harmonic distortion and modes
of the system create beats, roughness, and noisy-like signal at
high frequency.

This pattern varies with the position of the obstacle. Generally,
modes with a vibration node at the location of the obstacle keep
their frequency unchanged but may undergo some variations of
their amplitude (see the modes multiple of 3 for xc = L/3 on
figure 10). The modifications on the other modes depends on the
ratio between the vibration amplitude and the proximity of the
obstacle.

We introduce the scalar y, the transverse position of the rigid bar-
rier. The expression of � become � = Kc

↵+1 [uic � y]↵+1
+ .

Figure 11: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at (x = L/2;y = 0.065 ⇤U(t0 = 0.5s)), from
t = 0.5s, for Kc = 5 ⇤ 108N.m�↵, and ↵ = 1.6.

Figure 12: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at (x = L/2;y = 0.99 ⇤ U(t0 = 0.5s)), from
t0 = 0.5s, for Kc = 5 ⇤ 108N.m�↵, and ↵ = 1.6.

As y 6= 0, the frequency components get back to the natural vi-
bration modes of the string when the amplitude of uic get below
y. For instance, if y = 0.065U(t0) (with U(t0) the amplitude of
u at the time of appearance of the obstacle), we observe a short
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Figure 13: Schematic Time-Frequency representation of a plucked
stiff string colliding with a point rigid barrier at (x = L/2).

time of interaction (⇠ 0.1s), then the string gets back to its regular
vibrations with new initial conditions (see figure 11).
In the case of a really light touch (y0 = 0.99 ⇤ U(t0)), the pat-
tern is close to disappear, but we can notice a very short apparition
of new frequency components for t = 0.5s and some slight har-
monic distortion inducing mode coupling due to sparse collisions
for 0.5s < t < 1s (see figure 12).

4.2. Towards a non-linear interaction invariant

Based on the previous considerations, we propose a description of
the morphology of the signal resulting of the collisions between a
stiff string and a stiff barrier. The highly non-linear nature of this
interaction induces complex phenomena such as frequency shift,
harmonic distortion and mode coupling.
Still, it is possible to define a pattern that describes the time-
frequency content of the signal regarding the location and the na-
ture of the obstacle (see figure 13). One can notice two different
interaction phases:

· If the transversal position of the barrier is distincly lower
than the amplitude of vibration of the string, the interaction
is strong. In this case, we observe important modifications
of the modes’ frequency and the generation of new partial
tones due to harmonic distorsion and internal resonances.
The partial tones are clearly distinguishable around the first
modes, but it gets to noisy-like signal above the sixth mode.

· When the amplitude of vibration of the string is close to
the transversal position of the barrier, we get to an other
phase with sparse collisions. Here, we notice some har-
monic distorsion that transfers energy from the first modes
to the following ones, and it creates beats as the string is
slightly inharmonic.

Hence, the transversal position of the obstacle has an influence on
the duration of the strong interaction phase duration. The longi-
tudinal position of the obstacle define which modes are modified.
The material of the obstacle (stiffness and damping) will affect the
energy distribution within the modes as the harmonic distorsion
gets more important with the stiffness of the obstacle. This pattern
is specific to a point rigid barrier, it may be of interest to expand it
to a distributed contact model.
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5. CONCLUSION

In this paper, we aimed at identifying sound morphologies due
to nonlinear interactions between a stiff string and colliding
objects. This is the first step towards the development of synthesis
processes perceptually controlled. For that, we hypothesized that
nonlinear interactions are perceived through morphological sound
invariants. We based our investigations on a physical modeling
of the interaction phenomena to synthesize realistic sounds with
a perfect control of the experimental parameters. This led to an
experimental sound data bank that we analyzed to observe the
morphologies of the computed sounds in order to deduct typical
signal behaviors. Eventually, we defined specific patterns linked to
the nonlinear interaction that may be relevant perceptual cues for
sound recognition. These patterns mainly rely on frequency shifts,
harmonic distorsion and mode coupling that may be responsible
for the perception of roughness occurring during the interaction.

The next step is to model the invariant from a signal point of view
and to design a synthesis process with an intuitive control strategy.
This signal model will be validated through formal listening tests,
and will be possibly extended to more general sound textures.
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ABSTRACT

An algorithm for artistic spectral audio processing and synthesis
using allpass filters is presented. These filters express group de-
lay trajectories, allowing fine control of their frequency-dependent
arrival times. We present methods for designing the group delay
trajectories to yield a novel class of filters for sound synthesis and
audio effects processing. A number of categories of group de-
lay trajectory design are discussed, including stair-stepped, mod-
ulated, and probabilistic. Synthesis and processing examples are
provided.

1. INTRODUCTION

Allpass filters are of particular interest for audio processing be-
cause they are defined to have a unit magnitude frequency response
and exhibit time delays that vary with frequency. As passive, dis-
persive filters, they are found in a wide range of audio applica-
tions. For example, allpass filters are found in physical modeling
of stiff strings and percussion [1,2], guitar bodies [3], pianos [4,5],
and bells [6]. They are used for interpolation [7, 8] and decorre-
lation [9, 10]. The dispersive qualities of allpass filters are also
useful for artificial reverberation [11] and spring modeling [12].

Allpass filters can be used for system measurement and iden-
tification [13, 14]. They can be found in shelving and equalization
filters [15,16] as well as warped filters such as [17]. They have also
been used in loudspeaker crossovers for time-alignment [18, 19].

In a more abstract sense, one can find allpass filters in a range
of audio effects. Flanging, phasing, and chorus effects [20–22] can
be implemented with allpass filters, and [23–25] have used allpass
filters for distortion processing. Recently, [26] has used allpass
filters for peak limiting. Further developing the work of [27], [28,
29] have shown uses of allpass filters for abstract sound synthesis
by means of spectral delays and [30, 31] has shown methods for
using allpass filters for distortion effects.

In this paper, we present a method for designing allpass filters
from their group delay. We show that for an allpass filter, the group
delay can be interpreted as a trajectory of frequency-dependent
time delays, used here primarily for artistic effects. This group de-
lay can be arbitrarily formed so long as each frequency has exactly
one associated time delay. The result is a class of filters with a
range of applications including abstract sound synthesis, decorre-
lation, steganography, impulse response measurement, and audio
effects processing.

In section 2, we show how an arbitrary group delay trajectory
can be used to drive the impulse response of an allpass filter. Sec-
tion 3 introduces an equalization method to give the allpass filter
a near constant amplitude envelope. Section 4 discusses details
on the implementation of these filters and section 5 presents some

applications. Finally, section 6 concludes the paper and suggests
areas of future work.

2. METHOD

2.1. Allpass Filters

In discrete time, allpass filters are realized as having poles within
the unit circle and zeros that are reciprocally reflected outside the
unit circle at the same angle. A first-order allpass filter can be
described by the transfer function

G(z) =
�� + z�1

1 � �z�1
, (1)

and the difference equation

y(t) = ��x(t) + x(t � 1) + �y(t � 1) , (2)

where � is the position of the pole. Its impulse response is there-
fore

g(t) =

�
��

��

0, t < 0

��, t = 0

(1 � �)2�t�1, t � 1

, (3)

Its magnitude is by definition
���G(e�j�)

��� = 1 , (4)

and it has the phase response

�G(e�j�) = � arctan
(1 � �)2 sin(�)

(1 � �)2 cos(�) � 2�
. (5)

The group delay of a filter is defined as the negative derivative of
phase with respect to frequency,

�(�) = �d�(�)
d�

. (6)

The first order allpass filter has the group delay

�d�(�)
d�

=
1 � �2

1 + �2 � 2� cos(�)
. (7)

Given a group delay trajectory, we can calculate the phase,

�(�) = �
� �

0

�(�)d� , (8)

and since an allpass filter has unit magnitude, the time domain
impulse response is simply

g(t) = F�1
�
ej�(�)

�
. (9)

It is important to note that cascading multiple allpass filters, even
with different values for �, still creates an allpass filter.

DAFX-1

DAFx-197
DAFx-197



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

2.2. Choosing a Group Delay Characteristic

If the group delay is set to a constant value,

�(�) = k , (10)

(9) produces a band limited impulse. A linear chirp results if the
group delay changes linearly, traversing a fixed frequency band-
width in each time step,

�(�) = � � . (11)

If the group delay trajectory traverses each octave in the same
length of time, an exponential chirp is the result,

�(�) = � ln(�) . (12)

The observation here is that the group delay trajectory can be
viewed as a function that maps the frequency axis to a set of time
delays. Moreover, we can set this group delay trajectory to be
any arbitrary function which determines this time/frequency rela-
tionship, so long as each frequency corresponds to one time delay
value. Depending on the group delay trajectory, the resulting fil-
ters can be used as a type of novel audio effect. In some cases, the
impulse responses themselves have interesting sounds and could
stand on their own as a new synthesis method.

We will now discuss some of the myriad ways to set the group
delay trajectory to produce musical effects and sounds.

2.3. Stair-Stepped Group Delays

We can discretize the linear sweep from above into n ascending
segments, spaced by m in time with

�(�) =
�n ��

m
, (13)

where � is in normalized frequency (� � [0, 1]). This discretized
chirp can effectively be viewed as passing an impulse through a
set of n bandpass filters that are each delayed by a multiple of m
in time. For an example, see Fig. 1.

Since this stair-step equation has discontinuities introduced by
the floor function, it might be desirable to suppress the time/fre-
quency leakage by smoothing out the discontinuities. This can
be done, for example, with the hyperbolic tangent function. The
following expression,

�(�) = m

�
tanh

�
�

�n � 1
�

�
�
n

�
� 2

�

�

2 tanh
�

2
�

� +
1
2

+
��

n

��
, (14)

produces a smoothed staircase group delay where n determines the
number of segments and � is a smoothing parameter. When � is
close to 0, (14) produces an output similar to (13). As � increases,
the output of (14) becomes smoother and closer to the continuous
chirp from (11). Fig. 2 shows an example of a smoothed stair-step
group delay filter.

We can warp the frequency scale to control the frequency-
dependent energy contained in each bandpassed-segment,

�(�) =
�n �{�}�

m
, (15)

where �{·} is a function that determines the frequency axis warp-
ing, for example �{�} = �1/2 would cause the higher frequency
segments have a larger bandwidth.

Figure 1: A sixteen-segment stair-stepped filter. The group delay
is plotted on top of the spectrogram with a dotted black line like
done by [29].

Figure 2: A smoothed sixteen-segment stair-stepped filter, with
� = 0.05.

Figure 3: A sixteen-segment stair-stepped filter with time and fre-
quency warping.
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We could also warp the time scale for when these segments
appear with the function �{·}

�(�) =
� {�n ��}

m
. (16)

For example, �{x} = x2 would compress the time interval be-
tween the early pulses and spread the later ones out in time.

We can naturally combine both time and frequency warping
into the same expression,

�(�) =
� {�n �{�}�}

m
. (17)

Fig. 3 shows a filter with a group delay chosen to have even energy
per octave and to compress the time interval in the high frequen-
cies.

In (13), (15), (16), and (17), it may be beneficial to normalize
the numerator to the interval [0, 1] so the factor m does need to be
modified to compensate for global timing changes introduced by
time and frequency warping.

The group delay function can also be chosen to scramble the
order of the frequency segments. For example,

�(�) =

�
�����

�����

d1, � � [0, �1)

d2, � � [�1, �2)
...

...
dN , � � [�N�1, �N ]

, (18)

where {d1, d2, · · · , dN} are the delays for each frequency region.
An example of this “arpeggiated” group delay filter can be seen
in Fig. 4. If the delay times are allowed to repeat one can create
“chordal” structures, as seen in Fig. 5.

2.4. Modulated Group Delay

In addition to setting the group delay to create a “stair-step” func-
tion like described in 2.3, the group delay can also be modulated.
For example, a group delay such as

�(�) = k cos(2��f + �) , (19)

where k determines the total length of the filter, f the frequency
of the modulator, and � the initial phase, would create a filter that
oscillates—or “chirps”—up and down simultaneously in different
frequency bands f times across the audio band. When f is very
small (below about 5), the individual chirp trajectories are audible
(see Fig. 6). When f is between about (5, 100), the filter sounds
like a modulated signal (see Fig. 7). Above this modulator speed,
the energy starts to pile up at discrete points in time, likely asso-
ciated with the extrema of modulation, and the filter sounds like a
sequence of clicks or “echoes” (see Fig. 8).

We can, again, warp the frequency axis to adjust how many
oscillations occur within a certain frequency region. For example,

�(�) = k cos(2� �{�}f + �) , �{�} = �1/2 (20)

would have an equal number of oscillations in each octave. Now, a
large modulator f no longer stacks energy at discrete time points,
but rather creates other perceptual chirp trajectories, as seen in
Figs. 9 and 10.

Figure 4: A sixteen-segment “arpeggiated” (scrambled) stair-
stepped filter.

Figure 5: A sixteen-segment “chordal” (multiple frequencies at the
same time) stair-stepped filter.

Figure 6: A slow (5 Hz) sine-modulated filter. The group delay is
plotted on top of the spectrogram with a dotted black line.
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Figure 7: A medium (50 Hz) sine-modulated filter. The group
delay is plotted on top of the spectrogram with a dotted black line.

Figure 8: A fast (1 kHz) sine-modulated filter.

Figure 9: A sine-modulated filter with warped frequency axis.

Figure 10: A sine-modulated filter with warped time and frequency
axes.

Figure 11: A filter created with a sinusoidally modulalated group
delay that is soft-clipped on one side.

Figure 12: A “spring”-like group delay created by a fast, sinu-
soidal modulated group delay which is multiplied by an exponen-
tial ramp.
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To (19), we can further add amplitude modulation with the
modulator ma(�)

�(�) = k cos(2��f + �) ma(�) , (21)

or frequency modulation with the modulating signal mf (�),

�(�) = k cos(2��f + mf (�)) . (22)

Both of these methods can create interesting sounds with complex
spectra. Naturally, the modulating function used as the group de-
lay trajectory need not be a sinusoidal signal and there are many
other possibilities. For example, Fig. 11 shows a modulated group
delay filter with saturating distortion and Fig. 12 shows a sine mod-
ulated group delay with an additional exponential modulation used
to create a spring reverb-like effect.

2.5. Probabilistic Group Delay

Another way to “draw” the group delay trajectory is probabilis-
tically. If �(�) is randomly drawn from a Gaussian distribution,
the resulting impulse response will simply be a burst of enveloped
noise with a duration proportional to the width of the Gaussian.
We can also construct the group delay as a frequency dependent
“drunk-walk” path.

Let there be N maximum-delay waypoints, each defined at
some frequency. One such method would be to define the way-
points according to a perceptual criteria, like one waypoint per
ERB-band center frequency. By smoothly interpolating between
these waypoints, we define a frequency-dependent “area” within
which we will draw our group delay curve.

To generate the actual group delay trajectories, we divide the
maximum delay/frequency curve into � segments, distributed ac-
cording to some function of frequency, �{�}. If �{�} is linear,
more segments will be in the high frequencies. If �{�} is an ERB
warping, the segments will be approximately evenly distributed
across the range of human hearing.

For each of these segments, we randomly choose a delay that
falls within the maximum delay for that frequency. These seg-
ments are then either aligned along their leading or trailing edge
(e.g., each segment can be between [0, maxdelay], or centered
about their midpoints (�maxdelay/2, maxdelay/2). This now
defines a set of discrete frequencies where the group delay is set.
To define a continuous group delay function, we simply interpolate
this set of points.

When � is small (see Fig. 13), there will be relatively few
segments and the resulting filter may “sound chirpy,” and when �
is large (see Fig. 14), the result will sound more like enveloped
noise. In between these extremes, filters designed like this can
sound “metallic,” like what is shown in Figs. 15 and 16. In all
cases, the maximum frequency/delay curve defines an area that
will be filled by the � segments. By defining these filters with
a random process, we can generate a large number of mutually
decorrelated allpass filters that have the same type of sound.

2.6. Hand-Drawn Group Delay

There are naturally many ways to design the group delay. One
method which allows flexibility is to simply draw it by hand. Us-
ing a grid where the user sets a delay for each quantized frequency
(potentially on a warped frequency axis), and then smoothly in-
terpolating between the grid points and potentially resampling and
scaling in time is one such method. Additionally, one could draw

Figure 13: A probabilistic allpass filter with � = 75 and the seg-
ments aligned at t = 0. Note that a large frequency region was
selected to have constant group delay so the filter only effects a
narrow bandwidth.

Figure 14: A probabilistic allpass filter with � = 2000 and the
segments centered.

Figure 15: A probabilistic allpass filter with � = 100 and the
segments centered. The group delay is plotted on top of the spec-
trogram with a dotted black line.
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Figure 16: A probabilistic allpass filter with � = 1000 and the
segments aligned at t = 0. Note that some of the time/frequency
waypoints were set to have negative values.

Figure 17: A guitar track unprocessed (top) and processed through
the allpass filter shown in Fig. 13 (second), Fig. 4 (third), and
Fig. 12 (bottom). Note how the various filters affect the timing
of the spectral components of the guitar.

the maximum delay curve described in section 2.5 and then statis-
tically generate the group delay.

2.7. Processing

Not only can these filters have interesting sounding impulse re-
sponses, they can provide the basis for interesting audio processes.
For example, Fig. 17 shows the spectrogram of a guitar track pro-
cessed through allpass filters such as the ones shown in Figs. 13, 4
and 12. In the first case, one hears the “tonal” components of the
guitar accompanied by “chorus” of high-frequency chirps resulting
from time-smeared transients. The second filter creates an “arpeg-
giated” sound. The last filter adds a spring reverb-like sound.

3. EQUALIZATION

In these filters, energy is conserved since these filters are allpass.
However, the slope of the group delay determines the amount of
time over which each frequency region is spread. In regions where
frequencies are more spread in time, the instantaneous amplitude
will be relatively lower than regions where the frequencies are less
dispersed. In many cases, one would want the allpass filter that
results from the methods above, but sometimes it is desirable to
design a signal with a constant amplitude envelope. Our percep-
tion of the amplitude envelope of a signal is associated with a tem-
poral time constant. Equalizing the amplitude envelope could help
prevent unintentional changes in level.

Given a group delay characteristic, it is possible to calculate
the amplitude envelope as a function of frequency, as shown in
[29]. Denote by �± two close frequencies with difference � and
mean �,

� = �+ � �� � =
(�� + �+)

2
. (23)

An allpass filter will have �/� energy in the interval [��, �+].
This energy is roughly equal to the signal energy in the time inter-
val [�(��), �(�+)],

�
�

� |�(��) � �(�+)| a2(�)
2

. (24)

Taking the limit � � 0 and solving for the amplitude envelope a
yields

a(�) =

�
�
2

����
d�(�)

d�

����

�� 1
2

. (25)

By approximating the inverse of (25), we have a good equal-
ization filter u(�) that yields a near constant crest factor

|u(�)| � 1
a(�)

=

�
�
2

����
d�(�)

d�

����

� 1
2

. (26)

Naturally, this equalized filter will change the amplitude relation-
ships across frequency and brings out (by amplifying) the fre-
quency regions with slowly changing group delays.

4. IMPLEMENTATION AND COMPLEXITY

These filters can be computationally expensive as the implemen-
tation of these filters with complex group delay characteristics re-
quire a large number of filter sections. A single biquad allpass filter
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adds a cumulative 2� phase. Short filters without a large amount of
integrated group delay could be implemented with the methods de-
scribed by [32,33] or [34], however some of the filters described in
this paper are temporally so long or have such a significant amount
of integrated group delay that it would be impractical to implement
them in the time domain. Moreover, a time-domain implementa-
tion would add a significant amount of pure delay due to the large
number of filters in cascade. Instead, we implement these filters
by finding their impulse responses with (8) and (9). We typically
pre-compute the impulse responses offline and apply the filters to
input in real-time with a fast convolution algorithm [35–37].

Since we are using the Discrete Fourier Transform (DFT) to
find the impulse response related to a specific phase characteristic,
it is necessary to use a DFT long enough to implement the filter.
Since the group delay trajectory tells us how much each frequency
is delayed, we simply need a DFT length longer than the maximum
delay. If the DFT is not long enough, the specified delays will
alias.

If the group delay changes slowly and smoothly, there will
be little spectral leakage between the DFT bins. If the group de-
lay changes quickly or there are large discontinuities between fre-
quency indices of the sampled group delay, there is a higher likeli-
hood of spectral leakage. This can be partially mitigated by using
a longer DFT length. We typically use a DFT length that is twice
as large as the maximum delay and trim the length of the resulting
impulse response.

5. APPLICATIONS

The filters described above can be used in a variety of applications.
When the total duration of the impulse response is long, these fil-
ters can be quite musical on their own. They can be, and have been,
used as sound effects and musical components of electro-acoustic
music [38, 39]. When the total IR duration is short, these filters
can be useful for processing other sounds. For example, introduc-
ing chords and arpeggios to a piano, complex echoes and delays to
drums, “birdies” to the transients of guitar strums, and inharmonic
distortion to vocals. Some audio examples of these filters as sound
effects and processors can be found online at https://ccrma.
stanford.edu/~kermit/website/gdapf.html.

In addition to musical sounds, these filters have other practi-
cal uses. When the maximum group delay is shorter than about
30 ms, one does not necessarily perceive the frequency-dependent
delays and the IR of the filter could sound like a click. If multi-
ple, different filters are used together, these filters make effective
decorrelators.

Like for decorrelation, if one generates many mutually decor-
related allpass filters, one could foreseeably use them for steganog-
raphy, where a message or data is encoded with a set of filters that
can only be decoded by correlating the code with the correct key.

These filter can also be used for impulse response measure-
ment. While sine sweeps, Golay codes, and pseudo-random noise
sequences are effective tools for probing systems, they are all un-
pleasant and aggressive sounds. One could use the filter design
approach from this paper to create “musical” test signals that are
less irritating to hear.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated a novel method for sound pro-
cessing and synthesis which uses allpass filters formed by setting

a group delay trajectory that sets frequency-dependent delays. By
choosing the group delay characteristic, these filters can create a
large variety of interesting sounds either on their own or for pro-
cessing other sounds. These filters are passive and energy conserv-
ing, and are useful for abstract sound synthesis, audio effects pro-
cessing, decorrelation, steganography, and impulse response mea-
surement, among others.

We have shown several methods for constructing the group
delay, including stair-stepped, modulated, probabilistic, and hand-
drawn methods. We also showed a method for equalizing the all-
pass filter to have a near constant amplitude envelope. In addition
to creating new sounds and effects, these filters can be used to pro-
duce new takes on classic audio effects.

The filters presented here have all been static. Moving for-
ward, we would like to find an efficient method for implementing
these filters that can accommodate time-varying designs.
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ABSTRACT

Through this research, we develop a study aiming to explore how
adaptive music can help in guiding players across virtual environ-
ments. A video game consisting of a virtual 3D labyrinth was built,
and two groups of subjects played through it, having the goal of
retrieving a series of objects in as short a time as possible. Each
group played a different version of the prototype in terms of audio:
one had the ability to state their preferences by choosing several
musical attributes, which would influence the actual spatialised
music they listened to during gameplay; the other group played a
version of the prototype with a default, non-adaptive, but also spa-
tialised soundtrack. Time elapsed while completing the task was
measured as a way to test user performance. Results show a sta-
tistically significant correlation between player performance and
the inclusion of a soundtrack adapted to each user. We conclude
that there is an absence of a firm musical criteria when making
sounds be prominent and easy to track for users, and that an adap-
tive system like the one we propose proves useful and effective
when dealing with a complex user base.

1. INTRODUCTION

Most video game design challenges are related to the scope of pos-
sible player decisions. Current-generation open-world games offer
an enormous variety of places to go and things to do, which makes
designing specific player behaviour a daunting task. The prob-
lem of guiding a player through a big and complex virtual envi-
ronment is frequently solved by adding extradiegetic information
to the graphical user interface (GUI), thus reducing presence [1]
and immersion [2]. Games like Horizon: Zero Dawn1 overcome
this problem by justifying the overabundance of head-up display
(HUD) elements with an in-game excuse (in this particular case:
a high-tech tracking device the main character wears). However,
this is not always possible for every video game.

Through this article, we describe our study on how to guide
a player in a virtual environment exclusively using audio. Our
premise is that we can reduce the need of a cluttered GUI while re-
taining immersion and player performance, by letting participants
firstly choose their preferred sound attributes and then adapting the
soundtrack to these preferences.

In section 2, we start by analysing previously published work
on adaptive music and player navigation using sound clues. In
the next section, the experiment used to validate our proposal is
described; its results are later summarized in section 4. Lastly,

1https://www.guerrilla-games.com/play/horizon

in sections 5 and 6, we include a brief discussion on the implica-
tions of our findings and several conclusions about how these ideas
could be used in the design of a commercial adaptive music system
for video games.

2. PLAYER NAVIGATION AND ADAPTIVE MUSIC

The idea behind this article emerged from our previous work [3],
which suggested there could exist a correlation between variations
in the basic elements of a certain soundtrack and player decisions
during an interactive experience: harmonic, high-pitched melodies
seemed to attract users more efficiently than cacophonous, low-
pitched ones. However, participant’s reactions and behaviour var-
ied greatly depending on the result each user achieved during the
Bartle test [4]: certain groups of subjects were attracted to musi-
cal attributes which did not work as a lure for others. This led to
the conclusion that personal auditive preference is important when
using sound to orient players in video games.

We were also inspired by previous research with blind peo-
ple [5], which acknowledges the existence of a conceptual level,
in addition to a perceptual one, in the learning process associated
with scouring an unknown environment in search for clues that al-
low to build mental, 3D "maps". This kind of perspective is of
utmost importance for our research, because we base our work on
the existence of culturally attained categories which relate to for-
mal auditive parameters.

2.1. An adaptive music system

Adaptive music used in video games usually consists of an atmo-
spheric, non-spatialised soundtrack which changes in response to
specific events taking place in the virtual world. Said changes can
happen procedurally or be previously scripted.

Due to the existence of very different social groups in terms
of musical perception, we decided to build an adaptive, live music
system, so as to respond in real time to player decisions while they
play video games. This system is called LitSens [6, 7], and works
by automatically combining short fragments of music composed
by a human. LitSens was used in the present research as an audio
foundation for the game we utilised in the experiment, which is
described in section 3.

Our intention was to parameterise a series of basic musical
attributes, so as to be able to modify them in real time with ease
and efficiency. Our approach was similar to those of systems like
ANTESCOFO [8], which go beyond pitch in terms of simple audio
descriptors.
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Furthermore, LitSens approaches adaptive music from an emo-
tional perspective. The idea behind it is to adapt to player’s emo-
tional responses, in a way that allows a game designer to provide
an adaptive soundtrack without taking into account every possible
interaction or outcome. Wallis, Ingalls & Campana [9] approach
this problem in a very similar way: they extract certain compo-
nents, such as valence and arousal, from common emotional mod-
els, and apply them to music generation in real time.

2.2. Guiding players in virtual environments

The problem of guiding player movement in a virtual environment
is a common issue in game design. Some authors, like Milam &
El Nasr [10], have established a taxonomy of design patterns in
3D games, aiming to standardise these strategies, but academic
work on player orientation through sound is scarce. Additionally,
sound is not usually even taken into account when building these
guiding techniques: none of the five patterns proposed by Milam
& El Nasr make explicit use of sound. This opens an unexplored
field of possibilities for game designers, who usually rely on visual
clues.

It is not uncommon, however, to find alternative guiding tech-
niques based on a video game’s narratives. Earlier approaches, like
the one presented by T. A. Galyean [11], rely on a path established
by a narrative, which the user must follow to keep up. Recent com-
mercial video games, like The Stanley Parable2, Dear Esther3 or
Gone Home4 all rely on narrative elements (e.g.: the voice of a
narrator) to guide players to the next goal or important milestone.
However, these techniques also rely on small or highly controlled
virtual environments. Entangled paths or huge, open worlds re-
quire a different approach, and sound could be the key to solve the
problem of subtle navigation assistance.

2.3. Auditive preference and meaningful variations

Additionally, Eisenberg & Forde[12] show that it is possible to es-
tablish a series of simple predictors, like creativity, complexity or
technical goodness, which explain the variations in preference dur-
ing a human evaluation of music. Though people’s musical taste
or preference is commonly measured and evaluated with musical
genres in mind [13], we are interested in modifying simple auditive
features, which allow for a more flexible approach and are consis-
tent with an adaptive music system such as LitSens. We used com-
plexity, pitch and rhythm as the three modifiable attributes during
our experiment, as will be explained in section 3. This decision is
consistent with previous uses of musical complexity (in and out-
of-key notes, harmonic versus dissonant layering) [14], pitch (high
and low tone) [15] and rhythm (slow or fast) [16] to produce per-
ceptible changes when listening to audio fragments. The technique
we used to increase complexity was simply to introduce layers of
sound –formed by out of tune intervals and dissonant chords– that
disrupted the harmony of a base track. This can be appreciated
when comparing the two spectrograms depicted in figure 1. Pitch
and rhythm modifications were made without adding any layer to
the base mix; instead, we simply modified those values in real time
for the whole track using commands from the game engine.

As for what makes a sound "stand out" over others, a very
common opinion, based on classic works by Fletcher & Munson

2https://www.stanleyparable.com/
3http://www.dear-esther.com/
4https://www.gonehome.game/

(the famed Fletcher-Munson curves) [17] is that a higher pitch –
around 2000 and 5000 Hertz (Hz)– will usually dominate a mix
in terms of perceived loudness. However, it has been known for
a long time that listener’s perception of several auditive attributes,
included tone dominance, can be influenced by many different fac-
tors. Regarding pitch perception, in certain conditions[18], lower
frequencies can be dominant. In the context of this research, dom-
inance is a determinant factor when identifying and following spa-
tialised sounds.

3. EXPERIMENT DESIGN

The following experiment had the objective of exploring the re-
lationship between the presence or absence of adaptive music in
a video game and player performance while solving a labyrinth-
like orientation puzzle. It also measured the level of coherence
between users’ perception of sounds and their actual response to
them.

3.1. Design

Before starting with the experiment, all participants were randomly
distributed in two groups: A and B. Initially, both groups had the
same size (N = 17), though group A lost a subject due to hearing
health problems. Throughout the experiment, only two persons
were in the area at a time: one participant and one test supervisor.
There were four differentiated phases in every session: SAM test,
attribute selection, game playing and sociological survey.

Subjects from group A started by taking a Self-Assessment
Manikin (SAM) test [19, 20] about three pairs of sounds. Each
pair was played consecutively, and had a strong relationship with
one of the basic categories used to classify sounds in our test-bed
game. The sounds in every pair represented the two opposed con-
cepts for each of the following categories, presented in order in
the test: tone (low-high), structure (simple-complex) and rhythm
(slow-fast). The differences between the sounds of each category
were big enough to be easily noticeable, as can be seen in figure
1, and during the test all sounds were evaluated separately after
listening to each pair, in order to compare them.

The SAM test was passed in its 9-point scale version, by
means of a digital form which contained all three measurements:
emotional valence, arousal and dominance. This test uses the
Semantic Differential [21] as a basis, and simplifies it. Thus,
emotional valence measures "pleasure", and is strongly related to
bipolar adjective pairs such as unhappy-happy, annoyed-pleased,
unsatisfied-satisfied, melancholic-contented, despairing-hopeful
or bored-relaxed. Arousal, on the other hand, is related to pairs
like relaxed-stimulated, calm-excited, sluggish-frenzied, dull-
jittery, sleepy-wide awake, unaroused-aroused. Lastly, dominance
is related to adjectives like controlled-controlling, influenced-
influential, cared for-in control, awed-important, submissive-
dominant and guided-autonomous.

Subjects from group B were given the same test, but only eval-
uated one sound. This sound contained the default audio played by
their version of the game, classified as: slow, low and simple. This
evaluation was not taken into account later and it was performed
to give the subject of this group the same insight than the subjects
in group A about the auditive nature of the experiment, in order to
avoid possible bias.
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Figure 1: Spectrogram of simple (top) and complex (bottom) variations of the same sound.

Once finished with the test, subjects from both groups had to
launch our software, which ran as a full-screen computer game
developed with Unreal Engine 4 5.

People in group A (experimental group) were asked to se-
lect, from an in-game menu with three categories (rhythm, tone
and structure), the attribute for each of them (slow-fast, low-high
simple-complex), which, from their point of view, would make a
sound stand out over the rest. Thus, a total of 8 final outcomes
were possible. People in group B (the control group) were not
given this option, and played with default audio. No sound clues
were included to help users from group A decide: the only previ-
ous reference was the SAM test. This was done in order to evalu-
ate the coherence between subjects’ perception of what sound suits
them better and actual performance produced by their selection.

For group A, a personalized level was loaded after their prefer-
ences were specified. For group B, the level loaded with the default
sounds (low tone, slow rhythm, simple structure). Said level con-
sisted of a three dimensional labyrinth, played from a first-person
perspective. From a logical standpoint, however, its structure can
be considered two dimensional; it is depicted as a map in figure 2.

Players could move and look around using a keyboard (WASD
keys) and a mouse. Every user was told to look for and recover a
total of three statuettes inside this labyrinth, as quickly as possi-
ble. Elapsed time and number of statuettes recovered were shown
on the screen permanently to keep the player informed at any time
about his goal. The only way to recover a statuette was to step
on it. Every time one of them was picked up, a measure of total
elapsed time was stored in a log file. At the end of each session,
this log was retrieved and tagged with the correspondent partici-
pant number. From now on, we will call the tree time measure-

5https://www.unrealengine.com/en-US/what-is-unreal-engine-4

ments as follows, for convenience: t1 (first statuette), t2 (second
statuette) and t3 (third statuette, or total time).

Every statuette emitted a spatialised, monophonic music track
which blended with a base stereophonic soundtrack. The base
soundtrack was a low, synthetic drone, with no variations in tone or
intensity. For users in group A, the emitted track was modified to
adapt to their specified preferences in musical attributes. For users
in group B, the track was always the default one. Once recovered,
the statuette stopped emitting sound in every case, by means of a 2
second linear fade out. If the spatialised audio track was received
by the camera listener through a wall, a low-pass filter with a cutoff
frequency of 900 Hz was applied.

When all three objects were recovered, the game ended and
the application was closed. After finishing with the game, every
subject from both groups had to take a brief test to determine their
sociological profile. Data retrieved included: age, sex, country
of birth, level of education completed, presence of hearing prob-
lems, fondness for music and sound and performance when play-
ing video games.

Subjects were also asked if sound was useful when trying to
find the three statuettes inside the virtual labyrinth. Results from
this question constitute a variable we named "help index" (hi). A
Likert 5-point scale [22, 23] was employed for this and all ques-
tions requiring gradation, except for the SAM test, where a 9-point
scale was utilised.

Two leaflets with instructions were created, one for each
group. Every subject had to read only the pertinent one while wait-
ing to begin. These documents contained a detailed description of
all actions every user would have to take during the experiment.
Brief instructions on how to listen to the sounds and how to take
the SAM test were included, as well as keyboard and mouse con-
trols for the video game. All users were also told it was of utmost
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Figure 2: Diagram showing the layout of the virtual environment utilised during the experiment. There is a starting point (SP ) and three
collectibles (C) in the form of statuettes. Red circles represent the area of influence of each sound. Walls applied occlusion through a
low-pass filter, not depicted in the diagram. A capture of the game is also shown on the right.

importance to complete the level in as few seconds as possible, and
that they had to find three small statuettes to do so. The only dif-
ference between "A" and "B" versions was the lack of explanation
on how to evaluate pairs of sounds (since this was not necessary
for group B).

To evaluate results from both the 5 point Likert scales and the
9 point SAM scales a parametric, unpaired test (Student’s t test)
was utilised.

Finally, after finishing with the experiment, all subjects from
group A were asked to explain, in their own words, the reasons for
their attributes selection.

3.2. Hypothesis

Our hypothesis was that a statistical difference may be found be-
tween the two groups of users (A and B), in terms of performance
(measured in total time, t3), with the conditions established above.
Our independent variable is the presence or absence of a prefer-
ence selector at the beginning of the experiment that influences
music played in the game. We also aimed to find a relationship
between the initial selection of auditive features (available to par-
ticipants in group A only) and t3.

3.3. Demography

There existed two prerequisites participants had to meet so as to
take the experiment: the ability to hear properly and having played
at least one video game of the first person shooter (FPS) genre.
All subjects met these requirements, and were students (graduate
and postgraduate) or worked as lecturers in the field of Computer
Science.

In total, 33 subjects participated in our experiment, of which
16 were assigned to group A (composed of 14 males and 2 fe-
males) and 17 (with 15 males and 2 females) to group B. From the
total number, 29 were born in Spain, and the other 4 were from
Colombia, Bolivia, Switzerland and Venezuela. All of them were
native speakers of Spanish, which was the language used through-
out the whole experiment. Also, they shared similar cultural fea-
tures, and all but one had lived most of their lives in Spain.

Average ages in groups A and B were similar: 23,438 (A)
and 24,059 (B) years. The mode was 18 in both cases, as most
participants were first-year students.

68.8 % of the participants were undergraduate students,
whereas 6.3 % were studying a master’s degree at the moment.
The rest were Ph. D. students (12.4 %) or university professors
and researchers (12.5 %).

When asked if they played games frequently, most subjects
in groups A and B answered positively, with a mode of 5 out of
5 in both cases, and a mean of 4.5 (A) and 4.412 (B). They also
considered themselves good video game players, achieving a mode
of 4 out of 5 for both groups and an average of 3.688 (A) and 3.824
(B). These scores were slightly lower when asking them if they
were good with FPS games: the mode was 3 out of 5 in A and B,
while the averages were 3.5 (A) and 3.353 (B).

As for self-evaluation of their hearing proficiency, when asked
if they have good hearing, the modes were 5 (A) and 4 (B) out of
5, and the averages, 4.125 (A) and 4 (B). Besides, when told to
answer if they have a "good ear" for music, the mode was 4 out of
5 in both cases, and the averages were 3.688 (A) and 3.353 (B).

Musicians were selected and distributed evenly between
groups, with a total of 2 in each one. This was done to avoid
possible bias due to their knowledge of music and audio, and they
were the only participants which were not randomly distributed.
This process occured before starting with the experiment, and the
affected participants were unaware of it.

This leaves us with a surveyed sample which has a very good
perception of their own hearing, but with an average-to-neutral
confidence in their "musical ear".

4. RESULTS

The results of the previously described experiment (and its asso-
ciated survey) point to several statistically significant differences
between groups A and B in terms of both performance and self-
assessment.

Subjects from group A achieved a total average time of com-
pletion (t3) of 78.108 seconds, whereas participants in group B
took an average of 132.987 seconds. The median in group A is
75.694, while in group B is 100.668. The lack of similarity be-
tween average and median times in group B can be explained by
the presence of two clear outliers (as seen in figure 3), who com-
pleted the level in 369.250 and 367.020 seconds respectively. A
parametric analysis of these results can be consulted in Table 1.
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Figure 3: Difference between groups A and B in total time (t3).

Table 1: Student’s t-Test for total time (t3) in groups A and B.

Group A B
N 16 17

Mean 78.108 132.987
Standard deviation 27.908 96.090

Two-tailed P value: 0.0356

Because time was measured when every statuette was picked
up, not only total elapsed time gave an important insight about
player behaviour during the experiment. It is also quite illustra-
tive to look at how the difference in average time between the two
groups increases as every object is taken. t1 had an average value
of 22.068 for group A, and of 25.637 for group B, so the difference
between means equals 3.569 seconds. t2 has an average value of
41.854 for group A and of 53.398 for group B, producing a differ-
ence of 11.544 seconds. Lastly, t3 presents the biggest difference:
54.879 seconds.

As can be seen in Table 2, when it comes to the help index (hi),
there are also statistically significant differences between groups.
Out of 5, group A has a mean of 3.56, while group B scores 2.47.
The mode is particularly enlightening in this case: 5 in group A
and 1 in group B.

There does not exist a strong statistical relationship between
tn and the initial selection of auditive features, which was only
possible for members inside group A, as Table 3 shows. "High"
(9) "fast" (9) and "simple" (11) were the most common options,
however.

Table 2: Student’s t-Test for hi values in groups A and B.

Group A B
N 16 17

Mean 3.56 2.47
Mode 5 1

Standard deviation 1.46 1.59
Two-tailed P value: 0.0484

It is also worth mentioning that the attribute "complex" was the
least selected (only 5 users chose it). However, this same attribute
obtained the highest dominance score during the SAM test, with
an average of 5.875 and a mode of 7 out of 9. It also had the
highest excitement score, averaging 5.688 and with a mode of 7
out of 9. Additionally, general results from the SAM test were not
consistent with player selections of attributes before playing the
game (see Table 4).

It was not uncommon that, in spite of considering a complex
sound more dominant, players chose a simple one instead before
playing the game. Opinions around the very concepts of valence,
dominance or arousal when it comes to detecting spatial sound
were varied, and every user ended up choosing what appealed to
them most. For example, when asked about the reason for their
selection, 3 users mentioned "storms" or "thunder" as a reason
for considering low tones useful when trying to orient themselves.
They found those sounds "easy to track", "full of energy" or "very
deep". The rest gave similar reasons for their decisions, based on
personal experiences.
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Table 3: Features selected by group A participants and total time
achieved (t3).

t3 Tone Rhythm Complexity
40,283 High Fast Simple
42,159 High Fast Simple
45,318 High Fast Simple
57,027 Low Slow Simple
60,738 Low Fast Simple
66,320 Low Slow Simple
73,127 Low Slow Complex
73,483 High Slow Simple
77,904 High Fast Simple
81,639 High Fast Simple
84,315 High Fast Complex
92,305 Low Slow Complex
92,315 Low Slow Simple
95,468 Low Fast Complex
130,129 High Fast Complex
137,192 High Slow Simple

5. DISCUSSION

Considering the information retrieved through the previously ex-
plained results, we can extract a series of final deductions. First,
the independent variable (the presence or absence of an attribute
selector affecting music in the game) seems to be statistically re-
lated to the difference in total time (t3) obtained by users during
the experiment.

Besides, subjects in group A had a higher result in hi, which
means they perceived music as a helper more than participants in
group B. Precedents for this effect have not been found in pertinent
academic literature.

We have also observed that tn � tn�1 greatly increases with
every measurement –whenever a statuette was gathered. This is in-
versely proportional to the number of statuettes present in the map.
It is reasonable to think the amount of time elapsed in finding a
statuette can increase when their remaining number is lower, be-
cause the probability of finding them by chance is also reduced. A
need to backtrack and search more thoroughly also emerges when
there are fewer objects to retrieve. However, the increasing varia-
tion in average tn between groups A and B (see section 4) points
to another, more important correlation. If we take into account that
both prototypes (A and B) were identical except for the personal-
ized music, it is possible to link the differences in mean time to the
differences in audio.

Moreover, there were some counterintuitive aspects in the re-
sults. For example: the lack of consistency between SAM test
results and player preference when selecting attributes inside the
prototype could be happening due to multiple reasons. We have
not retrieved enough information during our experiment to give a
clear response to this particular matter, but several new and inter-
esting lines of research are open as a result. Our main hypothe-
sis for this unexpected behaviour is that the mere act of selecting
sound attributes while already playing the game may not be in line
with the mental state of the subject when answering the SAM test.
While the test is a more relaxed experience, which is not limited by
time constraints, the video game asks players to concentrate much
more, and gives them a clear goal. As a consequence, it is possi-
ble that different attributes are found dominant in these different

Table 4: SAM test results in 9 point scale for variations of the same
sound.

Attribute SAM scale Average Mode

1. High tone
Valence 5.938 7
Arousal 3.625 2

Dominance 4.5 5

2. Low tone
Valence 4.697 3
Arousal 3.152 2

Dominance 4.727 3

3. Simple structure
Valence 5.688 4
Arousal 3.563 3

Dominance 4.188 3

4. Complex structure
Valence 3.375 5
Arousal 5.688 7

Dominance 5.875 7

5. Fast tempo
Valence 6.063 7
Arousal 5.25 7

Dominance 5.188 5

6. Slow tempo
Valence 5.375 6
Arousal 3.438 3

Dominance 5.063 5

contexts, creating the mentioned variations in the results.
Another possible reason is that users learned to better identify

dominant attributes through the duration of the SAM test, taking
into account the specific variations in complexity, pitch and rhythm
presented to them. This would mean the first answers would be
less informed than the last ones, and that their decisions inside the
final selector would imply a previous and meticulous "weighting
up" of every possible option.

An appropriate new line of experimentation would involve dis-
tributing subjects in two groups in which the order of the test and
the attribute selection would be inverted. Also, the SAM test only
accounts for emotional scales (valence, arousal and dominance),
and different measures could be needed to determine how easy
to track a sound is for different persons, as sounds traditionally
considered to be more dominant may not be easier to track for
all users, and personal preference could be more important than
dominance when it comes to finding sound sources in virtual envi-
ronments.

Previous statements aside, user capacity to select attributes
and user performance are, nevertheless, statistically related in our
results. Consequently, we can state the mere ability to choose cor-
relates with a lower average time of completion in group A, when
compared to group B.

Other issues exist concerning data recovery and user distribu-
tion. For example: if we follow the Central Limit Theorem [24],
our presumption of normal distribution would only solidly apply to
groups with a number of participants (N ) equal or greater than 30.
However we want to note that our t3 histogram forms a bell-like
curve in both groups, even with less data, and the confidence inter-
val of the mean is high enough (95 %) to trust the results. Nonethe-
less, a bigger sample would be needed to increase the reliability of
the outcome. A similar problem is also the lack of women in our
sample (only 4 out of 33 participants), which produces a genre
bias and makes our retrieved data only strictly applicable to men.
We aim to solve these predicaments in future iterations of this re-
search.
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6. CONCLUSIONS AND FUTURE WORK

The most relevant conclusion we can extract from the present re-
search is the influence the mere act of selecting preferred attributes
has over player performance when solving our 3D labyrinth. This
effect, whilst somewhat predictable, was not verified in the past
in any other research, so we open the path to further explore the
consequences this causal relationship has in user behavior. For ex-
ample, we observed that user preferences when selecting sounds
differ from the ones chosen in the SAM test, so a future experi-
ment would be necessary to analyse the rationale of this behavior.

Additionally, a similar experiment, based on player orienta-
tion, but without any kind of spatialisation or multichannel audio
(that is: playing sound in mono in all channels), may help us elu-
cidate if there are purely musical attributes that can make players
take one path or another by themselves.

The increase in performance achieved when using adaptive,
spatialised music may also make a preference selection system like
the one we propose useful in different 3D environments where the
inclusion of a GUI is not an option (such as virtual reality interac-
tive experiences).

We noted also the surprising variety in attributes selected by
subjects in group A. This attribute variety suggests the existence
of a very complex population in terms of auditive preference when
it comes to player orientation. Analysing this aspect in a bigger
population and in more detail may prove useful for understanding
what a "dominant" sound is in this context.

Another step we would like to take in the future to further
validate our system would be to include LitSens in a commercial
first-person video game and test whether we can guide players in
bigger, more complex virtual environments.

Also, the development of an intelligent system integrated in
LitSens, as a way to adapt to player musical preferences without a
previous test, might improve immersion while reducing even more
the amount of GUI elements needed. As the mentioned system al-
ready has the capacity to produce continuous adaptive music, only
a new logic for the automatic selection process should be needed.

Lastly, it would also be useful to research how the level of
presence achieved by systems which rely on GUI elements to
guide a player varies when compared to systems using only sound
to achieve similar results.

Consequently, the next experimental iteration for LitSens
would have to take place in two separate steps: On one hand, the
development of an intelligent system which would take into ac-
count player actions and camera movement to evaluate how users’
context affects auditive predilections and consequently how this
preferences impact performance.

On the other, an experimental validation with three groups of
users (N � 30), which ought to include an implementation of the
system in a commercial video game with open world environments
and a presence test for all subjects (such as the Temple Presence
Inventory [25]). Again, participants from group A would have
access to adaptive, spatialised music, while group B would lis-
ten to a default, non-adaptive but spatialised soundtrack. Group C
would listen to adaptive audio without any spatialisation (mono).
Performance would be tested in terms of time when completing
a navigation-related task, and camera movement would also be
recorded.

We think that there is still much room for improvement in the
field of intelligent management of sound systems for user naviga-
tion, especially when compared to the current state of image-based

systems, which are much more developed. Audio is a less explored
field in terms of semantic guidance, but it could substantially im-
prove immersion and presence in virtual environments and be a
useful tool for game designers. This is especially true when devel-
oping first-person or virtual reality experiences which cannot rely
as heavily on GUI.
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ABSTRACT
Sound production by means of a physical model for falling ob-
jects, which is intended for audio synthesis of immersive contents,
is described here. Our approach is a mathematical model to syn-
thesize sound and audio for animation with rigid body simulation.
To consider various conditions, a collision model of an object was
introduced for vibration and propagation simulation. The gener-
ated sound was evaluated by comparing the model output with
real sound using numerical criteria and psychoacoustic analysis.
Experiments were performed for a variety of objects and floor sur-
faces, approximately 90% of which were similar to real scenarios.
The usefulness of the physical model for audio synthesis in virtual
reality was represented in terms of breadth and quality of sound.

1. INTRODUCTION

The sound in computer generated (CG) animation is created man-
ually by the sound designer. Some sounds cannot be always real-
ized, for example, the sound of a giant robot or a fictional weapon.
Such sounds are prepared by processing or by using synthetic sounds
that match the image in every single scene. Experience and the cre-
ative sense of the creator are important in the processing and syn-
thesis of good sound. It is inconvenient to create a large number
of sounds manually. In immersive content, it is necessary to create
sounds to match the user’s movement and the situation. However,
it is difficult to always synchronize the sound with the video tim-
ing and impression. In this paper, the term "impression" indicates
whether the sound matches the object and the phenomenon seen in
the video. With a physical model, it is possible to generate a good
sound from the physical information of the CG generation. In ad-
dition, irregular phenomenon, in which it is difficult to match the
sound with the image, can be managed using synthesized sound. It
can also be used for a fictional phenomenon. This study addresses
the physical model for sound synthesis of the sound of a falling ob-
ject, namely a huge sword, and the virtual dropping sound of the
weapon with the aim of creating an automatic sound generation
system corresponding to them.

There are two approaches to generate sounds of irregular move-
ments such as dropping of objects. The first method is a statistical
model that creates large quantities of transition models and attenu-
ation models based on dropping sounds[1]-[4]. With this method,
it is possible to generate dropping sounds that are very close to the
real sounds and match the related images. In addition, by creating
a model in advance, the generation process is completed in real
time. Therefore, real-time sound generation is possible. However,
it is not suitable for generating a virtual dropping sound because it
is impossible to prepare a real thing. Another approach, which is a
physical model, is a method for reproducing object vibration using

physical simulation[5]-[11]. It is possible to generate dynamically
natural sound based on rigid body simulation of CG animation and
three-dimensional data in this method; it is also possible to gener-
ate virtual dropping sounds by appropriately setting the physical
model and parameters.

The problem with the physical model is that the simulation
cost is enormous and it takes time to generate the required sound.
In the previous study[9], it was necessary to limit the frequency
of vibration due to the cost of computation. As a result, high-
frequency sound could not be generated and the sound had a boxy
impression. Because it cannot handle huge objects due to high
calculation cost, it can be said that it is insufficient as a synthesizer
for virtual dropping sounds. In the above-mentioned research, the
natural vibration mode is calculated by the finite element method
(FEM) based on the three-dimensional data of the object, and the
vibration of the object is precisely reproduced. The vibrations of
all shapes such as complicated shapes and objects composed of a
plurality of parts can be reproduced, whereas there are modes that
do not need to be considered depending on the shape of the object;
therefore, extra calculations are assumed to occur.

In this paper, we restrict the shape of the object to a bar, and
generate a falling sound using a simple model that considers only
sounds that can be heard. When limited to bars, we assume that the
sonic vibration is only bending vibration. We simulate the vibra-
tion with a bending vibration model with reduced lattice points
and dimensions when compared with the conventional method.
Because the torsional vibration of the rod is smaller in amplitude
than the bending vibration and the stretching vibration is an ultra-
sonic wave in the audible range or higher, it can be anticipated that
the sound does not change considerably even when using a simple
model with only bending vibration. We will construct a system
that reduces the computational complexity while maintaining the
quality of sound, and which can be used to generate the dropping
sounds of huge objects.

2. PHYSICAL MODEL FOR DROPPING SOUND
SYNTHESIS

2.1. Various dropping sounds

Various situations can be considered for the dropping phenomenon.
The phenomenon also changes if the shapes and materials of the
objects are different. In addition, the movement undergoes com-
plex changes depending on the manner of dropping. Due to these
factors, various dropping sounds having different tone pitch, vol-
ume, tone color, attenuation, and timing are generated. Particu-
larly, it is difficult to control the movement at the time of fall;
therefore, it is very difficult to retrofit or prepare in advance a
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falling sound that matches the image. Figure 1 shows the spec-
trograms of sounds when the same object is dropped on different
floor surfaces. The main physical phenomena that emit sounds
are the collision between the floor surface and the object and the
vibration of the object due to the collision.

Figure 1: Spectrograms of sounds of a falling aluminum rod. The
rod is a round bar having a length of 15 cm and a diameter of 1
cm.

Collision sounds are represented as pulse shock waves that
vary depending on the physical properties of object, the floor sur-
face, and the collision speed. A vibration sound is represented
by a periodic function, which is the sum of a number of eigen-
modes. There are three types of eigenmodes: bending vibration
(transverse wave), stretching vibration (longitudinal wave), and
torsional vibration. The intensity and attenuation of each eigen-
mode change depending on the position and intensity of the ex-
ternal force. These phenomena are repeated by the rebounding
of the dropping object. Because speed and attitude of the object
vary depending on each bounce, the collision sound and vibration
sound also change accordingly. With recorded samples and gen-
eral sound effects, it is difficult to reproduce dropping sounds that
variously change depending on conditions. In a virtual space, ob-
jects are grasped and moved with high degree of freedom. There-
fore, an acoustic generation engine without restrictions on move-
ments is necessary.

2.2. Related researches

Sound source generation using physical equations and physical pa-
rameters has been studied for phenomena accompanying irregu-
lar movements such as the sound of fluids like water, the rubbing
sound of clothes, and the sound of a flame [12]-[14]. There are also
studies on the dropping sound of objects. Sound sources suitable
for individual objects are generated by calculating the eigenmodes
of falling objects by eigenvalue analysis[5]-[11].

As these studies use a three-dimensional vibration model, the
amount of calculation is huge. Therefore, it is necessary to set the
upper limit of the frequency, whereupon the generated sound be-
comes a muffled impression. Furthermore, it cannot handle huge
objects that make the number of nodes extremely large. Three-
dimensional vibration analysis can reproduce all eigenmodes bend-
ing, stretching, and torsional vibrations. However, depending on
the shape of the object, there are eigenmodes whose frequencies
are outside the audible range; therefore, it is necessary to select
the vibration model that is most suitable for sound generation.

In addition, the initial condition of vibration is focused only
on simple impulse excitation. Depending on the difference in the

floor surface and the collision speed, the force applied to the object
at the time of collision changes differently, and it is expected that
it will also affect the subsequent vibration. To practically apply the
physical model, it is necessary to consider a dropping sound gen-
eration model that can cope with a greater variety of phenomena
and can ensure good sound quality.

3. PROPOSED METHOD

3.1. Overview of dropping sound generation system

The sound generation system consists of two processes. The first
process is sound modeling, which generates sound sources us-
ing physical information and physical models. Another process
is sound rendering, which generates an acoustic field based on
the generated sound source and the spatial information. A desired
sound is generated by the arrival sounds based on the sound field
obtained through these processes and the observation point.

Physical information and spatial information are input to the
system. In this system, the numerical values related to physical
properties, shape, speed of the object, and the observation point are
set. The sound generation is performed according to the phenom-
ena in the image by quoting the shape and behavior data from the
physical engine of the CG animation. Various parameters are as-
signed to the physical model of collision and vibration to generate
the collision waveform and the vibration waveform. The vibration
model is a bending model in which an object is regarded as a rod.
The sound that reaches the ears is generated through sound render-
ing of these waveforms. In this paper, we synthesize the sound of
a dropped object by solving the wave equation with the collision
waveform and vibration waveform as the boundary conditions.

Figure 2: Overview of a dropping sound generation system

3.2. Bending vibration model

The Euler–Bernoulli beam is a model expressing the vibration of
a bar only by the deflection deformation. Because of the bending
deformation, the inside of the curve shrinks and the outside elon-
gates in the axial direction, and the restoring force is created. For
each material, the ratio of the restoring force to the deformation
is given as the elastic modulus or Young’s modulus E. The fun-
damental equation of the Euler–Bernoulli beam is obtained from
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the elastic curve equation and the equation of motion. The elas-
tic curve equation, which expresses the displacement when a bar
receives an external force, is given as follows.

M = �EI
�2w
�x2

(1)

M is the bending moment. Let w(x, t) be the displacement at po-
sition x and time t. Further, I is the moment of inertia of the area,
� is the mass density of the object, and A is the cross-sectional
area. The relationship between the bending moment M and the
stress V applied to the object can be expressed by the following
equation.

dM(x)
dx

= V (x) (2)

By applying this to the equation of motion, we obtain the fun-
damental equation of the Euler–Bernoulli beam. Considering the
small section �x of the bar, the external force is F = �x dV (x)

dx =

�x d2M(x)
dx2 and weight is µ�x (µ is the linear density of the bar);

the acceleration can be expressed as d2w/dt2. Therefore, the
equation of motion related to the bending of the bar is as follows.

�x
�2M(x)

�x2
= µ�x

�2w
�t2

(3)

By deleting �x on both sides and substituting the expression (1)
for M on the left side, the following equation is obtained.

�2w
�t2

+
EI
µ

�4w
�x4

= 0 (4)

The Euler–Bernoulli beam is a model that considers only the
bending deformation of the object, so it is strictly different from
the actual vibration. Therefore, when handling a short bar with
a small slenderness ratio of the object, the frequency of vibration
calculated by the above equation becomes higher than the actual
value. This is an error, which occurs because the rotational inertia
and the shear deformation of the entire bar are not considered. It
is easier to rotate the entire object with the shorter bars, which in-
creases the rotational inertia. Moreover, when the ratio of the cross
section to the length increases in the short bar, the ratio of shear
deformation to the bending deformation also increases and cannot
be ignored. The Timoshenko beam is a model that considers these
effects, and is therefore used in this paper.

The Timoshenko beam expresses the vibration of a bar by flex-
ural deformation and shear deformation. Shear deformation is a
displacement in the cross-sectional direction, and a restoring force
against the displacement occurs. The elastic modulus is expressed
by the rigidity rate G. Rotational inertia is applied to the Timo-
shenko beam to derive the basic equation.
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AG�
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�x

� �

��
= �A

�2w
�t2

AG�

�
�w
�x

� �

�
+ EI

�2�
�x2

= �I
�2�
�t2

(5)

Let �(x, t) be the rotation angle of the section at position x and
time t, and let the Timoshenko coefficient be �.

Next, these partial differential equations are solved numeri-
cally by calculus of finite differences. The differential terms are
substituted with the central difference of the second-order preci-
sion with respect to both temporal and spatial derivatives of the
fundamental equation.
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(6)

i is an index on space, and let wi
j be the displacement at time

step j. �x, �t are discrete widths of space and time. In or-
der to ensure the stability of the calculation, the set value of the
discrete width needs to satisfy the following Courant–Friedrichs–
Lewy(CFL) condition.

|�| < 1, � =
G�
�

�
�t2

�x2
� �t2

2�x

�

|�| < 1, � =
AG�
�I

�
�t2

2�x
� �t2

�
+

E
�

�t2

�x2

(7)

Because the propagation speed of the elastic vibration is different
depending on the physical property data, the discrete width is set
so that �, � become sufficiently small for any physical property.

The oscillation of the object is simulated by time evolution of
the differentiated basic equation. The free edge boundary condi-
tion is used, as the object is free at the time of vibration after the
collision. The free edge boundary condition in the Timoshenko
beam model is given by the following equation.

��
�x

����
x=0,l

= 0,

�
�w
�x

� �

�

x=0,l

= 0 (8)

The derivative terms in the boundary condition are also substituted
with the difference formulas.

�2
j � �0

j

2�x
= 0,

w2
j � w0

j

2�x
� �1

j = 0

�N
j � �N�2

j

2�x
= 0,

wN
j � wN�2

j

2�x
� �N�1

j = 0
(9)

N is the end of the spatial index, and the elements of the indices
0 and N are dummy elements for the free boundary condition.
For each calculation process of the explicit method, we update the
displacement and rotation angle at both ends of the object using
these boundary conditions.

Next, the vibration attenuation model will be explained. Rayleigh
damping is used in this system. Rayleigh attenuation is a model
that takes into consideration two types of attenuation: external
damping (viscous damping) and internal damping (viscoelastic damp-
ing of the object). The following equation is obtained by adding
the attenuation term to the Euler-Bernoulli beam in the expression
.

�2w
�t2

+
EI
µ

�4w
�x4

+ �
�
�t

�
EI
µ

�4w
�x4

�
� ��A

�w
�t

= 0 (10)

� and � are coefficients for external attenuation and internal
attenuation. As approximate values of these attenuation coeffi-
cients can be defined for each material, a database of attenuation
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coefficients is prepared along with physical property values such
as density and Young’s modulus.

Similarly, considering the attenuation in the Timoshenko beam,
the fundamental equation becomes as follows.

�
�x
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�
1 + �

�
�t

� �
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�x
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��
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�
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� �
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� �

�
+ EI

�
1 + �

�
�t

�
�2�
�x2

= �I
�2�
�t2

(11)

The relationship between � and � and the loss factor � is ex-
pressed by the following equation.

� = �� +
�
�

(12)

� is the angular frequency of vibration and the loss factor has fre-
quency characteristics. The external attenuation shows a character-
istic that is inversely proportional to the frequency, and the internal
attenuation has a characteristic proportional to the frequency. In
this study, these attenuation coefficients are cited from [10].

3.3. Collision model

Impact noise is the change in air pressure exerted by the deforma-
tion of the object occurring during the action of the impact force.
The literature [16] is a study targeting collision sounds of steel
balls. A steel ball with a diameter of 5 cm is used in the experi-
ment, but in this case, the fundamental mode of the vibration sound
is beyond the audible range and analysis is performed by consider-
ing only the impact sound. According to the literature [16], the im-
pulsive sound is a pulse-like waveform, and the peak sound pres-
sure of the pulse is proportional to the acceleration and volume of
the object and is inversely proportional to the distance.

p(x, y, z; t) =
�a2

4R
�
�t

�
U

�
x�, y�, z�; t � R

c

��
(13)

p is the sound pressure at time t at the observation point (x, y, z),
and U represents the velocity at the point (x�, y�, z�) of the sound
source. In addition, let a be the radius of the sphere, R be the
distance between the sound source and the observation point, � be
the mean density of air, and c be the sound velocity.

The object vibrates due to the collision. Therefore, the force
applied to the object by the impact is calculated and used as the
boundary condition of the vibration model. The force applied to
the object at the time of collision can be predicted from Hertz’s
solid contact theory. The deformation d(t) due to collision when
the collision surface is spherical is obtained by the following for-
mula.

d(t) = F (t)2/3

�
C2

R

�1/3

(14)

F (t) is the force working at time t and R is the radius of the object.
C is defined as follows.

C =
3
4

�
1 � �0

2

E0
+

1 � �1
2

E1

�
(15)

Let E0 be the Young’s modulus of the floor and nu0 be Poisson’s
ratio of the floor. The constant with subscript 1 is the correspond-
ing value of the object. The contact time � can also be calculated
from these parameters.

� =
4
�

�� (2/5)
5� (9/10)

�
m2

r

g2vi

�1/5

g =
4

5C

�
R, mr =

m0m1

m0 + m1

(16)

mr is the relative mass of the object and the floor surface, m0 is the
mass of the floor, and m1 is the mass of the object. The following
equation is obtained from the relationship between the momentum
of the falling object p = m1vi and the excitation force F (t).

Fave =
2m1vi

�
(17)

Using this Fave, the time waveform of the collision excitation
force is modeled as a sine wave.

F (t) = Fave

�
1 � cos

�
2�t
�

��
(18)

The vibration corresponding to the change of collision can be
generated by giving the time waveform of the external force as the
boundary condition for vibration simulation. Even when the object
has a shape other than a sphere, the external force waveforms can
be calculated using appropriate models [17]. The pulse sound of
the collision itself is reproduced by giving the time history d(t)
of deformation due to collision as the boundary condition of the
sound propagation simulation.

Figure 3: Force history F (t) and coordinate history d(t)

3.4. Dropping rigid body simulation

The vibration model and the collision excitation model are applied
to the dropping of the object. The collision speed can be obtained
with

�
2gh using the object’s height h and the gravitational accel-

eration g. Next, using the coefficient of restitution of the floor and
the object, the height after reflection is obtained and the speed at
the time of re-impact is calculated. By repeating this, it is possible
to obtain the vibration condition for the object bouncing from the
floor surface. However, the coefficient of restitution is a numer-
ical value involving complicated physical properties and shapes,
and it is difficult to prepare a physical property such as density
or Young’s modulus for each material. Moreover, at the time of
falling, the object rotates about its center of gravity; therefore, re-
pulsion breaking processing is required.
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In the generation of CG animation, the movements of a rigid
body are reproduced by performing arithmetic based on the phys-
ical law so as to express falling and collision with more realistic
behaviors. Bullet is a free physics engine, which is used in many
3DCG creation software (Maya, Blender, etc.). In order to obtain
a sound consistent with the image, it is appropriate to use rigid
body simulation information contained in the image. In this paper,
we use rigid body simulation with Bullet. In Bullet, it is possi-
ble to set the coefficient of restitution and the friction coefficient
for each object. Using these values as parameters for sound gen-
eration, we obtain the collision timing, velocity, and shape of the
colliding surface from the rigid body simulation in Bullet.

Figure 4: Coordinate, velocity, and collision timing of an object
obtained from Bullet

3.5. Sound rendering

Acoustic processing based on the positional relationship between
the sound source and the observation point is required to obtain the
result of the vibration simulation as a sound. In the previous study
[9], the amplitude of each mode was calculated from the positional
relationship between the sound source and the observation point
by FFAT(Far-Field Acoustic Transfer) map. An FFAT map is a
model of the sound field around the object based on the Helmholtz
equation, which is obtained by calculating the phase and amplitude
for each mode by eigenmode analysis.

�2p(x) + k2p(x) = 0 (19)

p(x) is the sound pressure at position x, and the wavenumber is
k = �/c (sound speed c, each frequency �).

With this differential equation, the sound field is estimated by
assigning the displacement of the object surface obtained from
sound modeling as the Neumann boundary condition. A sound
field is created for each vibration mode, and the sound fields of all
modes are synthesized to generate the sound field of the vibration
sound.

In this research, sound wave propagation is reproduced by di-
rectly solving the wave equation, which is the basis of the Helmholtz
equation in the FDTD method. The wave equation is given by the
following equation.

�2p(x, t) +
1
c2

�2p(x, t)
�t2

= 0 (20)

The boundary condition based on the vibration of the object is as
follows.

�p(x, t)
�n

= ��man(x, t), x � � (21)

Let �/�n be the normal derivative of the object surface �. �m

is the density of the medium. Air is usually the medium, and air
vibration on the object surface can be obtained by using rhom =
1.2041kg/m3. an is the acceleration of the surface of the object
and can be obtained by differentiating the second-order displace-
ment of the object surface with respect to time. The boundary
conditions given as differential equations are differentiated, and
conditional expressions for the sound pressure at the boundary be-
tween the object and the medium are obtained. We simulate sound
propagation using this condition and the wave equation (Fig. 5).

The recording environment is reproduced for the evaluation
of the generated sound. Because the recording environment is an
anechoic room, a perfectly matched absorption boundary layer is
set around the calculation area so that reflection of waves from the
wall do not occur [18].

Figure 5: The generated spatial acoustic field

4. EVALUATION

In order to evaluate the bending vibration model, we simulated the
vibration of the object and compared it with the recorded vibration
sound. Next, dropping sounds were generated under various con-
ditions, and spectrograms were compared with the actual sound
sources. The shape and physical property parameters of the tar-
geted object were set as shown in Tables 1 and 2.

4.1. Evaluation of vibration sound

For object A in Table 2, vibration was simulated with shock ap-
plied to the end of the rod as the initial condition. The air vibration
was simulated at a position 5 cm away from the end of the rod in
the direction perpendicular to the axis. It was found that although
there was a numerical error from the actual sound, a sound with no
incongruity in terms of the sound impression and height was gen-
erated. Figure 6 compares the spectrums of the actual sound and
the generated sound. It was understood that the natural frequen-
cies were roughly coincident, and the amplitude of the mode com-
ponent was almost faithfully reproduced. For eigenmodes above
15,000 Hz, the actual sound and intensity were different and could
not be reproduced satisfactorily, but because the frequency was
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Table 1: Physical property parameters of the material

Material Density
(kg/m2)

Young’s modulus
(GPa)

Rigidity ratio
(GPa) Poisson ratio Internal damping External damping

Aluminum 2698.9 70.3 26.1 0.345 3E-8 5
Brass 8411 100.6 37.3 0.35 3E-8 5
Iron 7874 211.4 81.6 0.293 4E-8 0.1

Wood 800 11 4.23 0.3 2E-6 60

Table 2: Shape parameters

Object name Material Length(m) Width(m) Thickness(m) Cross section shape
Object A aluminum 0.15 0.01 0.01 circle
Object B aluminum 0.15 0.01 0.01 rectangle
Object C brass 0.15 0.01 0.01 rectangle
Object D iron 0.30 0.008 0.008 circle
Object E wood 0.15 0.005 0.005 rectangle
Object F iron 10 0.3 0.07 rectangle

close to the upper limit of the audible range, it was considered that
there was no great influence on the sound impression; therefore, it
was not evaluated this time.

Figure 6: Vibration sound spectrum of object A. Comparison of
synthesized and recorded sounds.

4.2. Evaluation of dropping sound

The sound of the falling object was evaluated for the objects B to
E. We set various parameters and generated the dropping sounds.
The object B had a metallic lightweight sound impression. The
object C was heavier and softer than B, and the object D had a
hard metallic sound. Natural dropping sounds were generated for
aluminum, brass, and iron bars. Compared with the actual drop-
ping sound, the height of the vibration sound of each object could
almost be reproduced, and the vibration corresponding to the dif-
ference in material and shape could be generated. Furthermore,
the object E which was a wooden rod, had a fast decaying dry
sound, which was close to the impression of the actual sound. By
defining the damping coefficient for each material, a natural falling

Table 3: Comparison of natural frequencies.

Mode No. Recorded Generated Relative error
1 303 (Hz) 304 (Hz) 0.33%
2 831 823 0.96%
3 1627 1606 1.29%
4 2675 2643 1.20%
5 3979 3928 1.28%
6 5532 5454 1.41%
7 7319 7211 1.48%
8 9330 9191 1.49%
9 11,568 11384 1.59%

10 14,006 13,779 1.62%
Average — — 1.26%

sound was obtained even for an object made of material with great
difference in hardness and weight.

The objective evaluation of each generated sound is as fol-
lows. The recall ratio of the eigenmode is obtained by dividing the
matching modes of the recorded sound and generated sound by the
number of all modes. The relative error of the frequency is used
as the condition for the match. A mode in which the relative error
was less than 6% was regarded as the matching mode. The relative
error of 6% was approximately the same as the chromatic scale,
which was the minimum unit of the pitch.

We also generated the virtual falling sound of a huge sword us-
ing the system. The parameters correspond to object F in Table 2.
The shape (the length, width and thickness) of a general Japanese
sword was measured as a square bar and the value was magnified
by 10. An image was created using the same physical parameters.
A heavy metal sound was generated according to the movement of
the drop, and a virtual falling sound with an impression suitable
for the image was obtained.
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Table 4: Evaluation data

Object Generated mode Recall ratio Frequency relative error Average power error
Object B 4/6 66.7% (4/6) 3.43% 5.65 dB
Object C 3/3 100% (3/3) 1.52% 17.12 dB
Object D 11/13 69.2% (9/13) 2.66% 12.15 dB
Object E 5/8 62.5% (5/8) 4.11% 8.16 dB

Figure 7: Dropping sound spectrogram of object D. Comparison
of recorded and synthesized sounds.

Figure 8: A huge falling sword simulated by Ballet

4.3. Discussion

For bars with a circular cross section, sufficient vibration sound
reproduction is possible even with models with only flexural vi-
bration. This is because the torsional vibration does not generate
sound waves in a circular cross section. However, for bars with
rectangular cross section, a strong torsional vibration mode oc-
curred depending on the collision position. In the model with only
bending vibration, a monotonous impression sound was generated
rather than the actual vibration sound due to the lack of torsional
vibration mode.

It is presumed that the power error is due to the mismatch be-
tween the attenuation and error of the excitation condition. Vi-
bration suitable for the sound made by bars of various metals and
wood was obtained by setting the damping coefficient for each ma-
terial. However, because we did not consider energy absorption
from the object to the floor, we could not sufficiently reproduce the
drop to the soft floor surface. The floor, which was thin and easily
vibrated, was not reproduced because of the same reason. We be-

lieve that the exchange of energy can be applied to the generation
of the sound that causes the floor surface to vibrate, reproducing
the rapid attenuation by the contact with the floor after the end of
the bouncing phase.

By using the collision excitation force waveform for the vi-
bration sound, the higher order mode of the vibration sound grad-
ually weakened each time it bounced back the characteristics of
the dropping sound. Moreover, by considering the collision sound
caused by the collision deformation, strong feeling of attack on
the falling sound was born. However, the spectrum did not change
much in any of the generated collision sounds. In this system, the
point-to-point collision model was applied to all collisions. The
presumed reason is that it was not possible to reproduce the col-
lision from line to point, line to line, and more. In addition, a
strong collision generates a shock wave. There may also be a phe-
nomenon wherein the falling object could not fully cope with only
by atmospheric pressure change due to deformation and sound
propagation.

The excessive attenuation of the component of 15,000 Hz or
more of the generated sound is caused by the numerical dispersion.
Numerical dispersion is the dispersion occurring due to change in
the phase velocity depending on the wave number in the numeri-
cal solution. Actually, the phase velocity is constant irrespective
of the wave number. As the wave number increases, the numeri-
cal dispersion increases. We consider that the components above
15,000 Hz could not be properly simulated with the mesh width
used in this simulation. To suppress the numerical dispersion, it
is necessary to set a discrete scheme where the CFL condition is
sufficiently satisfied.

The simulation of sound wave propagation in a two-dimensional
space with nothing around the object was performed for simplic-
ity, but faithful sound generation is possible by further propagat-
ing sound waves in three dimensions considering shields and other
objects. However, the amount of computation required is propor-
tional to the power of the number of dimensions. A simulation
can require extensive computations in three dimensions. In this
paper, we adopted FDTD for solving the original partial differen-
tial equation for both vibration and propagation directly to clarify
the relationship between the models. With regard to the amount of
computation, it is considered that it is effective to use a radiation
model [19] to simulate the propagation.

It is expected that sounds can be improved by implementing
the attenuation due to absorption at the contact points and defining
the attenuation rate of the vibration model by physical property
parameters. Although we have implemented only the flexural vi-
bration model this time, it is necessary to consider a framework
to apply the optimal vibration model as compared with the model
considering torsional vibration and stretching vibration.
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5. CONCLUSION

We have proposed a simplified model of vibration in this study. As
a result, it was found that the round bars were almost reproducible
only by the bending vibration model. We could reduce the compu-
tation for round bars while maintaining the quality of the generated
sound. A virtual falling sound of a huge object was generated from
the physical model, and an appropriate sound was obtained. By
considering sound waves caused by collision deformation, an im-
pact effect was imparted to the dropping sound, leading to a more
natural dropping sound generation.

It is necessary to conduct experiments with various parameters
to confirm the versatility of the created system. During the evalua-
tion, the generated sound was played along with the image, and the
subjective evaluation of the degree of coincidence with the image
and the sound quality were important criteria in the evaluation. To
realize realistic sound generation, it is important to solve the prob-
lems inside the system such as expansion of the vibration model
and collision model, use of shock wave propagation simulation,
study of the discrete width of simulation, and the like.
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ABSTRACT

There are a range of different methods for comparing or measur-
ing the similarity between environmental sound effects. These
methods can be used as objective evaluation techniques, to eval-
uate the effectiveness of a sound synthesis method by assessing
the similarity between synthesised sounds and recorded samples.
We propose to evaluate a number of different synthesis objective
evaluation metrics, by using the different distance metrics as fit-
ness functions within a resynthesis algorithm. A recorded sample
is used as a target sound, and the resynthesis is intended to produce
a set of synthesis parameters that will synthesise a sound as close
to the recorded sample as possible, within the restrictions of the
synthesis model. The recorded samples are excerpts of selections
from a sound effects library, and the results are evaluated through
a subjective listening test. Results show that one of the objective
function performs significantly worse than several others. Only
one method had a significant and strong correlation between the
user perceptual distance and the objective distance. A recommen-
dation of an objective evaluation function for measuring similarity
between synthesised environmental sounds is made.

1. INTRODUCTION

The field of sound synthesis has seen significant work in a range
of areas including effective and efficient replication of existing
sounds or creation of new sounds. Sound synthesis evaluation can
take many different forms. Ten different evaluation criteria for
evaluation of synthesis techniques were presented by [1], in which
half of the criteria are based on control and parameterisation, and
only two evaluation criteria relate to the sonic properties of the
synthesis. One of the key aims of sound synthesis is to produce
a realistic sound, with the added ability to control or interact with
the sound [2, 3]. Despite this, there is limited evaluation of sound
synthesis systems and their ability to produce realistic convincing
sounds [4, 5].

This paper proposes a comparison of sound similarity mea-
sures, through resynthesis. The aim is to identify an objective
measure that can encapsulate the perceptual similarity of sounds.
Optimization of this measure would then select appropriate param-
eters for a synthesis engine to match a given sound, Optimisation
of synthesis parameters to evaluation of sound perception has been
previously demonstrated [6]. Parameter selection can be viewed as
an optimisation problem in which synthesis parameters are dimen-
sions through a fitness landscape. In many cases, we are searching
through highly nonlinear search spaces, and thus evolutionary op-
timisation functions are effective methods to use [7, 8, 9].

� This paper is supported by EPSRC Grants EP/L019981/1 and
EP/M506394/1.

Table 1: Range of Objective Evaluation Metrics used in Current
sound synthesis Research

Research Objective Evaluation Methods
[11] Fundamental Frequency

Spectral Centroid
First 4 Harmonics

Zero Crossing Rate
[12] Spectrogram
[13] Spectrogram

Num and Position of Harmonics
[14] Spectrogram

Magnitude Spectrum
[15] Magnitude Spectrum
[16] MFCC vector correlation
[17] Spectrogram envelope
[18] Error between STFT bins
[19] PEAQ
[20] Least Square Error (LSE) in FD

Simultaneous Frequency Masking (SFM)
[21] DCT of MFCC

Spectral Shape
Attack and Decay Characteristics

Duration

Section 2 will present background literature and motivate the
requirement for a generalisable objective measure for synthesised
sounds. The objective metrics and evaluation framework will be
presented in Section 3. The subjective listening test is presented in
Section 4. Results of the subjective and objective measures are
given in Section 5. Recommendations for synthesis evaluation
metrics are presented in Section 6, and final comments and out-
line of impact in the community are presented in Section 7.

2. BACKGROUND

The research aims of sound synthesis are to produce realistic and
controllable systems for artificially replicating real world sounds.
Current research generally focuses on either implementation ef-
ficiency, interfacing control or physical modelling, and provides
very limited evaluation. There is little or no research on compar-
ison of existing synthesis techniques [5]. Subjective evaluation is
occasionally used in current sound synthesis research [4, 10], how-
ever objective evaluation is rarely used and there is no consistency
in metrics that are used. A summary of sound synthesis papers
that use objective evaluation is presented in Table 1. The variety
of different objective measures and methods used within Table 1,
shows that there is a lack of inconsistency in method for objective
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evaluation.

[2] and [22] both evaluated work based on its interactivity,
which often measures the parameter mapping more than the qual-
ity of the sound synthesis. Within [23], comparison of two simi-
larity measures was performed, the MFCC distance and an audio
feature vector distance. The results were evaluated with a subjec-
tive listening test. [24] objectively compares different wavetable
synthesis methods using “Relative Spectral Error”, with no com-
parison to samples or perceptual evaluation. [18] also calculated
the error of bins from the Short Time Fourier Transform (STFT),
between the reference and the synthesised sample. [25] utilised
sound texture statistics for resynthesis work by [6] by enforcing a
set of statistics on an STFT representation of an audio signal.

[21] evaluated synthesis parameter selection using a range of
low level audio features, such as Fundamental Frequency, Spec-
tral Shape, Envelope Characteristics, and Overall Duration. [21]
used the DCT of the MFCCs as a sound similarity measure, to
determine how similar the synthesised sound was to a recorded
sample. Similarly, [16] performed correlations between MFCC
vectors within adjacent frames, as a similarity measure for audio
textures. [11] compared a synthesis method to recorded sam-
ples, through visual comparison of spectrograms, and comparison
of some low level audio features, such as fundamental and first
4 harmonic frequencies, spectral centroid and zero crossing rate.
No comparison with other synthesis methods was undertaken and
no perceptual evaluation. In contrast, [26, 27] builds a physically
inspired model where the physical properties measured vs. esti-
mated are compared. The output time domain and spectrogram
signals are compared visually, including locations of fundamental
and harmonics. [17] used the loudness curve weighted Equiva-
lent Rectangular Bands (ERB) envelope to perform grain selection
within a granular synthesis approach. [19] attempted to evaluate
the perceptual similarity of a piano note synthesis method with a
sample using PEAQ, an algorithm designed for determining the
quality of audio compression codecs which analyses the sound on
a sample by sample basis to determine any perceptual artifacts.
Where perception was considered, the notes will never be exactly
the same if played with slightly different attack or at a different
sample time, thus resulting in a perceptual difference where none
exists.

There have been a number of approaches to searching audio
parameter spaces, within a synthesised environment. An itera-
tive process to control parameters and minimise a set of percep-
tually motivated audio features was developed by [6, 28]. The
results were subjectively evaluated based on participants identi-
fication and synthesis realism. Further approaches using genetic
algorithms have attempted to modify musical parameters based on
varying fitness functions. No other method performed any formal
evaluation of the synthesis results, typically reporting their final
distance measure. Fitness function methods are typically calcu-
lated as distances features such as between Mel Frequency Cep-
strum Coefficients (MFCCs) [9], the Discrete Cosine Transform
of the MFCCs [21]. The Perceptual Evaluation of Audio Qual-
ity (PEAQ [29]) distances were measured for piano string synthe-
sis [19], where as the distance between Least Square Error(LSE)
of time domain waveform, LSE of spectrograms and LSE of spec-
trograms with some masking weighting were all used as distance
measures [7]. [8] used sets of different audio features to measure
distances.

3. OBJECTIVE MEASURE THROUGH SYNTHESIS

In this section, the methodology of evaluating a range of objec-
tive measures will be presented. The principle is that evaluation of
different objective measures can be compared through resynthesis.
By using the objective measure as fitness function in an iterative
synthesis process, we can identify which measure best encapsu-
lates aspects of the perception of the sounds. Every synthesised
sound will be produced with the intention of sounding as close to
a recorded sample as possible, and if an objective measure is able
to produce this sound, then the objective measure represents the
perceptual similarity of the sounds.

3.1. Sound Synthesis Methods

Four different sound effects were used for evaluation purposes. All
of them are available and hosted online as part of the FXive syn-
thesis platform [30, 31]. All synthesis methods were originally
derived from [32] and are all examples of physically inspired syn-
thesis methods, as they are commonly available open source im-
plementations of synthesis methods.

Fire The fire synthesis model is a noise shaping synthesis method.
Individual sonic components of a fire, the hiss, crackle and
lapping, are all modelled though filtered and envelope shaped
noise signals. Three control parameters are exposed to the
user, which are lapping, hissing and crackling.

Rain In the rain model, components of rain are broken into a num-
ber of categories. Ambience, which is modelled as constant
shaped noise, droplets, rumble and drips. Three control pa-
rameters are exposed to the user, which are density, rumble
and ambience.

Stream The stream is modelled entirely on the bubbling sounds
that are made as water runs over substances, based on con-
trol of filtered chirp sounds. Three control parameters are
exposed to the user, which are bubbles, frequency and filter
Q.

Wind The wind model uses a varying filtered noise approach,
where wind parameters control the overall envelope of the
sound. Different wind hitting materials, such as door or
branches/wires, select the timesteps over which the wind
envelope shaping will occur. Ten parameters are exposed to
the user: Wind Speed, Gustiness, Squall, Buildings, Door-
ways, Branches, Leaves, Pan, Directionality and Gain. The
parameters Pan, Directionality and Gain were all left con-
stant at their default values, as discussed in Section 3.1.

Parameters Not Changed Several parameters were not used, to
limit the search space and as these parameters were con-
sidered to make no immediate impact to the synthesis of
the sound. During analysis, all samples were loudness nor-
malised, so output gain controls were redundant. As no
evaluation metric used spatial aspects to evaluate synthesis,
pan controls were also not considered. With each sound
effect, there was the ability to apply a range of audio ef-
fects, including equalisation, distortion, delay, convolution
reverb and HRTF spatialisation. However, because all of
these controls can be added to every single synthesised sam-
ple, we felt this would significantly grow the search space
without significant improvements in the synthesis. The im-
pact of individual audio effects on the perceived realism of
a synthesised sound is out of the scope of this work.
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3.2. Parameter Optimisation

The parameters of each synthesis model were optimised using par-
ticle swarm optimisation. Particle swarm optimisation is an evolu-
tionary inspired population based optimisation technique in which
a swarm of particles iteratively propagate in a search space, where
a weighting between individual and global preferences are mod-
elled. Each particle is evaluated with a fitness function, and we
use this fitness function to compare each of our objective func-
tions presented in Section 3.3. Particle swarm is an effective op-
timisation method for highly nonlinear search spaces, and there
are many examples of evolutionary algorithms applied to audio
research [7, 8, 9, 33, 34]. A comprehensive overview of particle
swarm optimisation is presented in [35].

3.3. Objective Function

The fitness functions were taken from literature, and their fea-
tures used for evaluation are described in Table 2. To standardise
implementations, all audio features were extracted using Essen-
tia [36, 37].

Table 2: Attributes of Each Objective Function

Objective Function Features and Attributes
Allamanche [38] Loudness

Spectral Flatness
Spectral Crest Factor

Gygi [39] Envelope Statistics
Pitch

Autocorrelation Waveform Peaks
Spectral Centroid
Spectral Moments

Frequency Band Energy
Modulation Statistics
Subband Correlation

Spectral Flux
MFCC [9] MFCC
Moffat [40] Loudness

Pitch
MFCC

Envelope Statistics
Spectral Contrast

Spectral Flux
PEAQ [29] Signal Bandwidth

Masking Content
Modulation Difference

Distortion
Harmonic Structure

Wichern [41] Loudness
Spectral Centroid
Spectral Sparsity

Harmonicity
Temporal Sparsity

Transient Index (�MFCC)

The MFCC’s as a similarity was motivated as an anchor within
the experiment, as we expected this method to underperform in
comparison to other objective functions.

4. SYNTHESIS EVALUATION - LISTENING TEST

4.1. Participants

19 participants took part in the experiment, of which 12 were male
and 7 female. The average age 29 and standard deviation of 3. The
average test duration was 23 minutes, so fatigue was not an issue.
The procedure was approved by the local ethics committee.

4.2. Experimental Setup

The experiment was set up as listening test, performed in Queen
Mary Studio [42], and participants auditioned sounds over a pair
of high quality calibrated PMC speakers. Participant were asked
to adjust the volume of the audio to a comfortable level at the be-
ginning of the test and refrain from adjusting it. All volume ad-
justments were recorded during the test. The listening test was set
up using the Web Audio Evaluation Tool [43]. The listening test
is available1 with the same user interface and set of samples that
were used by participants.

4.3. Materials

Participants were asked to evaluate sound samples for four cat-
egories (fire, rain, stream and wind). In each category six syn-
thesised samples were provided and compared to a recorded sam-
ple reference. All samples were 48kHz wav files, and loudness
normalised in accordance with [44]. Each category had one an-
chor, where random parameter values were used to generate a sam-
ple. The reference samples were all selected from a professionally
available sound effects library2.

The anchors were included to encourage participants to use
the entire evaluation scale, and we could review how samples were
distributed within that scale, in accordance with [45]. The anchor
ensures that there is a lower limit sample to compare against. It
also performs as a confirmation that a participant has fully under-
stood the requirements for the experiment. If a participant rated
the anchor as higher than the sample, then we would infer that
the participant may not have fully understood the requirements, or
may have some hearing defect.

4.4. Procedure

Participants were provided with instructions as to the experiment
they were to undertake, and were asked to provide their native spo-
ken language, whether they had previous experience of listening
tests and whether they would consider themselves as accomplished
musicians or audio engineers.

Participants were then asked to rate how similar they perceived
a set of given samples to a provided reference. Participants were
provided with a continuous linear scale on which to rate all sounds,
labeled from “most similar” to “very different”. All sounds were
rated on a single horizontal scale, to encourage inter-sample com-
parison. Participants did not have any information regarding the
samples, other than that they were all synthesised and the names
of the four sound classes used in the experiment. Samples started
off at a randomised position on the scale. Both the ordering of cat-
egories and the initial ordering of samples within a category were
randomised, to remove bias effects.

1http://goo.gl/fusJv3
2https://www.prosoundeffects.com/

hybrid-library/
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User Similarity Rating Distributions for each Sound Category and Evaluation Method

Figure 1: Distribution of User Similarity Ratings over Objective Function and Synthesis Model

5. RESULTS

One participant’s results was identified as an outlier as over 30%
of their answers was more than three scaled median absolute devi-
ations from the median result. As such all results presented are of
the remaining 18 participants. User similarity ratings are presented
in Figure 2, where the distributions of the results can be seen.

A Shapiro-Wilk normality test showed that the data is not-
normally distributed (W = 0.95208, p < 2.2e-16). A Kruskal Wal-
lis test was performed to evaluate the impact of each objective
function. A significant difference between the objective evalua-
tion methods was found (H=18.2, p=0.0057). A post-hoc multiple
comparison was performed, with results presented in Table 3.

5.1. Results per Synthesis Method

Table 3 shows that across all sound synthesis models, there is lim-
ited consistent variation. The PEAQ objective function is signifi-
cantly worse than both Allamanche and Moffat. There are no fur-
ther significant results at this level. To analyse the data further, we
investigated the results per synthesis method, as shown in Figure 1.
Kruskal Wallis tests were performed to identify the impact of each
objective function for each synthesis method. The results show
that there are significantly different grouping in three of the four
sound synthesis methods. These results are presented in Tables 4-
6. Within the wind synthesis method, no significant different in
perceptual similarity to the reference sample were found between
different objective synthesis methods (H=11.72, p=0.069).

As seen in Table 4, the PEAQ method is significantly worse
than every other objective evaluation function with regards to fire
sounds. But for rain sounds, in Table 5 MFCCs are significantly
worse than Allamanche, PEAQ, random and Wicherni. For stream
sounds, Table 6 shows that Allamanche, Moffat and PEAQ are all
significantly better than both random and Wichern. MFCC is also
significantly better than Wichern, and Moffat is significantly better

than Gygi.

5.2. Comparison with Objective Function Results

Each of the objective functions also produced a distance measure,
which is the value that was minimised as part of the synthesis.
These distances indicate how successful the synthesis method be-
lieves it has performed in each case. The objective distances are
compared with the perceptual distances, and are plotted in Fig-
ure 3, along with linear regression lines of best fit. The user sim-
ilarity ratings were inverted to make the graphical representation
easier to interpret, and correlations more clear. Each of the ob-
jective and subjective results were correlated, using a Spearman
correlation, for non-parametric data, and the results presented in
Table 7. Only the Wichern result is statistically significant, with a
strong positive correlation.

6. DISCUSSION

Table 3 shows minimal significant variation in the distributions of
similarity ratings. Overall Moffat performs as the best objective
evaluation method, whereas Allamanche is a good options with
a lower variance in the data. PEAQ performs the worst, and is
significantly worse than both Allamanche and Moffat, which is
the only significant generalised result.

For further analysis, we look into the breakdown per synthesis
method. Within the fire sound, every objective function was sig-
nificantly better than PEAQ. PEAQ is the only method that mod-
els distortion and bandwidth, and it is believed that these com-
ponents of the objective function caused it to perform poorly for
fire. A large portion of a fire sound is crackling and popping, and
broadband noise. As PEAQ is designed for evaluation the quality
of audio compression algorithms, it is designed to be sensitive to
cracking and distortion artefacts. However, this is principally what
makes up a fire sound. As such, it is expected that PEAQ failed to
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Table 3: Multiple Comparisons Test Significance Results for All Synthesis Models, Kruskal Wallis Results (H=18.2, p=0.0057)

All Synthesis Methods Allamanche Gygi MFCC Moffat PEAQ Random Wichern
Allamanche . o o o ** o o

Gygi o . o o o o o
MFCC o o . o o o o
Moffat o o o . * o o
PEAQ ** o o * . o o

Random o o o o o . o
Wichern o o o o o o .
o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made

Table 4: Multiple Comparisons Test Significance Results for Fire Synthesis Method, Kruskal Wallis Results (H=53.19, p=1.08e-9)

Fire Allamanche Gygi MFCC Moffat PEAQ Random Wichern
Allamanche . o o o *** o o

Gygi o . o o **** o o
MFCC o o . o **** o o
Moffat o o o . **** o o
PEAQ *** **** **** **** . *** ****

Random o o o o *** . o
Wichern o o o o **** o .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made

appropriately model fire due to the wide-band, impulsive nature of
the sound, which PEAQ is often identifies as a flaw. It is suspected
that PEAQ will also fail to accurately model other sounds that are
broadband and highly impulsive, such as applause [46] or gunshot
[47] sounds.

Within the rain sounds, the MFCC evaluation metric performed
significantly worse than Allamanche, PEAQ, Wichern and ran-
dom. MFCCs are often used in music information retrieval as a de-
scriptor for timbre. However, the variation in rain sounds are less
timbral and more related to the ambient noise versus individual
impulsive tones. The separation between constant noise tones and
impulsive tones will not be identified by MFCCs. As MFCCs are
no better than the random parameters, it is clear that MFCCs are
not a good measure for parameter estimation within rain sounds.
There is no other significant variation in objective evaluation func-
tions. Wichern was the only method to perform better than random
parameter selection, though this was not significantly better. This
could be due to the random parameters being very good parame-
ters selected by chance, or that there is limited variation within the
synthesis method.

Regarding stream sounds, Figure 1 shows that Wichern and
random both perform poorly, and are significantly worse than Al-
lamanche, Moffat and PEAQ methods, and Alllamanche is signifi-
cantly worse than MFCCs. It is suspected that this is due to Wich-
ern primarily looking at harmonic content and transient sounds,
where less attention was paid to broadband sound similarities. Within
the stream model, most water noises will be highly broadband sig-
nals, and Wichern will most likely tend to produce more harmonic
tuned sounds, than those present in a real signal. Wichern and ran-
dom are not significantly worse than Gygi, which is most likely
due to the large variation in the distribution of the Gygi results.
This suggests that individuals were undecided or opinions were
split on the result. Moffat was the best performing result and is
significantly better than Gygi, along with random and Wichern. It
is suspected that this is due to the inclusion of the spectral con-

trast feature. Spectral contrast is an audio feature that identifies
the peaks and valleys in the magnitude spectrum, and performs di-
mensionality reduction on the result. Spectral contrast is often con-
sidered an effective method for evaluating audio masking and for
identifying variations high contrast variations in frequency spectra.

The wind model failed to produce any significant difference
between any objective metrics. Gygi performed the best, closely
followed by random parameter allocation, but all methods are fairly
similar to each other. This could be a failing of the synthesis
model, as there were highly harmonic artefacts within the synthe-
sis model, that no parameters could be removed. Further investi-
gation of the synthesis model shows that a number of filter center
frequencies are hard-coded into the model, which most likely led
to inconsistent and inconclusive results. It is also possible that the
number of parameters may also have influenced the results. Wind
had more than twice the parameters to optimise compared to any
other synthesis model, which the particle swarm algorithm may
have had challenges optimising. The larger search space may have
lead to issues in finding appropriate minima.

Each of the objective functions were compared and grouped
in terms of how their effectiveness on a 1-5 rating scale, as pre-
sented in Table 8. It can be seen that the Gygi method performs
best for both fire and wind sounds and fairly well for rain sounds,
but is one of the worst objective measures for the stream sound.
Gygi contains a large set of parameters relating to subband cor-
relations and modulation statistics, which have been tied to the
human auditory system [6]. As such, Gygi method seems to be
the best overall performer, as consistently produced reasonable re-
sults in all cases, and between that and Moffat, it never produced
the worst results. Moffat performed best overall, and was best for
wind sounds, which it is suspected is due to the spectral contrast
feature. It also performed reasonably well for fire and rain sounds,
as the spectral contrast and spectral flux sounds will perform well
for granular impulsive sounds. The Allamanche method performs
best for rain sounds and reasonably well for stream sounds, but is
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Table 5: Multiple Comparisons Test Significance Results for Rain Synthesis Method, Kruskal Wallis Results (H=26.81, p=1.57e-4)

Rain Allamanche Gygi MFCC Moffat PEAQ Random Wichern
Allamanche . o *** o o o o

Gygi o . o o o o o
MFCC *** o . o * * ***
Moffat o o o . o o o
PEAQ o o * o . o o

Random o o * o o . o
Wichern o o *** o o o .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made

Table 6: Multiple Comparisons Test Significance Results for Stream Synthesis Method, Kruskal Wallis Results (H=54.91, p=4.84e-10)

Stream Allamanche Gygi MFCC Moffat PEAQ Random Wichern
Allamanche . o o o o *** ****

Gygi o . o * o o o
MFCC o o . o o o *
Moffat o * o . o **** ****
PEAQ o o o o . ** **

Random *** o o **** ** . o
Wichern **** o * **** ** o .

o > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, . = no comparison made

Table 7: Correlations of Objective Function Distance Measure
with Mean User Similarity Rating

Objective Function Correlations � P-Value p

Allamanche -0.3095 0.4618
Gygi -0.0952 0.8401

MFCC 0.0238 0.9768
Moffat -0.3095 0.4618
PEAQ -0.4059 0.3155

Wichern 0.7857 0.0279

one of the worse methods for wind and fire sounds. This suggests
that the spectral characteristics are more complex for wind and fire
sounds, as Allamanche only uses a spectral flatness and spectral
crest factor as the evaluation, as all samples were loudness nor-
malised before analysis. PEAQ performed worse overall, through
performing worse in both fire and rain sounds, however performed
reasonably we for stream and wind sounds. This demonstrates that
PEAQ represents broadband noisy signals fairly well, however the
low level textual and highly impulsive sounds are not effectively
modelled by this method. The Wichern method is highly inconsis-
tent as it performs best for fire and stream however is the worse for
rain and wind sounds.

Wichern was the only objective evaluation method where the
objective distance significantly correlated with the perceptual dis-
tance ratings. The correlations of the objective distance are a vital
aspect of any objective evaluation function, where it is possible to
predict how well the objective function performs and how effective
the synthesised sound is.

Table 8: Ratings of Success of each Objective Evaluation Method

Overall Fire Rain Stream Wind
Allamanche 2 4 5 1 1

Gygi 2 1 1 3 4
MFCC 2 1 2 5 3
Moffat 1 3 3 4 1
PEAQ 5 5 5 3 2

Wichern 4 1 5 1 5
1 = Best, 5 = Worse. Ratings were created manually, based on ranking and
clustering of results

7. CONCLUSION

A set of six different objective evaluation functions, for measuring
similarity between environmental sounds, were tested and com-
pared, through their ability to direct a resynthesis algorithm to-
wards an appropriate parameter setting. In the general term, across
four different types of sounds, there was no significant winner.
The PEAQ method performed the worse, performing significantly
worse than both Moffat and Allamanche. This demonstrates that
PEAQ is not a suitable for evaluating sound similarity in a range of
different cases, though it was effective for comparing broadband
noisy signals, such as wind. The results demonstrate that there
is currently no unilateral objective evaluation function, an consis-
tently no method is a clear winner in most cases. One of the causes
of this could be the failings or limitations of the synthesis models
used. The limitation for each method to produce a wide range of
sounds, could result in many different samples being challenging
to synthesize, and thus cause all methods to underperform.

Despite this, the Wichern method results correlate significantly
and strongly perceptual distance measures. This suggests that the
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Figure 2: Distribution of User Similarity Ratings per Objective
Function

Wichern method can be used as an effective distance metric, com-
paring similarity between different sets of sounds. Further evalu-
ation with different synthesis methods is required to verify these
results and to identify whether the synthesis methods themselves
impacted the results.

The use of further different sounds samples and sound classes
would also provide further data points, which would aid in corre-
lating the objective results with the perceptual ratings. This would
ensure that the results can be applied to a range of different sound
types. Furthermore, there were some cases where the synthesis
method was not capable of producing a very similar sample. In
which case, careful improvement and selection of synthesis meth-
ods and samples could be made in future work. Further evalua-
tion of different perceptual measures of similarity, and comparison
of objective measures with expert human parameter modification
could also be performed.
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ABSTRACT
In music recording and virtual reality applications, it is often desir-
able to control the perceived size of a synthesized acoustic space.
Here, we demonstrate a physically informed method for enlarging
and shrinking room size. A room size parameter is introduced to
modify the time and frequency components of convolution, delay
network, and modal artificial reverberation architectures to affect
the listener’s sense of the size of the acoustic space taking into
account air and materials absorption.

1. INTRODUCTION

Computational methods for simulating reverberant environments
are well developed [1], and find application in fields ranging from
music recording to virtual reality and film audio production. Room
acoustics is an approximately linear and time-invariant process,
and there are several widely used methods for room acoustics sim-
ulation, including direct convolution with an impulse response [2],
delay network-based methods [3], and modal reverberation [4].

In a number of scenarios, it is desirable to manipulate or con-
trol the perceived size of a given acoustic space. In a virtual re-
ality or film setting, for instance, the size of the room might be
changing over time, and it is preferable that the acoustics of the
space change accordingly. In a music recording, performance, or
composition environment, different sizes of acoustic space con-
vey different musical impressions, and it is useful to have a palette
of room size options associated with a given room response for
artistic purposes. Larger spaces tend to be more reverberant and
“darker” than smaller ones, but there does not seem to be a sys-
tematic way to manipulate the perceived size associated with a
given room response. Rafii and Pardo [5] proposed finding re-
lationships between subjective terms and reverb parameters, and
Chourdakis and Reiss [6] proposed an adaptive reverberation al-
gorithm based on learning parameters from user actions. In both
cases, these methods can be used to modify a reverberation algo-
rithm based on subjective characteristics rather than the physics of
changing the dimensions of a room.

In this paper, we introduce a room size parameter for modify-
ing the time and frequency content of an artificial reverberator. We
demonstrate a physically informed method for changing the size
of a room, taking into account the changes in geometry, absorbing
surface area, and volume. We then show how to implement this
room size parameter in convolution, delay network, and modal re-
verberation architectures.

This paper is organized as follows: section 2 introduces the
acoustical concepts necessary for modifying room size. Section
3 discusses the implementation of the room resizing parameter in
convolution, delay network, and modal reverberaters. Finally, sec-
tion 4 offers some concluding remarks.

2. ON THE ACOUSTICS OF ROOM SIZE

The room response to a transient sound is often described as a
sequence of events over time, a direct path followed by early re-
flections that give way to late-field reverberation, as seen in Fig. 1.
The direct path carries with it information about the source direc-
tion, and arrives with a time delay and amplitude fixed according
to the source-listener distance. The early reflections contain in-
formation about the geometry of the space, and can be simulated
using details of the architecture of the space [7]. The late-field re-
verberation brings to the listener information about the volume of
the space and materials present in the space through the frequency
dependent rates of sound energy decay. Roughly speaking, the re-
verberation time is proportional to the ratio of the room volume to
the room absorbing surface area [8].

If the room size were doubled, with everything else remaining
the same, then the timing of the direct path and early reflections
would be stretched by a factor of two. Similarly, if the room size
were doubled, then its volume would increase by a factor of eight,
while its absorbing area would increase by a factor of four, thereby
doubling the reverberation time.

Reasoning along these lines was used by Spandöck in build-
ing scale models of proposed concert halls to test how they might
sound when built [9]. Spandöck argued that a scale model of a
concert hall made with the appropriate materials and filled with a
dried gas would respond to a given high-frequency sound the way
the larger actual space would respond to a low-frequency sound
having the same relative wavelength. Spandöck describes using a
magnetic tape deck to play back a sound into the scale model sped
up by a factor of, say, eight, while simultaneously recording the re-
sponse in the model. The recording was then played back, slowed
by the same factor. In this way, the original pitch was restored, and
the reverberation time increased to match that of the hypothesized
full-scale hall.

As described in [10], this approach was independently discov-
ered by Walter Murch while working as a sound editor for motion
pictures in the late 1960s, and was used to make long-lasting rever-
beration. Spratt, et al. present a digital technique for implementing
a real-time version of the method, using a loudspeaker and micro-
phone in a physical room [10].

The technique is described as being mathematically equivalent
to stretching the room impulse response in time, which has the ef-
fect of increasing the reverberation time, and stretching the reflec-
tion arrival times. Spratt, et al. argue that the method is similar to
slowing the speed of sound or increasing the room size. However,
doing either of these will not result in proper reverberation time as
a function of frequency, as the relative absorption of sound by air
and room materials will not be taken into account.
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Figure 1: Example room impulse response showing the direct path,
early reflections, and late-field reverberation onset.

If a room is proportionally scaled, the echo pattern will be
linearly stretched or squished. As a result, the echo density [11],
or rate of reflections, will also be linearly scaled. However, to
be physically accurate, one must also take the surface area and
volume changes into account. Air absorption is nonlinear across
frequency, and high frequencies will typically decay faster in a
larger room than a small one. Additionally, simply enlarging or
shrinking the room via the method described in [10] also propor-
tionally scales all the room materials. For example, the pores in a
carpet would be scaled, changing its contribution to the frequency
response in the room. Here, we suggest a method for taking the
air absorption and materials absorption into consideration when
scaling the size of rooms.

3. SCALING ROOM SIZE

Perceived room size may be manipulated in the context of a num-
ber of artificial reverberation methods. The idea is to warp the
time and frequency axes and adjust the decay times of a given re-
verberation impulse response according to a desired room size. In
addition, the source loudness and radiation pattern may be adjusted
according to the room size.

3.1. Reverberation Time

We first describe the change in reverberation time in response to a
changing room size as a result of different relative contributions of
materials absorption and air absorption.

As described in [8] and elsewhere, the decay over time of well-
mixed acoustic energy in a room can be approximated by examin-
ing a room with volume V and having objects and surfaces with
absorbing area A. The energy density w(t) as a function of time
t is assumed to be well mixed and independent of position within
the room. After a period of time �t, the total energy in the room,
the product of the energy density and the volume, V w(t + �t),
will be that at time t minus what is lost due to interactions with
absorbing surfaces and objects and air propagation,

V w(t + �t) = V w(t) � Acgw(t)�t � V aw(t)�t , (1)

where the term Acgw(t)�t represents surface interaction absorp-
tion, and is proportional to the absorbing area A, sound speed c,

a constant g, energy density w(t), and time interval �t, and the
term V aw(t)�t represents air absorption, and is proportional to
the volume V , an absorption coefficient a, energy density w(t),
and time interval �t. These absorption terms can be intuitively
interpreted—the greater the time interval, the more energy that can
be absorbed; the greater the energy density, the more energy that
can “leave” the space during the time interval. Rearranging terms,
and taking �t � 0, we have

w(t + �t) � w(t)
�t

� dw
dt

= � 1
�

w(t), (2)

and
w(t) = w0e

�t/� , t � 0 , (3)

with w0 being the energy density at time t = 0, and � being a time
constant which increases with increasing volume, and decreases
with increasing absorbing area,

� =
V

Acg + V a
. (4)

In other words, the energy density in a well mixed room will decay
exponentially, decreasing by a factor of 1/e every � units of time.
It is typical to measure reverberation time in terms of the time
taken for energy to decrease 60 dB, T60, in which case we have

T60 =
log10 106

log10 e
� , (5)

measured in units of seconds per 60 dB decay.
Energy density is also a function of frequency �, w(t, �),

which was dropped from the discussion here for simplicity of pre-
sentation. It carries over to frequency-dependent materials and air
absorption simply by making the absorbing area A and air absorp-
tion a frequency-dependent.

3.2. Adjusting Room Size

Consider a room described by a nominal length L0. Now scale the
room and all of its surfaces and objects to have a new characteristic
length L. We want to understand how the decay time changes with
a changing room size L. Using (4) and (5), and assuming that the
room volume V is proportional to L3 and the absorbing area A is
proportional to L2, the decay time of the resized room T60(L) is
then

T60(L) =
L

L0µ + L�
, (6)

where µ has been introduced to represent the materials absorption
for the nominally sized room, � has been introduced to represent
the materials absorption. Both µ and � are expressed in terms of
60 dB decay per unit time. Note also that

� =
log10 106

log10 e
a . (7)

The decay time at the nominal room size,

T0 = T60(L0) , (8)

may be estimated from the room impulse response or otherwise
modeled, and that the air absorption � is known, derived assuming
a given temperature, pressure, and humidity, or tabulated [12, 13].
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Accordingly, setting L = L0 and solving (6) for the unknown
materials absorption µ gives

µ =
1
T0

� � . (9)

Due to errors in estimating decay times from measured impulse re-
sponses, the reverberation time T0 might exceed the air absorption-
only reverberation time 1/�, and (9) would produce a negative
value for µ. In these cases (or at such frequencies that this is true),
a value of µ = 0 is preferably used, and the reverberation time
will not be affected by room size. If it is desired to have a chang-
ing reverberation time with room size, a small value for µ could be
selected.

Substituting for µ in (6) gives T0, the decay time as a function
of room size L. In the case that µ is given by (9) and not modi-
fied, a little algebra gives an expression for T60(L) in terms of the
nominal decay time T0 and the decay time if the only absorption
of sound energy were due to air Tair = 1/�,

T60(L) =
L · T0Tair

L0 · Tair + (L � L0) · T0
. (10)

As an example of a changing reverberation time as a function
of room size, consider the reverberation time of a church with a
10-meter nominal size, shown as a line with markers in Fig. 2.
Also shown are the reverberation times of hypothesized churches
that are 2, 4, 8, and 16 times as large, and 2, and 4 times as small.
For reference, the reverberation time associated with air absorption
only, � for 50% humidity and 25� C is shown in Fig. 3. Generally
speaking, a doubling of the room size doubles the reverberation
time. However, for large rooms and high frequencies (where the air
absorption and materials absorption are somewhat comparable), a
doubling of the room size increases the reverberation time by a
good bit less than the factor of two seen at low frequencies or for
small rooms. Note that this is the case for high frequencies in
Fig. 2.

The effect of a finite air absorption may be exaggerated or sup-
pressed by reducing or increasing—or even replacing—the air ab-
sorption characteristic shown in Fig. 3. The idea is to have differ-
ent frequency bands express different reverberation times, scaling
with room size. In doing so, when solving (9) for the materials ab-
sorption µ(�), any frequencies � producing values less than zero
should be set to zero. That is,

µ(�) = max

�
0,

1
T60(L0, �)

� �(�)

�
. (11)

As an example of a changing room size with a modified air absorp-
tion characteristic, Fig. 4 shows the reverberation times of Fig. 3
with a wacky air absorption.

3.3. Implementation in Common Reverberation Architectures

As described in [1], there are many commonly used reverberation
algorithms. Here, we show how to resize rooms using three com-
mon methods: direct convolution, feedback delay network, and
modal reverberators. The room impulse response is stretched in
time and its decay rate as a function of frequency is modified to
properly account for the changing relative importance of air ab-
sorption and materials absorption.

When using a convolutional reverberator (see Fig. 5), the room
impulse response is resampled in time according to a room size
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Figure 2: Example reverberation time of a small church as a func-
tion of room size taking air absorption into consideration. The
markers show the measured reverberation times and the traces
show the decay times when the nominal length of the church is
scaled.
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Figure 3: Reverberation time of a room with perfectly reflecting
walls filled with STP air at 50% humidity.
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Figure 4: Example reverberation time of a small church as a func-
tion of room size, with a strange air absorption characteristic.
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x(t) h(t) y(t)

Figure 5: A convolutional reverberator showing an input signal
x(t), convolved with a room impulse response h(t) to produce a
reverberated output y(t).
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Figure 6: A feedback delay network reverberator, including a set
of N delay lines z�Tn , filters gn(z), n = 1, 2, . . . , N , and an
orthonormal mixing matrix Q.
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Figure 7: A modal reverberator having a parallel set of M mode
filters hm(z), each characterized by a mode frequency �m, mode
decay time �m, and mode amplitude �m.

control, and its decay rate as a function of frequency is modified.
Depending on whether the room is being made larger or smaller, a
high-frequency reverberant room response may be synthesized to
extend the reverberation to frequencies which are warped into the
audio band. A second method is described where an existing im-
pulse response is resynthesized from its room-size-modified echo
density.

For a reverberator implemented using a network of delay lines
(see Fig. 6), the delay times are stretched according to the room
size control, and the feedback filters are warped and scaled accord-
ing to the new decay times and delay lengths. A second method
is also described where the delay line lengths are not adjusted but
the filters and mixing matrix are modified to account for the room
resizing.

In a modal reverberator (see Fig. 7), the room size control
modifies the mode frequencies and dampings. Additionally, high-
frequency or low-frequency modes may need to be synthesized.

3.3.1. Convolution Reverberator

In the case of a convolutional reverberator [2, 14], the given or
nominal room impulse response, h0(t), associated with a nominal
room size L0, may be resampled according to the new room size
L to produce an adjusted impulse response hL(t),

hL(t) = h0

�
t · L0

L

�
. (12)

As seen in Fig. 8, this adjusted impulse response may then be used
to process an input signal x(t) to produce a reverberated output
y(t) associated with the room of size L.

In the case that the room size L is smaller than the nom-
inal room size L0, the resampling will shorten the impulse re-
sponse, thereby increasing its bandwidth. Preferably, the resam-
pling would include the step of low-pass filtering so as to avoid
aliasing if the increased bandwidth exceeds the Nyquist limit.

If L is larger than L0, then the resampled (i.e., interpolated)
impulse response will be longer than the original impulse response,
and have decreased bandwidth. In this case, the adjusted impulse
response may be extended to the Nyquist limit by first estimat-
ing reverberation characteristics such as decay times, equalization,
echo density, and the like for that band. For instance, the decay
times may be assumed to decrease in a manner typical of air ab-
sorption with increasing frequency above the original bandwidth.
A trend could be fit to the decay characteristic of the nominal im-
pulse response, and extended in frequency. Similarly, the equal-
ization could be extrapolated to higher frequencies by noting the
trend near the nominal band edge.

The mechanism of increasing the reverberation time by multi-
plying the reverberation impulse response by a growing exponen-
tial (as used in a number of commercially available convolutional
reverberators) will generate unwanted artifacts, including a bloom
in energy at the end of the impulse response [15, 16]. Resampling
the impulse response as described above generally avoids this dif-
ficulty, though extending the impulse response to below the noise
floor also would be of benefit. It should be noted that such a mech-
anism for lengthening reverberation time, even when applied to a
properly extended room response, is not preferred, as the timing
of temporal features, such as significant early reflections, are not
appropriately modified.

As described above, the reverberation time of a room with with
a modified size is roughly scaled by the relative change in size. It
is affected by the different relative absorptions of air and materi-
als, with materials absorption accounting for a greater portion of
the decay in smaller rooms. The resampling of the impulse re-
sponse described above has the effect of simultaneously stretching
the reverberation time and compressing the associated frequency
axis,

T̃60(L, �) =
L
L0

T0

�
� · L

L0

�
, (13)

where T̃60(L, �) is the frequency-dependent reverberation time of
the stretched impulse response hL(t), and T0(�) is that of the
given impulse response h(t). For example, if a room impulse re-
sponse were stretched by a factor of two, the reverberation time
at 500 Hz would be twice that of the original impulse response at
1000 Hz. As a result, when the given reverberation time T0(�) is
not relatively constant with frequency, the reverberation time pro-
duced by resampling h(t) will differ from the desired one given
by (10), and it is preferable to modify the reverberation time of the
stretched impulse response accordingly.

As shown in Fig. 9, this may be accomplished by splitting the
resampled room impulse response hL(t) into a set of frequency
bands (for instance, half-octave-wide bands or ERB bands). Each
band is then windowed with a growing or shrinking exponential
function to give it the desired reverberation time. Then the win-
dowed bands are summed to form a room response having the
appropriate amplitude envelope as a function of frequency. This
process could also be applied to the given impulse response h(t)
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��

x(t) hL(t) y(t)

Figure 8: A convolutional reverberator showing a process operat-
ing on the impulse response h(t) so that it is time-stretched (re-
sampled) according to a room size control.
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Figure 9: A convolutional reverberator in which a room size pa-
rameter modifies the resampling amount as well as modifying the
frequency-dependent decay rates by e�t/� � e�(tL0)/(�L).
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Figure 10: A convolutional reverberator in which a pulse sequence
is synthesized from the echo density estimated from a desired room
impulse response, split into frequency bands, and the bands win-
dowed and summed to form an impulse response used in a convo-
lutional reverberator. The timing of the pulses and duration of the
band envelopes are adjusted according to room size.
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Figure 11: Time domain plots of the early reflections of impulse
responses for use with a convolution reverberator showing the
original IR (top), the IR stretched by a factor of 4 through resam-
pling (middle), and resynthesized from its echo density, stretched
by a factor of 4 (bottom). As a result of plotting these IRs on a log-
arithmic time axis, the stretched IRs appear shifted by an amount
log10 4. Note that the ideal sinc interpolation used for the mid-
dle example filters each pulse, while the bottom example shows
how resynthesizing the stretched impulse response from a statisti-
cal model does not preserve the exact echo sequence but does not
have the same filtering as a result of the resampling.

before resampling, with the band windowing anticipating the re-
verberation time changes produced by the resampling.

It should be pointed out that while Spratt and Abel [10] de-
scribe resampling the room impulse response as similar to chang-
ing the sound speed or resizing the room, this is only true if ev-
erything about the room is resized, including materials absorption
features. Here, we desire to scale the room size without modifying
the materials or air properties, and it is thus preferred to correct the
reverberation time produced by resampling as described above.

Finally, we note that the method described in [17] to syn-
thesize impulse responses from balloon pop recordings may be
adapted to synthesize room impulse responses at different room
sizes. The process is shown in Fig. 10. Echo density is measured
along the given impulse response h(t), and the impulse response
root energy over time (e.g., an amplitude envelope) in a set of fre-
quency bands is estimated. A statistically independent, but per-
ceptually identical, nominal impulse response hL(t) is then syn-
thesized by randomly generating a set of full-bandwidth pulses,
p(t), according to the measured echo density, NED. (Note that in
cases where the reverberation becomes quickly dense, white Gaus-
sian noise may be used in place of the statistical pulse sequence.)
This pulse sequence is then split into a set of frequency bands, and
the estimated amplitude envelopes are imprinted on the pulse se-
quence bands before being summed to form the nominal impulse
response.

To generate impulse responses of different room sizes, the
same process is used, with the pulse times being scaled by the
room size or with the echo density used to generate the pulse times
being scaled by the inverse room size. This pulse sequence is pro-
cessed as above, but with the band root energy envelopes resam-
pled according to the room size ratio L/L0, and preferably the en-
velopes modified to bring the band reverberation times in line with
the desired T60(L, �) described by (10) or (9) and (6). Fig. 11
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shows an impulse response resized to be twice as large through
resampling and by generating a statistically similar, but stretched,
pulse sequence from normalized echo density.

3.3.2. Feedback Delay Network Reverberator

Artificial reverberators are often implemented as networks of delay
lines with filtering, mixing, and feedback. One such reverberator
structure is the feedback delay network (FDN) [3]. The FDN re-
verberator employs a tapped delay line to generate the direct path
and early reflections. A set of delay lines with output filtering and
feedback through a unitary mixing matrix is used to produce the
late-field reverberation.

Consider a FDN with N delay lines z��n , n = 1, 2, . . . , N
having delays �n and feedback filtering gn(z). The feedback fil-
ters are typically designed so that they produce similar dB atten-
uation per unit delay-time according to a desired decay time as a
function of frequency [3]. The unitary matrix Q represents state
mixing, and controls the rate of echo density increase. An iden-
tity mixing matrix Q = I feeds each delay line to itself with no
mixing between delay lines and produces a constant echo density.
A Hadamard mixing matrix Q = H generates significant mixing
between delay lines, producing a rapidly increasing echo density.

To change the room size to L from a nominal L0, the delay
line lengths can be changed proportionately, as seen in Fig. 12,

�n(L) =
L
L0

�n(L0), n = 1, 2, . . . N . (14)

Interpolated delay lines can be used to implement the desired early
reflection delay times, but allpass filters are suggested to imple-
ment any fractional portion of delays used in the feedback loop so
as to prevent unwanted magnitude filtering that would affect the
resulting decay time.

The feedback filters gn(z) need not be modified, as the in-
creased (or decreased) delay line lengths will result in proportion-
ally longer (or shorter) decay times as the filters are, in effect, be-
ing applied less (or more) often. However, if desired, the feedback
filters gn(z) can be modified so as to properly account for the ef-
fect of air absorption on the decay time. Additionally, note that by
changing the feedback delay line lengths �n, the mixing matrix Q
need not be modified in response to a changing room size, as the
room mixing time will simply scale with the delay line lengths.

It might be the case that it is desired to leave the feedback
delay lines fixed, independent of room size. In such scenarios, it is
possible to change the apparent size of the room by adjusting the
reverberation time and echo density profile (e.g., mixing time) by
(i) modifying the feedback filters gn(z) � (gn(z))1/L, and (ii)
modifying the mixing matrix Q so as to slow the state mixing, and
therefore the rate of echo density increase, for larger rooms, and
speed state mixing for smaller rooms as seen in Fig. 13. Fig. 14
shows the impulse response of a FDN resized by modifying the
delay line lengths compared to modifying the mixing matrix and
decay filters.

3.3.3. Modal Reverberator

As presented in [4], the modal reverberator implements reverbera-
tion as a parallel sum of resonant filters hm(t), each representing
a room resonance or mode, and each characterized by a mode fre-

L

x(t) + z�L�/L0 g(z) + y(t)

Q
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Figure 12: A delay network reverberator in which delay lengths
are adjusted according to a room size control.
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Figure 13: A delay network reverberator in which the feedback
filters and mixing matrix are adjusted according to a room size
control.
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Figure 14: Time domain plots of the impulse response from a FDN
showing the original IR (top), the IR stretched by a factor of 2 by
modifying the delay lines (middle), and stretched by a factor of 2
by modifying the mixing matrix and decay filters (bottom). Note
how the method that modifies the delay line lengths preserves the
reflections exactly, just scaled by the room size parameter while
modifying the mixing matrix and decay rates changes the echo
pattern.

quency �m, mode decay rate �m, and mode amplitude �m,

h(t) =
M�

m=1

hm(t), (15)

where,
hm(t) = �mej�mt��mt . (16)

A number of options are described for implementing such filters in
[4], including biquad structures, phasor filters, and heterodyning-
modulation architectures.

To implement a changing room size in a modal reverberator,
the mode parameters are adjusted accordingly. The mode frequen-
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Figure 15: A modal reverberator having mode frequencies, decay
times, and amplitudes modified according to a room size control.

cies would be changed in inverse proportion to the varying room
size,

�m(L) =
L0

L
�m(L0), m = 1, 2, . . . M , (17)

as seen in Fig. 15. One way to understand this is to consider a
closed path among a set of reflecting surfaces that creates a reso-
nance. If the path length were twice as long, the associated travel
time would be twice as long, and the frequency reduced to half its
original value.

The mode decay rates would be modified according to the
scaled decay times at the new mode frequencies as described above
in (6),

T60(L, �m(L)) =
L

L0µ(�m(L)) + L�(�m(L))
, (18)

where the decay times T60(L, �m(L)) can be found by interpola-
tion if they are not directly available. The decay rates �m(L) at
room size L are then

�m(L) =
ln 1000

T60(L, �m(L))
. (19)

If the room size L is made smaller than the nominal room size
L0, then the mode frequencies will be increased. Those modes
with frequencies that become larger than the Nyquist limit can be
eliminated, for instance, not computed or their amplitudes reduced
to zero.

If the room size L is made larger than the nominal room size
L0, then the mode frequencies will be decreased. Those modes
with frequencies that become smaller than the audio band lower
limit, or the lower limit of what can be reproduced with the target
sound reproduction system, can be eliminated. As in the case of
manipulating a convolution impulse response for changing room
size, an increase in room size may significantly reduce the band-
width of the modal reverberator response, and additional band-
width would be preferably created. This may be done by syn-
thesizing additional high-frequency modes, for example by statis-
tically generating additional new high-frequency modes by extrap-
olating the density of mode frequencies and the decay rates from
the known lower-frequency modes.

As an alternative to eliminating and synthesizing modes to ac-
commodate a changing room size, the mode frequencies �m can

Figure 16: Spectrograms of a modal impulse response resized by
factors of 1/4, 1/2, 1, 2, 4, 8, and 16.

be warped within the audio band to generate new frequencies �m

according to a first-order allpass characteristic,

e�j�m =
� + e�j�m

1 + �e�j�m
, (20)

that is,

�m = j ln

�
� + e�j�m

1 + �e�j�m

�
. (21)

Here, the allpass parameter � is chosen according to the room size
ratio L/L0 , and a little algebra gives

� =
L � L0

L + L0
. (22)

Doing so will scale the low frequencies according to the desired
linear characteristic

�m(L) � L0

L
�m(L0), |�m| � 1 , (23)

with the high frequencies being warped to map the band edge �
onto the band edge �.
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Note that if it is desired to retain the original reverberation
equalization, the mode amplitudes can be adjusted with room size
to account for the changing equalization resulting from a changing
modal density. Where the modal density is increased, the mode
energy (the square of the mode magnitude) is proportionally in-
creased. Fig. 16 shows spectrograms of the impulse response cor-
responding to a modal reverberator resized by various scale fac-
tors.

Finally, the circumstance in which only aspects of the room
were made larger or smaller—say only a pair of walls being moved
further apart—can be accommodated by having certain modes be
unaffected or only modestly affected. Similarly, in the delay net-
work reverberator structures above, only certain delay lines could
be affected or others only modestly affected by a changing room
size. This would be similar to changing the shape of the room.

3.4. Changing room size in real time

It may be desirable to modify the size of the room in real time.
All three of the models presented here may experience undesirable
pitch gliding artifacts if one were to modify the filter parameters in
real time. Instead, it would be better to run multiple reverberators
in parallel and cross-fade between them. In some situations, it
may be beneficial to stretch the decay rates without modifying the
modal frequencies to make the transitions across room size more
smooth even though this is less physically accurate.

4. CONCLUSION

Here we have shown how a room size parameter can be intro-
duced to scale the size of a virtual room in convolution, delay net-
work, and modal reverberation algorithms. If a room is resized,
the modal frequencies will be proportionally raised or lowered be-
cause of the scaling of the geometry of the space. Because resizing
the room changes the surface area and volume, we must adapt the
frequency dependent delay rates to account for these changes. Fur-
thermore, we must also adapt the filtering to account for the fact
that the material properties should remain unchanged. We do this
by decoupling the modal frequencies and decay rates. There are
clear trade offs in the complexity and sound of our various solu-
tions, but these methods allow one to take an existing reverber-
ant characteristic and stretch or shrink the size of the room with a
physically informed method.
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ABSTRACT
An extensive piano sample library consisting of binaural sounds
and keyboard vibration signals is made available through an open-
access data repository. Samples were acquired with high-quality
audio and vibration measurement equipment on two Yamaha
Disklavier pianos (one grand and one upright model) by means
of computer-controlled playback of each key at ten different MIDI
velocity values. The nominal specifications of the equipment used
in the acquisition chain are reported in a companion document,
allowing researchers to calculate physical quantities (e.g., acoustic
pressure, vibration acceleration) from the recordings. Also, project
files are provided for straightforward playback in a free software
sampler available for Windows and Mac OS systems. The library
is especially suited for acoustic and vibration research on the pi-
ano, as well as for research on multimodal interaction with musical
instruments.

1. INTRODUCTION

The multisensory aspects of musical performance have been stud-
ied since long, particularly focusing on sound and vibration [1,
2, 3, 4], and are recognized to have a major role in the com-
plex perception-action mechanisms involved in musical instrument
playing [5]. Indeed, during instrumental performance the musician
is exposed to visual, haptic (i.e., tactile and kinesthetic), and of
course auditory cues. Research in this direction has substantially
gained momentum in recent years, as attested by the birth of new
keywords such as “musical haptics” [6].

This increased interest is partly due to the availability of novel
compact, accurate, and low-cost sensors and actuators, which en-
able the development of complex experimental settings for mea-
suring and delivering multisensory information in real-time on a
musical instrument during the performance [7, 8, 9, 10]. On the
one hand these technologies offer the possibility to investigate the
perceptual role of different sensory modalities in the interaction
with traditional musical instruments, while on the other they en-
able the design of novel digital musical interfaces and instruments
in which richer feedback modalities can increase the performer’s
engagement, as well as the perceived quality and playability of the
device [11, 12, 13, 14].

As a consequence, the availability of multimodal datasets
combining and synchronizing different types of information (au-
dio, video, MOCAP data of the instrument and the performer,
physiological signals, etc.) is increasingly recognized as an
essential asset for studying music performance and related as-
pects. Some recent examples include the “multimodal string quar-
tet performance dataset” (QUARTET) [15], the “University of

Rochester Multi-modal Music Performance dataset (URMP) [16],
the “Database for Emotion Analysis using Physiological Signals”
(DEAP) [17], as well as the RepoVizz initiative [18], which pro-
vides a system for storing, browsing, and visualizing synchronous
multimodal data.

Within this general framework, the piano represents a rele-
vant case study both for its prominence in the history of western
musical tradition and for its potential in commercial applications
(figures from the musical instrument industry1 show a continuing
growth of digital pianos and keyboard synthesizer sales).

When playing an acoustic piano, the performer is exposed to
a variety of auditory, visual, somatosensory, and vibrotactile cues
that combine and integrate to shape the pianist’s perception-action
loop. The present authors are involved in a long-term research col-
laboration around this topic, with particular focus on the following
two aspects. The first one is the tactile feedback produced by key-
board vibrations that reach the pianist’s fingers after keystrokes
and holds until key release. The second one is the spatial auditory
information contained in the sound field produced by the instru-
ment at the performer’s head location. For both research fields, the
existing literature is scarce and provides mixed if not contradictory
results about the actual perceivability and possible relevance of this
multisensory information [3]. We provide extensive discussion of
these aspects in previously published studies, regarding both vi-
bration perception [14] and sound localization [19] on the acoustic
piano. Moreover, a digital piano prototype was recently developed
that reproduces various types of vibrations [20] – including those
recorded on acoustic pianos.

As part of this research, an extensive amount of experimental
data has been produced during the past years. The purpose of this
paper is to present an extensive multimodal piano sample library
consisting of binaural sounds and keyboard vibration signals, some
of which have been used in previous works for acoustic analysis
and psychophysical testing, and has now been further expanded
with upright piano data and organized into a single coherent open-
access dataset. Section 2 presents the main features of the library,
including a description of the hardware and software recording se-
tups, and the organization of the samples for use in a free software
sampler. Section 3 discusses some key aspects involved in the us-
age of the library, including sample analysis, multimodal playback,
and several application scenarios.

1https://www.namm.org/membership/global-report
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2. BUILDING OF THE BiVib SAMPLE LIBRARY

The BiVib (Binaural and Vibratory) sample library is a collection
of high-resolution audio files (.wav format, 24-bit @ 96 kHz) rep-
resenting binaural piano sounds and keyboard vibrations, accom-
panied by project files for a free software sampler, and documen-
tation. The dataset, whose core structure is illustrated in Tab. 1,
is made available through an open-access data repository2 and re-
leased under a Creative Commons (CC BY-NC-SA 4.0) license.

2.1. Recording procedure

The samples were recorded on two Yamaha Disklavier pianos
– a grand model DC3 M4 located in Padova, Italy, and an up-
right model DU1A with control unit DKC-850 located in Zurich,
Switzerland. Disklaviers are MIDI-compliant acoustic pianos
equipped with sensors for recording keystrokes and pedaling, and
electromechanical motors for playback. The grand piano is located
in a large laboratory space (approximately 6 � 4 m), while the up-
right piano is in an acoustically treated small room (approximately
4 � 2 m).

Recordings were acquired for 10 velocity values on each of
the 88 keys by means of automated software-driven procedures
sending MIDI messages, as described in detail further below.

2.1.1. Hardware setup

Binaural recordings made use of dummy heads with simulated ears
and ear canals mounting binaural microphones, with slightly dif-
ferent setups for the grand and upright pianos: a system based
on the KEMAR 45BM was used in Padova (PD), and a Neumann
KU 100 in Zurich (ZH). The mannequins were placed in front of
the pianos at the height and distance of an average pianist (see
Fig. 1). The two binaural microphones were connected to the mi-
crophone inputs of two professional audio interfaces, respectively
a RME Fireface 800 (PD, gain set to +40 dB) and a RME UCX
(ZH, gain set to +20 dB). The condenser capsules of the micro-
phones were respectively fed by 26CB preamplifiers powered by
a 12AL power module (PD), and powered by 48 V phantom pro-
vided by the audio interface (ZH).

Three lid configurations were adopted for each piano. The
grand piano (PD) was measured with the lid completely closed,
completely open, and removed (i.e., physically detached from
the main body of the piano). The upright piano was recorded
with the lid closed, semi-open (see Fig. 1), and completely open.
The purpose of using different configurations was to gain addi-
tional insight about the possible role of the lid in modulating the
sound field reaching the performer’s ears and related lateraliza-
tion/localization cues [19]. As a result, three sets of binaural sam-
ples were recorded for each piano.

Vibration recordings were performed with a Wilcoxon Re-
search 736 piezoelectric accelerometer connected to a Wilcoxon
Research iT100M Intelligent Transmitter, whose AC-coupled out-
put fed a line input of a RME Fireface 800 interface and was
recorded as an audio signal. The accelerometer was manually at-
tached with double-sided adhesive tape to each key in sequence,
as depicted in Fig. 2.

2https://doi.org/10.5281/zenodo.1213210

Figure 1: The binaural recording setup used in Zurich. The piano
lid is in ‘semi-open’ position

2.1.2. Software setup

Two different software setups were used respectively for sampling
sound and vibration. The same MIDI velocity values were used in
both cases: 10 values between 12 and 111, evenly spaced by 11-
point intervals. This choice was based on a previous study by the
present authors that determined a reliable range resulting in con-
sistent acoustic intensity [14]: in fact, the electromechanical mo-
tors of computer-controlled pianos fall short – to different extent
depending on the model – of providing a consistent dynamic re-
sponse, especially for the lowest and highest velocity values [21].

Binaural samples were recorded via a fully automated proce-
dure programmed in SuperCollider.3 The recording sessions took
place overnight, thus minimizing unwanted noise from personnel
working in the building. On the grand piano, note durations were
determined algorithmically, based upon their dynamics and pitch –
ranging from 30 s used for A0 at velocity 111, to 10 s used for C8
at velocity 12 – so as to cover their full decay while minimizing
the amount of recorded data and the length of recording session
(still amounting to about 6 hours each). Indeed, notes of increas-
ing pitch and/or decreasing dynamics have shorter decay times.
Unfortunately, on the upright piano an undocumented protection
mechanism prevents the electromechanical system from holding
down the keys longer than about 17 s, thus not allowing to fully
cover the notes’ decay. Therefore, for the sake of simplicity all
notes were recorded for just as long as possible.

Vibration samples were recorded through a slightly less so-

3A programming environment for sound processing and algorithmic
composition: http://supercollider.github.io/.
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Table 1: Dataset core structure. Lid configurations used for binaural recordings are reported in square brackets

Disklavier DC3 M4
(grand, Padova)

Disklavier DU1A with DKC-850
(upright, Zurich)

Binaural [closed] Binaural [closed]
Binaural [open] Binaural [semi-open]
Binaural [removed] Binaural [open]

Sample sets
(.wav files)

Keyboard vibration Keyboard vibration
Binaural [closed] + vibration Binaural [closed] + vibration
Binaural [open] + vibration Binaural [semi-open] + vibrationSampler projects

(Kontakt multis) Binaural [removed] + vibration Binaural [open] + vibration

Figure 2: The vibration recording setup: A Wilcoxon Research 736
accelerometer is attached with adhesive tape to a key that is being
played remotely via MIDI control

phisticated procedure. A DAW software was used to play back
MIDI notes at the previously mentioned 10 velocity values while
recording keyboard vibrations as audio signals. In this case, all
notes had a fixed duration of 16 s that, considered the much weaker
intensity of vibration signals as compared to sound, still allowed
to describe the decay of vibration well beyond perceptual thresh-
olds [14, 22].

2.2. Sample processing

Because of the intrinsic delay between sending MIDI messages
from a computer and the mechanical actuation of the Disklavier
pianos, the recorded samples started with a silent section, which
we decided to remove especially in view of their use in a sampler
(see 2.3). Given the large number of files (880 for each sample
set), automated procedures were developed, tested and fine tuned,
with the goal of removing the initial silence while leaving the rest
unaffected.

Having been recorded through an accelerometer, vibration sig-
nals additionally had abrupt onsets in the attack, appearing in
the first 200�250 ms, and corresponding to the initial fly of the
measured key followed by its impact with the piano keybed (see
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Figure 3: Waveform of a vibration signal recorded on the grand
Disklavier by playing the note A2 at MIDI velocity 12. Picture
from [14]

Fig. 3). As such, these onsets were not linked to sound-related vi-
bratory cues at the keyboard, and therefore they had to be removed
as well. Due the fact that onset profiles showed large variations,
despite several tests made in MATLAB no reliable automated strat-
egy could be found for editing the vibration samples. Therefore, a
manual approach had to be employed instead: Files were imported
in the Audacity sound editor, their waveform was zoomed in and
auditioned, and the onset part was cut.

Sound recordings instead showed a more uniform shape, and
an automated procedure programmed in SuperCollider was suc-
cessfully used to cut the initial silence: For each sample, the pro-
gram analyzes its amplitude envelope, detects the position of its
largest peak, moves back by a few milliseconds, and finally ap-
plies a short fade-in.

2.3. Sampler projects and library organization

Project files are provided for use with the free ‘Player’ version of
the software sampler Native Instruments Kontakt 5,4 available for
Windows and Mac OS systems. The full version of Kontakt 5 was
instead used for developing the sampler projects. The library is or-
ganized into four folders named ‘Documentation’, ‘Instruments’,

4https://www.native-instruments.com/en/
products/komplete/samplers/kontakt-5-player/
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‘Multis’, and ‘Samples’.
The ‘Samples’ folder – whose total size amounts to about

65 Gb – holds separate subfolders respectively for the binaural and
vibration sample types, which in turn contain further subfolders for
each sample set (see Table 1), for example ‘grand-open’ under the
‘binaural’ folder.

Independent of their type, sample files were named according
to the following mask:

[note][octave #]_[lower MIDI velocity] ...
... _[upper MIDI velocity].wav

where [note] follows the English note-naming convention,
[octave #] ranges from 0 to 8, [lower MIDI velocity]
equals the MIDI velocity (range 12–111) used during recording
and is the smaller velocity value mapped to that sample in Kon-
takt (see below), [upper MIDI velocity] is the greater ve-
locity value mapped to that sample in Kontakt. For instance, a
file A4_100_110.wav corresponds to the note A from the 4th
octave (fundamental frequency 440 Hz) recorded at MIDI veloc-
ity 100, and mapped to the velocity range 100–110 in Kontakt.
Since the lowest recorded velocity value was 12, no samples were
mapped to the velocity range 1–11 in Kontakt.

Following Kontakt’s terminology, each of the provided instru-
ments reproduces a single sample set (e.g., binaural recording of
the grand piano with lid open), while each multi combines two
instruments respectively reproducing one binaural and one vibra-
tion sample set belonging to the same piano. The two instruments
in each multi are configured so as to receive MIDI input data on
channel 1, thus playing back at once, while their respective out-
puts are routed to different virtual channels in Kontakt: binaural
samples are routed to a pair of stereo channels (numbered 1-2),
while vibration samples are played through a mono channel (num-
bered 3). In this way, when using audio interfaces offering more
than two physical outputs, it is possible to render both binaural
and vibrotactile cues at the same time by routing the audio signal
respectively to headphones and vibration actuators.

In each instrument, sample mapping was implemented rely-
ing on the ‘auto-map’ feature found in the full version of Kontakt:
this parses file names and uses the recognized tokens for assigning
samples to e.g. a pitch and velocity range. The chosen file naming
template made it straightforward to batch-import the samples.

The amplitude of the recorded signals was not altered, that is
no dynamic processing or amplitude normalization was applied,
and the volume of all Kontakt instruments was set to 0 dB. Be-
cause of this and the adopted velocity mapping strategy, sample
playback is made transparent for acoustic and vibratory analysis
and experiments (see 3.1 and 3.2).

3. USING THE BiVib SAMPLE LIBRARY

The BiVib library is suited for both acoustic/vibratory analysis and
interactive applications, for instance in experiments on musical
performance and multisensory perception.

To our knowledge, no other existing piano datasets are fully
comparable with what included with the BiVib library. Indeed,
binaural piano sounds are offered by a few audio plugin devel-
opers (e.g., Modartt Pianoteq5) and digital piano manufacturers
(e.g., Yamaha Clavinova6). Also, free binaural piano samples can

5https://www.pianoteq.com/
6https://europe.yamaha.com/en/products/musical_

instruments/pianos/clavinova/

be found, such as the “binaural upright piano” library,7 which how-
ever offers only 3 dynamic layers as opposed to the 10 velocity
levels provided by BiVib. Overall, such binaural sounds are con-
ceived for use with virtual instruments, while they are not directly
suitable for research purposes, due to non-reproducible and un-
documented acquisition procedures and sample post-processing.
Collections of haptic / vibrotactile data of musical instruments are
even scarcer. To our knowledge, no other public dataset of piano
keyboard vibrations is available.

3.1. Sample analysis

For many experimental purposes and applications it is essential to
be able to reconstruct the physical values of the measured signals,
that is acceleration in m/s2 for keyboard vibrations, and acoustic
pressure in Pa for the binaural signals. Given the quality of the
equipment used in the various stages of the acquisition chain, such
reconstruction can be achieved with good accuracy by relying on
the equipment’s nominal specifications. These are summarized in
a companion document included in the ‘Documentation’ folder.

For instance, accelerations in m/s2 can be computed from the
acquired signals by making use of the nominal sensitivity param-
eters of the audio interface and the accelerometer: the digital sig-
nals, whose normalized values range between -1 and 1, are first
converted to voltage values through the full scale reference of the
RME Fireface 800 audio interface (for line inputs at the chosen
sensitivity level, 0 dBFS @ +19 dBu, reference 0.775 V), and
then transformed into proportional acceleration values through the
sensitivity constant of the Wilcoxon Research 736 accelerometer
(10.2 mV/m/s2). In a similar way, acoustic pressure values in Pa
can be obtained from the binaural recordings, by making use of
the nominal sensitivity levels of the audio interfaces’ microphone
inputs and of the binaural microphones.

Generally speaking, objective data computed from the library
may help support results from psychophysical and quality evalua-
tion studies focusing on the piano, as recently done by the authors
in [14].

A more ambitious task could be that of extracting piano sounds
free of the room response that affect the BiVib library. Methods
exist to deconvolve common acoustic poles and zeros from sam-
ples that have been captured under invariant conditions [23], as it
is in our case. However, in the case of BiVib care should be taken
for preventing these methods from cancelling poles and zeros that
are introduced by the mannequin, responsible of the binaural cues:
Most such poles and zeros have frequencies higher than those asso-
ciated to the dominant poles and zeros characterizing the recording
rooms, in ways that at least the lower common modal resonances
may be deconvolved safely from the samples. On the other hand,
anechoic binaural sounds may not be suitable for the purpose of
listening experiments in ecological settings.

3.2. Experiments and applications

We anticipate that this library will be useful for data analysis and
experiments in music performance studies.

Acceleration values in m/s2 obtained from the vibration
recordings as explained above can be used e.g. for comparison
with the literature of touch psychophysics [22, 24], as shown in
Fig. 4. In a recent article by the present authors, this allowed to

7https://www.michaelpichermusic.com/
binaural-upright-piano
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Figure 4: Magnitude spectrum of the vibration signal at the A0 key,
recorded with MIDI velocity 111 on the upright Disklavier. The
dash-dotted curve depicts the reference vibrotactile threshold for
passive touch [24], while the two horizontal dashed lines represent
the minimum and maximum thresholds recently measured by one
of the authors for active touch [22]. Picture adapted from [14]

support the subjective results of a psychophysical experiment on
the detection of vibration at the piano keyboard [14].

On a genuinely multisensory level, the relations in intensity
existing between sound and vibration signals, recorded on the
same instruments and provided by the database, may be used to
investigate the presence of cross-modal effects occurring during
piano playing. Such effects have been highlighted as part of a
more general multisensory integration mechanism [25] that under
certain conditions may increase the perceived intensity of audi-
tory signals [26], or vice-versa can enhance touch perception [27].
The possibility to individually manipulate the magnitude of piano
sounds and vibrations in experimental settings (e.g., using a digital
keyboard that yields multimodal feedback) may lead to interesting
observations on the perceptual consequence of this manipulation
specifically for the pianist. In this regard, cross-modal effects re-
sulting from varying the tactile feedback of the keyboard have been
recently observed by the authors, however far from giving a sys-
tematic view about the impact of the different sensory channels to
the pianist’s playing experience [20].

The BiVib library has been previously used to investigate the
presence of auditory lateralization cues for the acoustic piano, lim-
ited to sound samples. Although the recordings are not anechoic,
their reproduction through headphones has unveiled the ability of
pianists to localize tones in good accordance with the interaural
level differences existing in the binaural material [28]. This abil-
ity was further supported by visual cues of self-moving keys pro-
ducing the corresponding tones, as well as by somatosensory cues
occurring during active piano playing of the same tones [19]. Inter-
estingly, the supportive role of the visual and somatosensory chan-
nel ceased when the auditory feedback was subverted by swapping
the left-right signals feeding the headphones. This evidence speaks
in favor of the existence of a ventriloquist effect that affects piano
listening and playing, which may be enabled only by a coherent

multisensory experience as provided by an actuated piano [28].
One promising research direction that may also gain from us-

ing the BiVib library is represented by the use of methods from
cognitive neuroscience (e.g., EEG and event-related potentials,
brain imaging) to further investigate the role of multimodal audio-
visuo-tactile processing in supporting musical abilities and trigger-
ing the activation of motor information in the brain of pianists.

Ultimately, all these studies can contribute to the perceptu-
ally and cognitively informed design of novel digital pianos, and
to the understanding of perceived instrumental quality and playa-
bility. We provided initial results in an earlier study where we
developed and tested a haptic digital piano prototype: various vi-
bration signals, including grand piano vibrations from BiVib, were
reproduced at the keyboard and compared to a non-vibrating con-
dition [20]. Overall, vibrating condition was preferred over the
standard non-vibrating setup in terms of perceived quality. How-
ever, when considering performance-related features such as tim-
ing and dynamics accuracy of performers, this initial study could
not highlight significant differences between conditions.

Finally, the binaural recordings may be especially useful also
for different research directions. One example in the field of mu-
sic information retrieval is that of multipitch estimation and au-
tomatic transcription algorithms that exploit binaural information,
whereas the datasets most commonly employed for these tasks are
not binaural, such as the “MIDI Aligned Piano Sounds” (MAPS)
database [29]. One further example, in the field of digital audio
effects, is that of spatial enhancement effects (e.g., stereo enhance-
ment): Piano sounds are typical examples of acoustic signals that
are difficult to spatialize properly [30], and the BiVib samples may
serve as a reference for the development/validation of novel ef-
fects.

4. CONCLUSIONS AND PERSPECTIVES

The BiVib sample library provides a unique set of multimodal pi-
ano data, acquired with high-quality equipment in controlled con-
ditions through reproducible computer-controlled procedures.

Since the binaural samples in the library were meant for use
in perceptual tests under ecological listening conditions, they cur-
rently include responses of the rooms where they were recorded.
However we recognize that for acoustic research purposes this may
be a relevant limitation, and therefore we have planned to add the
respective (binaural) room impulse responses in a future version
of the library, and possibly a complete new set of recordings in
anechoic conditions.

We hope that the public availability of the library, in conjunc-
tion with this documentation and with the accompanying Kontakt
sampler projects, will facilitate further research in the understand-
ing and modeling of piano acoustics, performance, and related
fields.
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ABSTRACT

This paper presents a position-based attenuation and amplifica-
tion method suitable for source separation and enhancement. Our
novel sigmoidal time-frequency mask allows us to directly control
the level within a target azimuth range and to exploit a trade-off
between the production of musical noise artifacts and separation
quality. The algorithm is fully describable in a closed and compact
analytical form. The method was evaluated on a multitrack dataset
and compared to another position-based source separation algo-
rithm. The results show that although the sigmoidal mask leads to
a lower source-to-interference ratio, the overall sound quality mea-
sured by the source-to-distortion ratio and the source-to-artifacts
ratio is improved.

1. INTRODUCTION

Over the past years, research on sound source separation and up-
mixing techniques has produced a vast body of literature. Non-
negative matrix factorisation (NMF) [1], independent component
analysis (ICA) [2], computational auditory scene analysis (CASA)
[3] and time-frequency (TF) masking [4] appear to be the main
families of blind audio source separation (BASS) methods. With
regard to stereo recordings many different approaches have been
proposed to model the mixing process and the nature of the sources.
The derived techniques can be divided into blind or informed (gui-
ded) source separation [5].

This paper proposes a guided TF masking algorithm, assum-
ing that the direction of the source can be approximately estimated
by the user. As with other position-based source separation meth-
ods [4, 6], only the interaural intensity difference (IID) between
the two channels (left and right) is taken into account to model the
position of the sources. Our signal model is similar to the ones in
[7] and [4] and assumes mono sources that have been positioned
in the stereo image by a panorama potentiometer. Each TF bin
is assumed to belong to a single source and we estimate its posi-
tion as well as its mono magnitude assuming the energy-preserving
panning law. Given a target azimuth range, we then compute a sig-
moidal TF mask that weights the amplitudes with regard to their
distance from the target azimuth range. In addition to source sepa-
ration, our mask is able to perform source enhancement and atten-
uation with precise level indications. A binary mask as in [4] pro-
duces significant musical noise due to isolated non-zero TF bins.
The sigmoidal mask has a smoother transition between the target
and the adjacent azimuth ranges which reduces this kind of artifact.

In section 2 we briefly introduce our signal model, while in
section 3 our method is presented in a closed analytical form. Fi-
nally, in section 4, we confirm the effectiveness of our approach.

2. FRAMEWORK

Commercial recordings are often instantaneous mixes of mono
tracks combined through amplitude panning to generate a stereo-
phonic effect [8].

Figure 1: Energy preserving panning coefficients

2.1. Mixing Model

Given a set of mono sources {Sj}J
j=1 and the relative amplitude

panning gains aL
j , aR

j , a stereo mix can be modelled as:

L =
�

j aL
j Sj

R =
�

j aR
j Sj

(1)

where L and R are the left and the right channels, respectively.
As reported in [8], the majority of analog and digital mixers

approximate the energy-preserving panning law (Fig. 1), where the
value of the panorama potentiometer takes on values xj � [0, 1]
and (aL

j )2 + (aR
j )2 = C2:

aL
j = C · cos(xj · �/2)

aR
j = C · sin(xj · �/2)

(2)

where C = 1 satisfies the energy preserving condition.

2.2. W-disjoint orthogonality

Our method is based on the W-disjoint orthogonality assumption,
where two or more sources do not overlap in the short-time Fourier
transform (STFT) domain. Mathematically, this condition can be
expressed as:

Si(k, m) · Sj(k, m) = 0 �i �= j, �k, m (3)

where Sj(k, m) is the STFT of the j-th source at frame m and
frequency bin k.
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3. METHOD

In a first step, we estimate the panning position of each TF bin (sec.
3.1) as well as its mono magnitude (sec. 3.3). Given a target az-
imuth range, a sigmoidal mask is computed based on the estimated
panning positions (sec. 3.2).

The sigmoidal mask is applied to the mono magnitudes which
are then re-panned (sec. 3.4) and recombined with the phase from
the original mixture.

3.1. Panning map

Given equation 3 and our assumptions from eq. 1 and 2, it is now
possible to estimate the panning position for each element in the
spectrograms:

x(k, m) = arctan

�
|XR(k, m)|
|XL(k, m)|

�
· 2/� (4)

where XL and XR are the left and the right channel in the STFT
domain. A similar estimation of the panning position has been
used in [9].

3.2. Sigmoidal mask

The smoothness of sigmoidal functions has been proven useful in
the post-processing of signal estimates coming from methods like
ICA, CASA or NMF [10, 11, 12]. Those estimates can be then
used to compute TF sigmoidal masks that are then applied on the
original mixture. In this work we combine two sigmoids with the
panning map to create a position-based mask that can control the
level in a given azimuth range.

In order to attenuate or amplify the elements inside a target az-
imuth range, it is necessary to find a function that weights TF bins
based on their estimated position. The target range is defined by its
center position T � [0, 1] and a width R. We define two comple-
mentary sigmoid functions that control the amount of attenuation
and amplification both inside and outside the target azimuth range:

�L(x) = 1

1+e
��(x�T+ R

2
)

�R(x) = 1

1+e
+�(x�T � R

2
)

(5)

In these equations, � defines the slope of the sigmoids. Choosing
� = � is equivalent to a binary mask as in [4], whereas lower
values for � result in smoother transitions. In order to amplify
the target azimuth range, we choose � > 0 and combine the two
sigmoids as follows to get the sigmoidal mask:

M(x) = min (�L(x), �R(x)) (6)

For attenuation, we choose � < 0 and obtain the sigmoidal mask:

M(x) = max (�L(x), �R(x)) (7)

Finally, to control the level in decibels, one can simply rearrange
one of the previous equations as follows:

MdB(x) = 10(�·M(x)��)/20 (8)

where � > 0 is the desired attenuation in decibels (see Fig. 2).

Figure 2: Sigmoidal masks as in eq. 6 (upper) and eq. 7 (lower).
� = 10 dB , T = 0.5 , R = 0.3 , � = ±40

3.3. Pre-panning magnitudes

The assumptions made in eqs. 1, 2 and 3 pose the ideal condi-
tions to recover the mono magnitude of each source. Generally,
the mono magnitude in the STFT domain can be computed as:

|S(k, m)| =
�

|XL(k, m)|2 + |XR(k, m)|2 (9)

3.4. Masking and re-panning

To synthesize the modified signal, the mono magnitudes are masked

|Sout(k, m)| = |S(k, m)| · MdB(x(k, m)), (10)

and each component is re-panned to its original position.

|YL(k, m)| = |Sout(k, m)| · cos(x(k, m) · �/2)

|YR(k, m)| = |Sout(k, m)| · sin(x(k, m) · �/2)
(11)

Finally, the phase from the original mixture has to be recombined:

YL(k, m) = |YL(k, m)| · ej·�XL(k,m)

YR(k, m) = |YR(k, m)| · ej·�XR(k,m)
(12)

4. EVALUATION

4.1. Procedure

To evaluate our proposed method we use MedleyDB [13] a database
of 122 royalty free multitrack recordings with a total length of 7:17
hours. The dataset provides stems (i.e. processed individual instru-
ment tracks) for each song. For our purpose we eliminated tracks
that were recorded in a live setting, due to their significant amount
of spill between sources. We evaluated all tracks with a number
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of stems greater than or equal to three and less than or equal to
six, resulting in 43 tracks for a total of 199 sources. Due to the
lack of metadata about the sources’ spatial position, we created
separate mixtures by downmixing the stems from stereo to mono
and remixing them with random azimuth positions. The azimuth
values were chosen from a uniform distribution over the whole az-
imuth range.

As a baseline, we compare our position-based sigmoidal source
separation (PoSiS) method against the ADRess algorithm [4] which
uses a different method for azimuth estimation and a binary mask
instead of our proposed sigmoidal mask. We use an implementa-
tion written for the Csound system by Victor Lazzarini [14]. The
ADRess algorithm was parameterized with 600 equally spaced az-
imuth positions and a target azimuth range of 60 azimuth positions
for each source. To make our algorithm comparable, our mask was
set as in equation 6 with � = 30, R = 0.1 and without rearranging
it as in 8 to effectively emulate an attenuation of �� dB for the
TF bins outside the target range. For both algorithms, we opted for
a 4096 points Hann window with 50% overlap.

To measure the quality of the separations, we used the MAT-
LAB toolbox BSS_EVAL [15] distributed under GNU Public Li-
cence. The computation of the criteria is performed in two steps.
First, the estimated source signal is decomposed as:

ŝ = starget + einterf + enoise + eartif (13)

where starget is a modified version of the source through an allowed
distortion (in this case a time invariant filter, with a 512 samples
delay) and where einterf, enoise and eartif are respectively the inter-
ference, noise and artifacts errors. From these terms, assuming no
noise in our model, three numerical performance criteria are com-
puted:

• the source-to-distortion ratio (SDR)
that can be seen as a global quality assessment

• the source-to-artifacts ratio (SAR)
in our case mainly related to musical noise

• the source-to-interference ratio (SIR)
that measures the interference from other sources

4.2. Results

Figure 3 displays box plots of the measurements grouped by the
number of sources present in the track.

In general, all quality measures for both algorithms show a
decreasing trend when the number of sources increases, which can
be attributed to the increased complexity and TF overlap of the
sources when more sources are present. It can be observed that
ADRess yields higher source-to-interference ratios than our pro-
posed method, particularly when the number of sources increases.
The sigmoidal mask provides a smoother transition between az-
imuth values inside and outside the target range and hence leads to
a higher amount of contributions from other sources. On the other
hand, however, PoSiS generally yields higher source-to-distortion
and source-to-artifacts ratios which both capture the overall sound
quality of the separated source signals. Artifacts — mainly musi-
cal noise — are reduced by the sigmoidal mask because it leads to
less isolated TF bins in comparison with ADRess’ binary mask.

The results suggest that the sigmoidal mask trades separation
accuracy against artifacts, which can be controlled by the slope of
the sigmoidal mask. With higher slopes, the mask approaches the

�SDR �SIR �SAR

µ � 3.3 dB µ � 0.6 dB µ � 3.0 dB
p � 0.00 p � 0.12 p � 0.00

Table 1: Paired difference t-test: µ is the average and p the p-value.

binary mask, resulting in more artifacts and a better separation ac-
curacy, whereas sigmoidal masks with lower slopes reduce musical
noise artifacts but lead to more interference from other sources.
Assuming an underlying normal distribution of the source-wise
differences of the performance measurements, where:

�SDR = SDRPoSiS � SDRADRess

�SIR = SIRPoSiS � SIRADRess

�SAR = SARPoSiS � SARADRess

(14)

We then checked the statistical significance of our results by per-
forming a paired t-test. With the resulting p-values in Table 1
we can, for the SDR and SAR, safely reject the null-hypothesis,
while there is no statistically significant difference between the two
methods in the SIR measurements.

5. CONCLUSION

We presented a system for position-based source separation from
a stereo mixture. The algorithm first estimates a panning posi-
tion and mono magnitude for each TF bin based on the energy-
preserving panning law, assuming W-disjoint orthogonality. Given
a target azimuth range, a sigmoidal mask is computed that en-
ables attenuation and amplification of the audio within the target
range. The attenuation/amplification level can be specified in dB.
The mask is applied to the estimated mono magnitudes of each TF
bin and the bins are re-panned to their estimated azimuth position.
A resynthesis combining the magnitudes with the mixture phases
yields the separated source signal.

We could confirm that using a sigmoidal mask, that is, a smoo-
ther transition between the target azimuth range and adjacent az-
imuth ranges, significantly reduces musical noise artifacts that oc-
cur in position-based algorithms that rely on binary masking. Bi-
nary masking often leads to isolated TF bins which cause percep-
tually disturbing musical noise. The sigmoidal mask smoothes the
spectrogram of the separated source thereby trading musical noise
artifacts against separation accuracy.

For certain use cases such as amplifying an instrument for the
purpose of transcribing its musical performance, it is often not nec-
essary to have a sharp separation and a complete suppression of
interfering sources, but rather to provide a limited amplification
that allows users to better listen to what has been played by the
performer. In these cases an improved overall sound quality with
less artifacts might be preferred.

Future work on position-based source separation will have to
consider methods that do not assume W-disjoint orthogonality,
which does not hold in general for professionally produced music
mixtures. Even though it is possible to isolate sources under this
assumption, a significant improvement in separation accuracy and
sound quality will only be achieved if the TF contributions of each
individual source can be estimated and reassigned to the corre-
sponding source. Therefore monaural source separation methods
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Figure 3: SDR, SIR, SAR of ADRess and PoSiS grouped by number of sources in the mixture

will have to be combined with position-based algorithms in order
to improve sound source separation from stereo mixtures.
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ABSTRACT

In this paper, we propose to reduce the relatively high-dimension
of pitch-based features for fear emotion recognition from speech.
To do so, the K-nearest neighbors algorithm has been used to clas-
sify three emotion classes: fear, neutral and ’other emotions’. Many
techniques of dimensionality reduction are explored. First of all,
optimal features ensuring better emotion classification are deter-
mined. Next, several families of dimensionality reduction, namely
PCA, LDA and LPP, are tested in order to reveal the suitable di-
mension range guaranteeing the highest overall and fear recogni-
tion rates. Results show that the optimal features group permits
93.34% and 78.7% as overall and fear accuracy rates respectively.
Using dimensionality reduction, Principal Component Analysis (PCA)
has given the best results: 92% as overall accuracy rate and 93.3%
as fear recognition percentage.

1. INTRODUCTION

Emotion is one of the main drivers of human thoughts and actions.
It manifests itself through several modalities: speech, body ges-
ture, facial expression, eyes contact,... As speech is a simple and
natural way of communication, emotion recognition from speech
is widely used (see for example [1][2]). In this paper, we deal
with fear emotion recognition through the classification of speech
into neutral, fear and other emotions. We are mainly interested in
fear emotion because it has many applications. In our considered
research, we aim to detect suspicious behavior which risks to be
a terrorism attack, as part of civil safety. Therefore, we are par-
ticularly interested in detecting fear state which may characterize
such person (before the action) in order to protect victims and limit
damage [3].

In order to design a reliable emotion recognition system, the
following questions should be answered: i) How to select ap-
propriate features to extract from speech? ii)Which classification
techniques to use? iii)How to select the most relevant and discrim-
inatory features? and iv) How to reduce a high dimension feature
set into a meaningful representation of reduced dimensionality?
With regards to the first point, the speech production system con-
sists of two principal organs: vocal folds, which are responsible
for the production of sounds used for speech, and vocal tract re-
lated to the movement of the tongue tip, the jaw and the lip during
the voice production. In our study, we are interested in studying
vocal-folds related features and more precisely the pitch. Indeed,
pitch expresses the vibration frequency of vocal folds during the

� This work has been carried out as part of a federated research project
entitled: Sensitive Supervision of Sensitive Multi-sensor Sites, funded by
the Ministry of Higher Education and Scientific Research, Tunisia.

production of voiced sounds. This choice is justified by the fact
that, on the one hand, vocal folds vibrate, in a similar way, for all
the phonemes unlike vocal tract, whose behaviour varies from one
phoneme to another. On the other hand, the voice presents many
modifications during the fear state such as oscillation, tremor, ir-
regularity and stammering [4]. These changes are due to the vibra-
tion of vocal folds.

For the second point in the context of classification techniques,
many classifiers are developped in the litterature based on machine
learning approach. We quote for example Neural Network, K-
nearest Neighbors, Random Forest, Decision Tree, Gaussian Mix-
ture Model, among others [5]. In a previous work dealing with
fear emotion detection [6], we performed the classification using
four classifiers : Support Vector Machine (SVM) [7], Decision
Tree (DT) [8], Subspace Discriminant [9] and K-nearest Neigh-
bors (KNN) [10]. The highest fear emotion detection has been
obtained using KNN. Therefore, KNN has been the classification
tool of our study in this paper.

According to the third point related to discriminatory features
selection, a large pool of techniques has been proposed for such
purpose. We relate for example Fisher discriminant ratio, scat-
ter matrices, statistical tests, the Receiver Operating Characteristic
(ROC) curve, Bhattacharyya distance, RELIEF-F algorithm (see
for example [11][12][13]). This has been the interest of our pre-
vious work for fear emotion detection [14]. In this work, four
different relevance indexes have been used to select most relevant
ones from a list of 27 features: Fisher Discriminant Ratio, proba-
bility divergence, scatter measure and ANOVA statistical test. Fea-
tures with highest classification accuracy appearing in all relevance
indexes are retained. Thanks to this approach, the fear emotion
recognition results reached 86.7%.

Finally, the feature dimensionality reduction would be the ob-
jective of this paper. Indeed, when dealing with a high dimension
data, classification problems become significantly harder and may
lead to lower classification accuracy and poor quality of clusters.
In the literature, this phenomenon is referred to as the curse of di-
mensionality [15]. This aspect has been a fertile field of research
and development for over a century. In this context, many tech-
niques have been proposed for this task. They are organized into
two groups: linear methods such as principal component analysis
[16], linear discriminant analysis [17], locality preserving projec-
tion [18], factor analysis [19], classical scaling [20] and non-linear
ones including Kernel PCA [21], kernel discriminant analysis [22],
Isomap [23] and multilayer autoencoders [24] among others.

The aim of this paper is the investigation of the effect of fea-
ture dimensionality reduction on classification performance. To
this end, two approches have been adopted. The first one consists
on performing the classification for all possible combinations of
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the whole pitch-based set of features using K-nearest neighbors
algorithm. The approach is called ’N to N’. The goal here is to
obtain the best combination of features and the suitable dimen-
sion range giving the best accuracy rate. The second one is to test
many techniques for feature space reduction. They are i) Principal
Component Analysis (PCA) and its variants (Kernel PCA denoted
KPCA and probabilistic PCA denoted PPCA); ii) Linear Discrim-
inant Analysis (LDA) and its kernelized version (Kernel DA de-
noted KDA); iii) Locality Preserving Projection (LPP) and its ker-
nelized version (Projection denoted KLPP) and iv) many others
which will be listed latter. The classification is carried out sep-
arately in the reduced space for each technique and the effect of
dimension variation is analyzed. Finally, the best tradeoff between
dimension reduction and classification performance is revealed.

The paper is organized as follows. Section 2 will give a brief
description of the extracted pitch-based feature set, the consid-
ered emotional corpus and the emotion grouping adopted in this
study. Section 3 will present a description of the ’N to N’ ap-
proach as well as the classification results obtained using this pro-
cess. Section 4 and 5 will provide an investigation about the use of
correlation-based (resp. non-correlation based) techniques for di-
mensionality reduction and will display their classification results.

2. PRELIMINARIES

2.1. Features Set

The pitch is related to the vocal folds vibration, determining the pe-
riodicity of voiced sounds. More precisely, it translates the opening-
closing frequency of vocal folds during the production of voiced
sounds. Note that pitch is calculated only for voiced frames as vo-
cal folds do not vibrate during the production of unvoiced sounds.
In order to extract the set of pitch-based features, speech utter-
ances are first decomposed into frames whose duration is 10ms.
Next, voiced and unvoiced frames are identified and pitch values
are calculated using the rapt algorithm [25]. Based on these pitch
values, a whole set of global features are calculated. They are clas-
sified into four groups: usual measures, features related to pitch’s
derivative and second derivative as they are linked to the vibration
speed and acceleration of vocal folds, features related to speech
voicing since voicing rate varies from one emotion to another. The
whole set of features has a 27 dimensionality. It is summarized in
Table 1:

2.2. Emotional Database and Selected Emotion Classes

EMO database, which is a German emotional database publicly
accessible, has been used during this study [26]. It includes 800
utterances simulated by 10 professional actors (5 males and fe-
males). It consists of seven emotion states namely: neutral, fear,
anger, joy, sadness, disgust and boredom. Recordings were taken
in an anechoic chamber, under supervised conditions with a sam-
pling frequency of 48 kHz and later downsampled to 16 kHz. A
human perception test to recognize various emotions with 20 par-
ticipants resulted in a mean accuracy of 84.3%.
The adopted emotion grouping considers 3 groups: fear, neutral
and other emotions. The ’Other emotions’ class includes the five
remaining states (joy, anger, disgust, sadness and boredom). The
classes repartition through the corpus is the following: 14% for
fear, 14% for the neutral class and 72% for other emotions.

Table 1: Feature set.

FAMILY DESCRIPTION ABREVIATION

Usual
measures

Mean, Maximum, Minimum,
Variance, Median,

Normalised standard deviation

--
Norm_STD

Speech
voicing

Ratio of voiced frames on the total frames
Ratio of unvoiced frames on the total frames
Ratio of voiced frames on unvoiced frames

First voiced frame
Second voiced frame

Voiced frame in the middle frame
Before last voiced frame

Last voiced frame

Rat_Voic_tot
Rat_UnVoic_tot

Rat_Voic_UnVoic
1st frm
2nd frm

Middle frm
Bef_lst_frm

Lst_frm

Pitch
contour

derivative

Mean of pitch’s derivative
Mean of the absolute value of pitch’s derivative

Variance of pitch’s derivative
Variance of the absolute value of pitch’s derivative

Maximum of pitch’s derivative
Maximum of the absolute value of pitch’s derivative

Mean of pitch’s second derivative
Maximum of pitch’s second derivative

Mean_DRV
Mean_ABS_DRV

Var_DRV
Var_ABS_DRV

Max_DRV
Max_ABS_DRV
Mean_Sec_DRV
Max_Sec_DRV

Others

Ratio of pitch’s mean on its maximum
Ratio of pitch’s mean on its minimum

Ratio of peaks’s number on total frames
Minimum position
Maximum position

flatness
Vehemence
Num_Peaks

Min_Pos
Max_Pos

2.3. Adopted Criteria for Evaluating the classification quality

In this study, we performed the classification using K-nearest neigh-
bors (KNN) algorithm. KNN has been chosen according to our
previous study dealing with a comparison between many classi-
fiers [6]. This study has revealed that KNN is the best trade-
off between classification performance and computational cost.
The database was trained and tested using the holdout validation
method where 70% of the data were used for training while 30%
were used for testing. The classification was judged by two criteria
in order to have a clear idea of classification model performance:

�The overall accuracy rate : it translates the percentage of
well predicted emotion sequences among the total number of emo-
tion speech sequences. It is calculated by dividing the number of
well predicted samples on the total number of samples.

�The fear accuracy rate : This rate indicates the proportion
of fear recognition among others. It is calculated by dividing the
number of well predicted fear samples on the total number of sam-
ples in fear class.

3. DIMENSIONALITY REDUCTION BASED ON ’N TO N’
COMBINATION

3.1. Approach

The aim of this section is to extract the optimal feature list ensur-
ing maximal overall emotion detection rate from the whole set of
selected features. To this end, the adopted approach was to test
all the possible combinations of the 27 features already extracted
and to identify, as a result, the group giving the best classification
accuracy. In the first iteration, we looked for the best accuracy
reached by one feature. Then, we looked for the best combination
of two features (2 by 2 among the 27 possible ones) giving the best
accuracy. The process is re-iterated for all possible values of N (N
= 1,..,27) until reaching the whole set of 27 features. This process
for each value of N is called ’N to N’ combination of features.

The ’N to N’ dimensionality reduction technique requires la-
borious and complex calculation that has lasted many weeks. In-
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deed, for each iteration of ’N to N’ combinations among the 27
features, the classification algorithm is applied CN

27 times (where C
is the combinatory operator). In order to make aware of the heav-
iness of computational cost, the number of combinations varies
between 27 and 20 millions. The second line in Table 2 displays
the total number of combinations for each ’N to N’ combination
of features. The run time of each ’N to N’ combination is given
in line 3 of Table 2 using a machine with an intel core CPU i3, 64
bits and having 1.70 GHz as a clock speed and 4 Go of RAM.

3.2. Classification Results

Figure 1 represents the evolution of the classification results for
each feature vector size in terms of overall and fear accuracy rates.
The solid line indicates the variation of overall accuracy rate while
dashed line is reserved for fear accuracy. The first value indicates
the best overall accuracy rate obtained using only one feature. The
second provides the best accuracy rate obtained for the combina-
tion of 2 features among the 27 ones, and so on. Note that the best
feature group has been extracted according to the overall accuracy
rate optimization and not fear accuracy rate.
One can notice that the range of overall accuracy varies between

Figure 1: Classification results according to ’N to N’ approach.

62% and 93,34%. The best value is obtained using 20 features for
which the accuracy rate is equal to 93.34%. Also, we can note a
stabilization at classification quality for a dimensionality between
10 and 22. On the other hand, fear recognition rate varies between
13.3% and 78.7%. The best one is obtained with a 3-features com-
bination. Note that the quality varies enormously in the ascending
and descending order for a dimension range between 3 and 19 fea-
tures. Moreover, choosing a dimensionality range between 19 and
22 would be the best tradeoff between overall accuracy and fear
accuracy rates. Indeed, the classification quality is among the best
ones in that interval according to the two criteria.

3.3. Optimal features with reduced dimensionality

Table 3 indicates the list of relevant features giving the best accu-
racy rate obtained for each ’N to N’ combination. The 20 fea-
tures giving the best overall performance (93.34%) are: mean,
median ,variance, normalised standard deviation, flatness, number
of peaks, minimum, maximum, the ratio of voiced on unvoiced
frames, the ratio of unvoiced frames on the total frames, mean of
the absolute value of pitch’s derivative, maximum position, vari-
ance of derivative, variance of the absolute value of derivative,
maximum of the absolute value of derivative, mean of the second
derivative, first, second, before last and last voiced frames.

However, one can notice that median, mean of second deriva-
tive, mean, last voiced frame and number of peaks are classed on
the top-5 according to their presence as optimal features for the
other combinations (ticked in bold in Table 3). This fact confirms
their usefulness and relevance in discriminating between fear, neu-
tral and other emotion states. If we deal with dimensionality reduc-
tion, the reduced vector size of dimensionalities varying from 19
to 22 is considered. Thus, eleven features are revealed as relevant
common ones between these ranges. They are the mean, max-
imum, variance, Rat_Voic_UnVoic, Lst_frm, Mean_ABS_DRV,
Var_ABS_DRV, Max_ABS_DRV, Mean_Sec_DRV, flatness and
Num_Peaks. Thus, these features seem to be the most relevant
ones.

4. CORRELATION-BASED DIMENSIONALITY
REDUCTION

Whereas ’N to N’ combination approach leads to very significant
classification results reaching 93.3%, it remains difficult to apply
them in practice because of their complexity and computational
cost. Hence, the use of automatic dimension reduction techniques
guaranteeing speed and performance are preferred. This section
is devoted to investigate dimension reduction methods considering
the correlation between features.

4.1. Correlation between features

Referring to the curse of dimensionality, dealing with a redun-
dant and correlated features may lead to poor classification per-
formance. In order to take an idea about the linear dependency be-
tween features, the correlation between them has been calculated
pairwise and the results are displayed in Table 4. The features’
names have been replaced by their corresponding number (1,2, ...
27) due to lack of space. The retained order is the same as the
one adopted in Table 3. It means that 1 indicates mean, 2 indicates
median and so on.

From Table 4, one can deduce that some pairs of features
present strong correlation (|�| > 0.7). We relate for example the
correlation between variance of derivative and mean of absolute
value of derivative (0.92). Others are moderately correlated (0.3<|�|
<0.7) such as variance and mean of absolute value of derivative. A
good part of the features are weakly correlated. It means that they
are quasi independent or totally independent (|�|<0.2). Thus, we
decided to use a dimension reduction technique garanteeing fea-
tures decorrelation and eliminating dependencies between them in
order to obtain better classification results. The most used tech-
nique in the literature is Principal Component Analysis (PCA).

4.2. Traditional PCA and variants

PCA stills the most used technique for dimensionality reduction. It
consists on using an orthogonal transformation to convert a set of
possibly correlated features into uncorrelated ones called principal
components. The new components of the embedded basis meet the
following criteria: (i) they are linear combinations of the original
features, (ii) they form an orthogonal basis that can be viewed as a
rotation of the original one, and (iii) components are uncorrelated
but preserve the maximum amount of variation in the data. In ad-
dition to traditional PCA [16], probabilistic PCA (PPCA) [27] and
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Table 2: Calculation complexity of ’N to N’ combination approach.

Features
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations
number 27 351 2925 17550 80730 296010 888030 2220075 4686825 8436285 13037895 17383860 20058300 20058300
Overage

calculation
time 5.3s 223s 17.4 min 47min 23hours 18hours 3days 7days 15days 28 days 43days 43days 57days 66days

Features
number 15 16 17 18 19 20 21 22 23 24 25 26 27

Combinations
number 17383860 13037895 8436285 4686825 2220075 888030 296010 80730 17550 2925 351 27 1
Overage

calculation
time 43days 43days 28 days 15days 7days 3days 19hours 1day 56min 18min 250s 7s 12s

Table 3: Best feature combinations.

�������������Feature name
Feature number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Mean � � � � � � � � � � � � � � � � � � � � �
Median � � � � � � � � � � � � � � � � � � � � � �

Maximum � � � � � � � � � �
Minimum � � � � � � � � �
Variance � � � � � � � � � � � � � � �

Norm_STD � � � � � � � � � � �
Rat_Voic_tot � � � � � � � � � � � � � � � � �

Rat_UnVoic_tot � � � � � � � � � � � �
Rat_Voic_UnVoic � � � � � � � � � � � � � � � � �

1st frm � � � � � � � � � � � �
2nd frm � � � � � � � � � �

middle frm � � � � � � � � � � � � � �
Bef_lst_frm � � � � � � � � � � � � � � �

Lst_frm � � � � � � � � � � � � � � � � � � �
Mean_DRV � � � � � � � �

Mean_ABS_DRV � � � � � � � � � � � � �
Var_DRV � � � � � � � � � � � � �

Var_ABS_DRV � � � � � � � � � � � � �
Max_DRV � � � � � � � � �

Max_ABS_DRV � � � � � � � � � � � � � � �
Mean_Sec_DRV � � � � � � � � � � � � � � � � � � � � � �
Max_Sec_DRV � � � � � � � �

flatness � � � � � � � � � � � � � � � �
vehemence � � � � � � � � � � � � � � � �
Num_Peaks � � � � � � � � � � � � � � � � � �

Min_Pos � � � � � � � � � � � � � �
Max_Pos � � � � � � � � � �

kernel PCA (KPCA) [21] have been used for dimension reduction.
KPCA is a non-linear reformulation of standard PCA. Indeed it
uses a kernel trick to find principal components in a different space.
In other words, it performs standard PCA in a new non-linear
space. It is applicable for features presenting non-linear correla-
tion between each other [21].

The PPCA is another formulation of standard PCA based upon
a probability model [27]. The principal components are deter-
mined through maximum-likelihood estimation of parameters from
the data principal components.

4.3. Classification Results

First, the embedded subspace is extracted for each technique. Then,
the classification is performed with a different number of com-
ponents each time. That is to say that first, the classification is
performed using only the first component. Then the 2 first compo-
nents are used and so on until using the whole set of componants.
Hence, the suitable dimension range is the one giving the best clas-
sification performance. As for ’N to N’ approach, it is judged using
the overall and fear accuracy rates.

Classification results are provided in Figure 2 (resp. Figure 3)
for each used technique from the PCA family in terms of overall
accuracy rate (resp. fear accuracy rate). The two figures lead to
the following interpretations:
�Using traditional PCA, the best overall accuracy and fear accu-
racy rates reach 92% and 93.3% respectively with 19 components.

�Using KPCA, the best overall accuracy reaches 82.7% with
6 components and the best fear accuracy reaches 86.7% with 6
components.

�Using PPCA, the best overall accuracy and fear accuracy
rates are worst. They are equal to 65.3% with 4 components and
33.3% with only one component. This approach should be dis-
carded.

When dealing with tradeoff between accuracy and dimension-
ality reduction, KPCA seems to be better than PCA. In fact, the
dimensionality is reduced to 6 (versus 19) with a loss of 10% for
overall accuracy and 7% for fear rate. Moreover, KPCA has the
advantage of presenting a stable variation of quality when dimen-
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Table 4: Correlation between features.

Correlation Feature pairs
0.9<|�|<1 (7,8);(7,9);(16,18);(17,18);(19,20)

0.8<|�|<=0.9 (8,9);(16,17)
0.7<|�|<=0.8 (1,12);(2,24);(3,22)
0.6<|�|<=0.7 (2,23);(3,17);(3,18);(5,6);(5,12);(5,16);(10,11);(10,15);(17,22);(18,22)
0.5<|�|<=0.6 (3,6);(3,16);(5,17);(5,18);(5,21);(6,16);(6,17); (6,18);(6,22);(14,15);(18,22);(23,24)
0.4<|�|<=0.5 (1,2);(1,5);(1,16);(1,23);(2,25);(3,5);(4,6);(16,22);(22,23);(23,25)

0.3<|�|<=0.4
(1,4);(1,11);(1,21);(2,5);(2,12);(2,13);(2,21);(3,23);(4,12);(5,24);(11,12);(11,16);(12,16);(12,21);(12,23);

(12,24);(13,14);(13,17);(13,18);(13,24);(24,25)

0.2<|�|<=0.3

(1,3);(1,6);(1,7);(1,8);(1,9);(1,10);(1,13);(1,14);(1,17);(1,18);(2,4);(2,7);(2,8);(2,9);(2,10);
(2,11);(2,14);(3,12);(3,21);(4,9);(4,22);(4,23);(4,25);(5,7);(5,8);(5,9);(5,11);(5,22);(6,12);(6,21);

(6,23);(6,24);(8,12);(8,23);(8,24);(8,25);(9,12);(9,23);(10,12);(11,15);(11,23);(12,14);(12,21);(13,16);(13,23);
(14,24);(14,27);(16,21);(16,24); (17,21);(17,23);(17,24);(17,27); (18,23);(18,27);(21,24);(22,27)

0.1<|�|<=0.2

(1,25);(2,16);(3,10);(3,11);(3,13);(3,14);(3,24);(3,25);(3,27);(4,5);(4,7);(4,8);(4,10);(4,11);(4,17);
(4,18);(4,24);(5,10);(5,13);(5,14);(5,20);(6,7);(6,8);(6,13);(6,20);(6,25);(7,12);(7,16);(7,17);(7,18);

(7,21);(7,23);(7,24);(7,25);(8,16);(8,17); (8,18);(8,21);(9,16);(9,17);(9,21);(9,24);(9,25);(10,13);(10,16);
(10,17);(10,23);(10,24);(10,25);(10,26);(11,13);(11,14);(11,21);(11,24);(11,25);(11,26);(11,27);(12,13);(12,17);(12,18);
(12,22);(12,25);(13,15);(13,22);(13,27);(14,16);(14,17);(14,18);(14,23);(14,25);(15,27); (16,19);(16,20);(16,23);(16,25);

(16,27);(17,19);(17,20);(17,25);(18,20);(18,21);(18,24);(18,25);(20,25);(21,22);(21,23);(21,25);(22,25);(24,27)

|�|<=0.1

(1,15);(1,19);(1,20);(1,22);(1,24);(1,26);(1,27); (2,3);(2,6);(2,15);(2,17);(2,18);(2,19);(2,20);(2,22);
(2,26);(2,27); (3,4);(3,7);(3,8);(3,9);(3,15);(3,19);(3,20);(3,26);(4,13);(4,14);(4,15);(4,16);(4,19);

(4,20);(4,21);(4,26);(4,27);(5,15);(5,19);(5,23);(5,25);(5,26);(5,27);(6,9);(6,10);(6,11);(6,14);(6,15);
(6,19);(6,26);(6,27);(7,10);(7,11);(7,13);(7,14);(7,15);(7,16);(7,17);(7,18);(7,19);(7,20);(7,22);(7,26);

(7,27); (8,10);(8,11);(8,13);(8,14);(8,15);(8,19);(8,20);(8,22);(8,26);(8,27); (9,10);(9,11);(9,13);(9,14);(9,15);
(9,18);(9,19);(9,20);(9,22);(9,26);(9,27); (10,14);(10,18);(10,19);(10,20);(10,21);(10,22);(10,27); (11,17);(11,18);

(11,20);(11,19);(11,22);(11,25);(11,26);(11,27); (12,15);(12,19);(12,20);(12,26);(12,27);(13,19);(13,20);(13,21);(13,25);
(13,26);(14,19);(14,20);(14,21);(14,22);(14,23);(14,25);(14,26);(15,16);(15,17);(15,18);(15,19);(15,20);(15,21);(15,22);
(15,23);(15,24);(15,25);(15,26);(16,26);(17,26);(18,19);(18,26); (19,21);(19,22);(19,23);(19,24);(19,25);(19,26);(19,27);

(20,21);(20,22);(20,23);(20,24);(20,26);(20,27);(22,24);(22,26);(23,26);(23,27);(24,26);(25,26);(25,27);(26,27)

sionality changes. Indeed, it appears as a horizontal line of accu-
racy rate for a feature number varying between 7 and 19.

Figure 2: Overall classification results according to PCA family
techniques.

Figure 3: Fear accuracy rates according to PCA family techniques.

5. NON-CORRELATION BASED DIMENSIONALITY
REDUCTION

5.1. Linear Discriminant Analysis Family

In contrast to most other dimensionality reduction methods, LDA
is a supervised technique as it takes into consideration the class
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labels when constructing the embedded feature space [17]. It at-
tempts to find a new feature space to project the data in order to
maximize classes separability. It is based on the concept of max-
imizing the Fisher ratio. This latter is calculated by dividing the
between-class variability on the within-class variability.

Standard LDA and kernel LDA have been tested in this study
in order to reduce feature space. Standard LDA attempts to maxi-
mize the linear separability between classes. It reduces dimension-
ality from original number of feature to C-1 features, where C is
the number of classes. In our study, the new feature space will be
only a 2-dimensional space as we have 3 emotion classes.

KDA is a kernelized version of LDA using the kernel trick
[22]. Standard LDA is performed in a new feature space which
allows non-linear mapping. Contrary to LDA, it has the advan-
tage of allowing the variation of dimensionality from 1 to the total
number of features (27 here).

Classification results are provided in Figures 4 and 5 for each
used technique from the LDA family in terms of overall accuracy
rate and fear accuracy rate respectively. It leads to the following
results:

�Using standard LDA, the best overall accuracy and fear ac-
curacy rates reach 77.3% and 60% with 2 components.

�Using KDA, the best overall accuracy reaches 80% with 9
components and the best fear accuracy rates reaches and 60% with
5 components.

Moreover, one can conclude that the LDA family seems to
be not stable as the accuracy rate presents important variations
when increasing the dimensionality. When dealing with trade-
off between accuracy and dimensionality reduction, standard LDA
seems to be better than KDA. In fact, the dimensionality is reduced
to 2 (versus 9) with a loss of 3% for overall accuracy. For fear
accuracy rate, they present the same accuracy rate with different
dimensionality (2 for LDA versus 5 for KDA).

Figure 4: Overall classification results according to LDA family.

5.2. Locality Preserving Projection Family

LPP is an unsupervised family based on mapping the data in a low
dimensional space preserving the neighborhood structure of the

Figure 5: Fear accuracy rates according to LDA family.

dataset [18]. This mapping is obtained by constructing first the ad-
jacency graph, then attempting to minimize an objective function.
This latter ensures that if two data points are close in the original
space, then their transformation in the embedded space are also
close.
The linear property of classical LPP may lead to modeling failure
when the data structure is non-linear. The basic idea of kernel LPP
is to non-linearly map the data into a reduced feature space by us-
ing the non-linear structure of the features. To this end, the kernel
trick is applied to extract nonlinear kernel model.
Classification results for LPP and KLPP are provided in Figures 6
and 7 and lead to the following results:

�Using standard LPP, the best overall accuracy rate reaches
90.7% using 20 components. As for the fear accuracy, the best
rate is obtained using 14 components reaching 86.7%.

�Using KLPP, the best overall accuracy reaches 73.3% with
20 components and the best fear accuracy rate reaches 53.3% with
19 components.

One can deduce that the classification quality presents an in-
creasing variation according to LPP as well as KLPP. Also, they
both stabilize in the high dimensionality for which they reach their
highest quality accuracies. Moreover, LPP seems to be better than
KLPP in terms of classification performance for a fixed value of
dimensionality greater than 9.

5.3. Other Techniques for dimension Reduction

In addition to the mentioned families, many other different tech-
niques have been tested in this study namely Isomap, Landmark
Isomap, Factor Analysis, Sammon Mapping, Locally Linear Em-
bedding, Laplacian Eigenmaps, Local Tangent Space Alignment,
Diffusion Maps, Stochastic Neighbor Embedding, Manifold Chart-
ing, Gaussian Process Latent Variable Model, Deep Autoencoders
and Neighborhood Components Analysis. Their best classification
results in terms of the overall accuracy rate and fear accuracy rate
and their corresponding dimensions are summarized in Table 5.
One can notice that they lead to worst results compared to previ-
ous ones.
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Figure 6: Overall classification results according to LPP family
techniques.

Figure 7: Fear accuracy rates according to LPP family techniques.

6. CONCLUSION

In this paper, we tested different techniques to reduce the relatively
high dimensional feature set in order to guarantee a high overall
classification rate and a high fear recognition rate. The first tested
approach is manual and based on ’N to N’ combinations. It leads
to good results reaching 93.34% as an overall accuracy rate and
78.7% as a fear recognition rate. The other approaches are auto-
matic. A comparative study between them was presented. It shows
that the best fear recognition rate is obtained using principal com-
ponents analysis reaching 93,3% using 19 components, which is
practically the same result obtained for ’N to N’ approach. If we
aim to reduce more the dimensionality, we can use KPCA but we
loose in terms of classification performance.

Table 5: Best classification results using other dimensionality re-
duction techniques.

Reduction Techniques Overall detection Fear detection
Overall Accuracy Dimension Fear Accuracy Dimension

Isomap 45 2 40 3
Landmark Isomap 50 3 55 10

Factor Analysis 52 10 40 12
Sammon Mapping 54.7 22 53.3 20

Locally Linear
Embedding 54.3 25 47.3 24
Laplacian
Eigenmaps 49.3 25 46.3 22

Local Tangent
Space Alignment 44.3 12 33.3 20
Diffusion Maps 40.3 6 33.3 8

Stochastic Neighbor
Embedding 52.4 24 33.3 23

Deep
Autoencoders 44.3 12 39.7 16
Neighborhood
Components

Analysis 53.3 22 55.7 24

Figure 8: Classification results according to all dimensionality re-
duction families and ’N to N’ approach.
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ABSTRACT 

An audio-guide prototype was developed which makes it possi-
ble to associate virtual sound sources to tourist route focal 
points. An augmented reality effect is created, as the (virtual) 
audio content presented through headphones seems to originate 
from the specified (real) points. 

A route management application allows specification of 
source positions (GPS coordinates), audio content (monophonic 
files) and route points where playback should be triggered. 

The binaural spatialisation effects depend on user pose rela-
tive to the focal points: position is detected by a GPS receiver; 
for head-tracking, an IMU is attached to the headphone strap. 
The main application, developed in C++, streams the audio con-
tent through a real-time auralisation engine. HRTF filters are se-
lected according to the azimuth and elevation of the path from 
the virtual source, continuously updated based on user pose. 

Preliminary tests carried out with ten subjects confirmed the 
ability to provide the desired audio spatialisation effects and 
identified position detection accuracy as the main aspect to be 
improved in the future. 

1. PROJECT MOTIVATION 

Tourism and its economic impact have been growing markedly 
in recent decades [1][2]. The importance of enriching the visitor 
experience, promoting cultural tourism and adopting differentia-
tion strategies are widely acknowledged [3], as well as the key 
role played in those efforts by digital information and communi-
cation technologies (ICT) [4][5]. 

Audio guides are increasingly popular in tourism applica-
tions (e.g. in museums, parks, historic sites and cities), both in- 
and outdoors. A variety of systems are commercially available. 
Some are intended as aids to improve intelligibility by avoiding 
noise and interference (especially important in heritage sites un-
der intense visitor pressure) in otherwise conventional guided 
tours [6][7][9]. Others are designed to operate autonomously 
(i.e. without live human guiding), delivering pre-recorded (often 
multilingual) interpretation content [6][7][8][10][11][12][13]. 
The diagram in Figure 1 covers both cases. Autonomous systems 
can be triggered manually by the user [10] or automatically 
based on route sensing (GPS, infra-red and radio-frequency ID 
sensors being among the most common). 

For example, ‘hop-on hop-off’ urban tour buses, now com-
monplace even in middle-sized cities, are invariably equipped 
with audio-guiding systems. 

 

Source
Audio server Medium of 

diffusion

Terminal Listener

Trigger system

Figure 1: Typical audio guiding system architecture 

Typically, operation is autonomous, with pre-recorded audio 
contents triggered at certain positions detected by GPS along the 
bus route; visitors are given a pair of disposable headphones 
(relatively ‘low-fi’ and uncomfortable) to be plugged into audio 
terminal units placed by each seat, as illustrated in Figure 2. 
 

 
Figure 2: Bus audio guide unit with language selection 

This project aims at radically improving the visitor experi-
ence provided by this kind of systems, making it as immersive as 
possible. The idea is to create binaural audio augmented/mixed 
reality (AR/MR) effects by using geo-location and applying au-
ralisation and source spatialisation techniques. While not new, 
these techniques have been explored mainly in the context of 
computer games. As these are increasingly geared towards mo-
bile devices, AR and MR gain ground over VR (see, for exam-
ple, [14]) and geo-location becomes an essential feature. Geo-
located spatial audio systems have been proposed for various 
applications, including artistic soundscaping (e.g. the SoundDel-
ta system [15]) and guidance systems for the visually impaired 
(e.g. the NAVIG system [16]). The applicability to tour guiding 
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is obvious [13][17]. However, to the best of the authors’ 
knowledge, there are no widespread commercial audio-guide 
models based on geo-location and incorporating spatialisation 
capabilities. The USOMO system [18] features binaural spatiali-
sation, but is restricted to indoor usage. 

2. SYSTEM OVERVIEW 

A prototype was developed to address outdoor situations, 
taking the urban bus tour example mentioned above as the refer-
ence scenario. The goal is to turn focal points specified along the 
route (e.g. buildings, statues, trees…) into virtual sound sources, 
so that the interpretation content, delivered through headphones, 
be perceived by the visitor as originating from those focal points. 
This requires pre-recording appropriate content for each focal 
point, and processing this audio content in real time through fil-
ters capable of imprinting appropriate 3D directional cues ac-
cording to listener pose (position and head orientation) relative 
to the corresponding source. Playback should be triggered when 
the vehicle enters route segments specified in the vicinity of the 
virtual source locations, as illustrated in Figure 3. 
 

 
Figure 3: Virtual audio source (S) locations and corre-

sponding trigger point (TP) regions along a route 

 Figure 4 represents the overall structure designed to achieve 
this goal. Its core element (playback block) relies on an auralisa-
tion engine, as the binaural spatialisation effect is obtained by 
convolving the anechoic input sound with head-related transfer 
function (HRTF) filter pairs (to generate left and right channel 
output). The filter pair applied at a given moment must be se-
lected (from an HRTF database) according to the azimuth and 
elevation of the virtual source relative to the listener. For real-
time operation, this information (and thus the HRTF filter pair) 
must be continuously updated based on: 

• Listener position – given by a GPS receiver (GPS block); 
• Listener head orientation – detected by an inertial head-
tracking device attached to the headphone strap (IMU block); 
• Source position – specified at the route definition stage 
(route manager block). 

 

 
Figure 4: System block diagram 

 
The following sections describe the implementation (based 

on C++ programming) and integration of these four blocks on a 
Windows environment. 

3. PLAYBACK 

3.1. Audio streaming and auralisation  

The playback system was implemented with the help of the 
PortAudio [19] open-source library. As shown in Figure 5, it 
takes its input (44100Hz recordings of the virtual sound sources) 
from local memory files in 16-bit raw audio format and streams 
it through a real-time auralisation engine to generate output for 
binaural (i.e. headphone or earphone) presentation. 

 

Figure 5: Audio streaming through auralisation engine 
 

The auralisation engine was implemented using LibAAVE, a 
publicly available auralisation library [20] developed in a previ-
ous IEETA research project [21]. Its basic operation principles, 
described in [22], are illustrated in Figure 6. 

. 
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Figure 6: LibAAVE operation structure [21] 

LibAAVE incorporates room acoustic modelling based on the 
mirror-image source (MIS) method. From the input data on 3D 
room configuration, primary source positions and listener posi-
tion, the acoustic model works out the propagation paths reach-
ing the listener considering wall reflections up to a user-defined 
order (this must be set low enough to allow real-time operation). 
The direction (azimuth and elevation) of each path relative to the 
listener head is also calculated considering the input information 
on head orientation (pitch, yaw and roll angles). 

The audio processing block can then determine the appropri-
ate delay, attenuation and HRTF filtering to be applied to the au-
dio component transmitted through each path and generate the 
resulting binaural output by adding together all those contribu-
tions. Different HRTF sets can be selected, taken from public-
domain databases, namely the KEMAR-based MIT Media-Lab 
set [23] and CIPIC [24]. The system allows arbitrary movement 
of both sources and listener. Cross-fading between successive 
audio output blocks is applied to avoid audible HRTF transition 
glitches.  

Only a fraction of LibAAVE’s capabilities are utilised in the 
outdoor scenario explore here, as it does not involve a room 
model – the engine is configured to process only direct sound (no 
reflections). Also, a single primary source is considered at a time. 
Under these conditions, real-time operation is comfortably 
achieved. In a future extension to indoor scenarios, LibAAVE 
could be configured to take into account the acoustic influence of 
the room – albeit through a simplified model – without compro-
mising real-time operation. 

3.2. Playback control 

Two playback trigger modes were defined. In both, audio tracks, 
once triggered, are played through without interruption, regard-
less of listener position. However, while in mode 1 tracks can be 
played only once along a route (i.e. are never re-triggered), in 
mode 2 they will be replayed if the listener re-enters the respec-
tive trigger region. 

A program thread is constantly checking the current listener 
position, received from the GPS block, against the route infor-
mation to detect if the listener has entered the trigger region of a 
playable virtual source. In that case, streaming is activated; each 
time the playback thread extracts an audio block from the output 
circular buffer, the auralisation engine processes a new one to 
refill it. 

The number of samples per audio block and the size of the 
output buffer are configurable. To minimise latency, it is desira-
ble to keep them as low as possible.  

4. POSITION DETECTION (GPS) 

The Global Positioning System (GPS) block is responsible for 
tracking listener position (amounting to bus position in the refer-
ence scenario) and continuously feeding the playback block with 
updated values of latitude and longitude – GPS measured altitude 
is not taken into account in this application. The chosen GPS re-
ceiver was a XUCAI GD75 USB dongle – see Figure 7. Its main 
characteristics are listed in Table 1. Data is sent from the GPS 
dongle to the laptop in ASCII format using RS232 emulation. 
 

 
Figure 7: GPS receiver for position detection  

Table 1: GPS receiver features 

Interface USB 
Communication protocol NMEA 0183 (V3.0) 
Maximum refresh rate 1Hz 

Cold start time <33s 
Operating Temperature -10º C a 70º C 

Maximum error 5m (approx.) 
 

To ensure correct integration, a simple C++ application was 
developed to test the device by displaying the received GPS posi-
tion data. In addition to latitude, longitude and altitude, the ap-
plication also extracted the number of satellites used by the re-
ceiver, since it is available from the same $GPGGA frames, con-
stitutes an indicator of position measurement accuracy and may 
prove useful in scenarios to be explored in the future (e.g. transi-
tion to indoor situations). 

5. HEAD-TRACKING (IMU) 

For a given source position, sound perception depends not only 
on listener position but also on head orientation. This is normal-
ly specified by three rotation components: 

• Yaw: around the vertical axis; 
• Pitch: around the lateral (left-right) axis; 
• Roll: around the longitudinal (back-front) axis. 
If a virtual sound scene is to be recreated over headphones, 

head movements must be tracked and compensated for in real 
time. It is therefore necessary to use a head-tracking device ca-
pable of providing real-time pitch, yaw and roll angle data to the 
playback block. An inertial measurement unit (IMU) attached to 
the headphone strap is possibly the most appropriate choice for 
this purpose. An Intersense InertiaCube3 unit was employed – 
see Figure 8. Its main characteristics are listed in Table 2. 
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Figure 8: IMU for head-tracking 

Table 2: IMU features 

Interface USB 
Latency 4 ms (via USB) 

Maximum refresh rate 180Hz 
Degrees of freedom 3 axis (Yaw, Pitch, and Roll) 

Angular range 360º (all axis) 

Precision Yaw: 1º; Pitch and Roll: 0.25º  
(at the temperature of 25º C) 

Maximum angular 
speed 1200 º per second 

 
A software development kit is available to assist program-

mers using this device and provide examples regarding its opera-
tion, configuration and data acquisition. 

To ensure correct integration, the IMU sensor was also tested 
with the help of a simple C++ application which displayed the 
received yaw, pitch, and roll values. 

6. ROUTE MANAGER 

A practical means of defining and configuring tourist routes is 
indispensable for efficient system operation. An application – 
whose user interface is presented in Figure 9 – was developed for 
this purpose. It allows the specification of a set of virtual sources, 
individually characterised in terms of (area 2 of Figure 9): 

• Location (latitude and longitude); 
• Height relative to a listener at the trigger region; 
• Trigger region: centre point location (latitude and longi-
tude) and radius; 
• Corresponding anechoic audio file name. 
This information is stored in a ‘route file’ (area 3 of Figure 9) 

under a very simple format (one text line per source) which is 
then passed to the playback block. 

The latitude and longitude coordinates for the source and the 
trigger region centre can be entered manually (area 1 of Figure 9) 
but, as illustrated in Figure 4, there is also the option of acquiring 
them in-situ with the help of the GPS receiver. 

 

1

2

3

 
Figure 9: Graphical user interface of the route manager 

 

7. VALIDATION 

7.1. Test design and preparation 

In order to obtain a preliminary assessment of system operation, 
a set of subjective tests was prepared on a short walking route 
with three virtual sound sources defined within the campus of the 
University of Aveiro, as depicted in Figure 10. Source locations 
are designated by ‘S’; their corresponding trigger regions (interi-
or of the dashed circles, centred at points TP) are shown to scale. 
Table 3 lists the audio files used (44.1kHz, 16-bit mono speech 
recordings regarding the chosen campus locations). Audio 
streaming (recall Figure 5 and section 3.2) was set for 1024-
sample blocks and a 5-block output buffer. This choice of set-
tings had seemed to ensure smooth audio playback and avoid any 
noticeable latency effects. 
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Figure 10: Walking route for preliminary tests 

Table 3: Test route sources 

Source Audio file Duration 
(s) 

Visual 
Cue 

Height 
(m) 

S1 Welcome_speech.wav 38 Stone 0 
S2 Library.wav 45 Corner 10 
S3 Media_Centre.wav 19 Window 5 

The definition and configuration of this test route was itself 
an opportunity to validate an important part of the system – the 
route manager application described in the previous section. 

A walking route was preferred to a driving route (the sys-
tem’s reference usage scenario) because it simplified the logistics 
of the tests, seemingly without compromising their quality. In 
fact, as they involve shorter distances and less predictable user 
trajectories, walking routes would appear much more demanding 
in terms of position detection accuracy and precision. 

Ten randomly chosen subjects (6 males and 4 females in the 
20-35 age range, with no reported hearing problems) were invit-
ed to walk the route wearing the system. Figure 11 presents the 
equipment carried by the test subjects: 

1. Head-tracker (Intersense InertiaCube 3). 
2. GPS receiver (XUCAI GD75 USB dongle). 
3. Headphones (Sony MDR-ZX110). 
4. Processing unit (laptop). 

 
Figure 11: Test equipment 

 

The subjects were briefed on the purposes and design of the 
tests and informed on the characteristics of the route: chosen 
source focal points (see Table 3), radius specified for each trigger 
region (respectively 10, 12 and 15m) and respective centre point 
locations. 

7.2. Test execution and results 

The first set of tests were carried out using trigger mode 1 (no re-
triggering – recall trigger modes described in 3.2). The subjects 
were asked to use a three-point discrete scale [from 1 (bad) to 3 
(good)] to rate the experience regarding triggering (Q1: ‘does 
sound start at a seemingly correct distance?’) and spatialisation 
(Q2: ‘does sound appear to originate from the correct direc-
tion?’). The assessment – see Table 4 – was clearly positive in 
both regards for S2 and S3 and also positive for S1 regarding Q1, 
with no ‘bad’ ratings from any subject. However, the spatial ef-
fect of S1 was rated quite poorly; none of the subjects rated it 
‘good’ and the majority considered it ‘bad’. 

Table 4: User ratings (first test set) 

 Q1 – triggering Q2 – spatialisation 
 Mean Std. Dev. Mean Std. Dev. 

S1 2.4 0.52  1.4 0.52 
S2 2.7 0.48 2.9 0.32 
S3 2.6 0.52 2.7 0.48 

 
These bad results for S1 are not surprising, since shorter dis-

tances between source and listener are expected to amplify the ill 
effects of imprecise position detection. Unlike sources S2 and 
S3, placed well outside their respective trigger regions (see Fig-
ure 10), S1 was deliberately located at the centre of its trigger 
region to expose this effect. The spatialisation effect was very 
noticeably disrupted by the instability of GPS position readings 
(error up to 5m – see Table 1), causing abrupt changes in per-
ceived source location. As expected, results for Q2 in S1 im-
proved (from 1.4 to 2.4) when the subjects were asked to stop 
and make their assessment as soon as playback started (i.e. at the 
edge of the trigger region).  

Under trigger mode 2, additional tests were conducted with 
the listeners asked to stand still for one minute inside the TP2 
circle (15m radius) after the end of playback of source S2 in two 
situations: 1) more than 5m away from the trigger region limit 
and 2) less than 5m away from the trigger region limit. Obvious-
ly, playback re-triggering is not supposed to occur in either of 
them. However, it did in the second, again highlighting GPS po-
sition measurement errors. In this instance, they cause the listener 
to be occasionally detected outside the trigger region and subse-
quent position readings inside it are of course interpreted as a re-
entry. In the first situation, re-triggering was never observed. 

8. DISCUSSION AND FUTURE WORK 

Whilst confirming the ability to provide the desired audio spati-
alisation effects, the preliminary tests identified lack of precision 
in GPS position detection as the main problem affecting the user 
experience. Although the impact of this problem may be signifi-
cantly mitigated in the reference scenario (tour bus) for reasons 
pointed out in the previous section (higher predictability, larger 
distance to virtual source locations), solving it is essential for 
system versatility. 
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Simply applying moving-average filtering to the GPS output 
is not appropriate, as it would improve precision at the expense 
of responsiveness. Exploring sensor fusion techniques to com-
bine IMU and GPS data is the most promising approach. 

Work is under way to port the applications supporting the 
various blocks (playback, GPS, route manager…) to Android, as 
the system structure can be made simpler, lighter and more versa-
tile by concentrating all the communication and processing func-
tions on a smartphone or tablet – see Figure 12. As the figure 
suggests, operation would be completely autonomous, audio con-
tent being downloaded from the Internet according to the chosen 
route. 

Terminal 
and processing 

unit

Listener
Internet

Trigger system

Source

Figure 12: Envisaged audio guiding system architecture 

Obviously, the IMU for head-tracking cannot be incorpo-
rated, as it must be attached to the headphone. The integration of 
a cost-effective, miniaturised head-tracking device, preferably 
with wireless connectivity, is another important future work 
front. 

A wide variety of usage scenarios can be envisaged for a 
smartphone-based system. In the reference scenario, the trigger-
ing signal could be provided by a system installed on the bus, 
and hence constitute an added value of the ride. For indoor oper-
ation, position detection could no longer rely on GPS; alterna-
tive methods (e.g. based on radio-frequency ID tags, wi-fi sen-
sors or ultrasonic beacons) would be required. By fully exploring 
LibAAVE’s capabilities, mentioned in section 3.1 (see Figure 6), 
the acoustic influence of the room could be modelled (early re-
flections and reverberation tail). 

The perceived added value of the proposed audio AR effects 
in audio guides will no doubt be strongly influenced by other 
factors, namely: 

• Quality of sound delivery – perfect-fit ear-enclosing high 
fidelity headphones are a must; comfortable, low-vibration bus 
seats would be desirable. Active noise cancellation systems may 
also prove indispensable.  

• Content design – the added 3D audio dimension must be 
appropriately explored (e.g. for historic soundscape reconstruc-
tion). This requires expert story-telling based on appealing in-
formation and interpretation data brought to life by professional 
sound design/recording/editing. 

To ensure the commercial success of audio guides incorpo-
rating the AR effects proposed here, these factors must be ad-
dressed simultaneously, which may impact on business models, 
possibly creating new (premium) market niche opportunities. 

For this reason, establishing R&D partnerships with tour op-
erators is also among the envisaged future work threads. The de-
velopment of a demonstration route with excellent content de-
sign is key in this effort. 
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ABSTRACT

This article is concerned with the power-balanced simulation of
analog audio circuits, governed by nonlinear differential algebraic
equations (DAE). The proposed approach is to combine principles
from the port-Hamiltonian and Brayton-Moser formalisms to yield
a skew-symmetric gradient system. The practical interest is to pro-
vide a solver, using an average discrete gradient, that handles dif-
ferential and algebraic relations in a unified way, and avoids having
to pre-solve the algebraic part. This leads to a structure-preserving
method that conserves the power balance and total energy. The
proposed formulation is then applied on typical nonlinear audio
circuits to study the effectiveness of the method.

1. INTRODUCTION

The need for stable, accurate and power-balanced simulation of
nonlinear multi-physical systems is ubiquitous in the modelling of
electronic circuits or mechanical systems and the natural setting
for electronic circuits leads to Differential-Algebraic Equations.

Standard methods of solving electronic circuits are the State-
variable [1], Modified Nodal Analysis [2], Sparse Tableau Analy-
sis [3] and Wave Digital Filters (WDF) [4] according to the choice
of variables the system is solved for. More recently, in the audio
signal processing field, it has led to the Nodal DK method [5],
nonlinear state-space [6] and extension of WDF to handle multi-
port nonlinearities [7].

However, the underlying geometric structure and power-balance
are often lost in the process. Furthermore, most numerical schemes
either introduce or dissipate energy artificially, yielding unexpected,
unstable or over-damped results.

To get rid of such artefacts, a very active research is focused on
geometric numerical integration methods [8] that provide a theo-
retical framework for structure-preserving or invariant-preserving
integration of dynamical systems. Among those methods, the Port-
Hamiltonian (PHS) [9] [10] and Brayton-Moser (BM) [11] [12]
formalisms are dual representations [13] [14] generalizing the Hamil-
tonian and Lagrangian formalisms to open dynamical systems with
algebraic constraints (including dissipation).

PHS have been applied successfully to the modelling of the
wah-wah pedal [15], Fender Rhodes [16], brass instruments [17]
and loudspeaker nonlinearities [18]. Furthermore, automated gen-
eration of the PHS equations from the graph incidence matrix of a
circuit’s netlist has been investigated in [19] and leads to a skew-
symmetric DAE form.

This paper considers this formulation as a starting point and
proposes to combine the Brayton-Moser and Port-Hamiltonian view-

� The author acknowledges the support of the ANR-DFG (French-
German) project INFIDHEM ANR-16-CE92-0028.

points to represent all the constitutive laws as deriving from a sin-
gle potential.

The presentation is organized as follows: first, in section 2, re-
sults about power balance, passivity, and duality of flow and effort
spaces are recalled and it is shown how the power-balance can be
represented by Dirac structures. Section 3 shows how, for both dy-
namic and algebraic components, the flow and effort variables can
be derived from a single power potential involving the Hamilto-
nian and the algebraic content and co-content potentials [20] [21].
Section 4, then shows how to perform a power-balanced structure-
preserving discretization of the system using a discrete gradient
[22] [23]. Section 5 shows how to solve the resulting algebraic
system using Newton iteration. Finally the method is applied to
some example circuits in section 6 to show the effectiveness of the
approach.

2. POWER BALANCE AND DIRAC STRUCTURES

For an electronic circuit, the Tellegen theorem [24] states that the
sum of powers absorbed by all circuit elements is balanced.

P (e, f) := eTf =
�

n

enfn = 0 (1)

where e, f are respectively the effort and flow variables of the cir-
cuit’s branch components. This is an instance of the conservation
of energy principle made famous by Lavoisier with the statement
nothing is lost, nothing is created, everything is transformed.

This principle can be formalized mathematically by Dirac struc-
tures1 that encodes the conservative power exchange in the circuit.

2.1. Power space

For an n-port element, let F be an n-dimensional real vector space
and denote its dual E := F� (the space of linear functions on F ).
We call F the space of flows f and E the space of efforts e. On the
product space P := F�E , power is defined by the non-degenerate
bilinear form

P (e, f) = �e | f�, �(f , e) � P = F � E (2)

where �e | f� denotes the duality product, that is the linear function
e � E = F� acting on f � F . If F is equipped with an inner
product �·, ·�F , then E = F� can be identified with F such that
�e | f� = �e, f�F , for all f � F , e � E � F . If for example, F
is the space of currents and E the space of voltages, then �e | f� =
�e, f�F = eTf denote the electrical power.

1The Kirchoff Current and Voltage laws are special cases of Dirac struc-
tures when all the components share either the same current (series connec-
tion) or the same voltage (parallel connection).
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2.2. Passivity and Dirac structures

In the 2n-dimensional space P , a passive linear n-port can be rep-
resented as an n-dimensional subspace S � P defined by n linear
constraints which admits the kernel representation

S = {(f , e) � P | Ff + Ee = 0} (3)

with rank([F E]) = n. Furthermore, a linear subspace D � P is
said to be power-conserving if

�e | f� = 0, �(f , e) � D (4)

It becomes a (constant) Dirac structure [25] [26] if and only if it
is a maximal subspace of P with that property i.e. dim(D) =
dim(F) = dim(E) and it admits the following matrix representa-
tions.

Definition 2.1 (Kernel representation). The kernel form of a Dirac
structure is given by the subspace

D = {(f , e) � P | Ff + Ee = 0, ETF + FET = 0} (5)

where F,E � Rn�n satisfy rank([F E]) = n.

Definition 2.2 (Hybrid skew-symmetric representation). Let D be
given as in (5), suppose there exists a permutation of the flow and
efforts variables � : (F,E, f , e) � (F̃, Ẽ, f̃ , ẽ) such that F̃ is
invertible then

D = {(f̃ , ẽ) � P | f̃ = Jẽ, J = �F̃�1Ẽ} (6)

where J = �JT is skew-symmetric.

Conversely, for any skew-symmetric matrix J, the subspace D
is a Dirac structure and one can verify that the power balance (1)
is encoded by the skew-symmetry of J:

P (ẽ, f̃) = ẽT f̃ = ẽTJẽ = 0. (7)

The skew-symetric form (6) will be used in the rest of the article.

3. GRADIENT DESCRIPTION OF COMPONENTS

Circuits are then categorized into dynamical, and algebraic compo-
nents where algebraic components are further separated into dis-
sipative and external sources because the later have degenerated
constitutive laws. We show how the mixed effort ẽ can be uni-
formly represented as the gradient of the scalar power potential
(1).

3.1. Dynamic components: Hamiltonian potential

For dynamic components with state variable x, flow variables are
defined as the time-derivative of the state (f := ẋ) and the effort by
a constitutive law e := ê(x). It is assumed that the constitutive law
derives from the gradient of an energy storage function H(x(t))
such that by definition ê(x) := �H(x) and the power is

P (e, f) = eTf = �H(x) · ẋ =
d
dt

H(x(t)). (8)

The Hamiltonian function can then be found using the line integral.

H(x) =

�
�H(x)� �� �

e

· ẋ����
f

dt =

�
�H(x) · dx (9)

This idea is illustrated with the important cases of the linear ca-
pacitor and inductor. We then show how to handle a nonlinear
component with an integrable constitutive law.

3.1.1. Capacitor

For a capacitor, the state variable is given by the charge xC = q,
with the flow f = iC = q̇, and effort e = vC = q

C . This gives the
Hamiltonian

H(q) =

�
q
C

· q̇ dt =
1
C

�
q dq =

q2

2C
(10)

3.1.2. Inductor

Similarily for an inductor, the state variable is given by the flux-
linkage xL = �, the flow2 by its time-derivative f = �̇ = vL and
the dual effort by e = iL = �

L with an Hamiltonian function

H(�) =

�
�
L

· �̇ dt =
1
L

�
� · d� =

�2

2L
(11)

3.1.3. Nonlinear dynamic component

For a nonlinear dynamic component with state variable x, flow
f = ẋ and a constitutive law e = ê(x) = tanh(x), its Hamilto-
nian storage function is given by

H(x) =

� t

0

ê(x) · ẋ dt =

� x

0

ê(x̄) · dx̄ = ln(cosh(x)) (12)

3.2. Algebraic components: current and voltage potentials

If we consider the power differential dP , using the product rule,

dP (e, f) = d(e · f) = e · df + f · de. (13)

Integration over a path � gives the integration by parts formula

e · f
����
��

=

�

�

e · df +

�

�

f · de. (14)

So, for components defined by algebraic constitutive laws � =
{(e, f) � P | f = f̂(e)}, (respectively e = ê(f)), the flow and
effort potentials3 are defined by the line integrals

D(f) :=

� f

0

ê(f̄) · df̄ , D�(e) :=

� e

0

f̂(ē) · dē. (15)

And according to (14), the instantaneous power is given, for (e, f) �
�, by (see figure 1 for a geometric interpretation and proof)

P (e, f) = e · f = D(f) + D�(e). (16)

The flow and efforts can then be respectively obtained by partial
derivatives of the power potential as

e =
�P
�f

= �D(f), or f =
�P
�e

= �D�(e). (17)

So in the case of a flow (resp. effort) controlled component the
power can be expressed as a function of a single variable using
either

P (e) = e · �D�(e) or P (f) = �D(f) · f . (18)
2Note that according to the energy domain (electric, magnetic, . . . ), the

roles of flow and efforts need not necessarily be associated to the current
and voltage. The convention adopted here, is that the flow of dynamic
components is given by the time-derivative of the energy variable, while
the effort is given by the gradient of the energy potential.

3These potentials are also called the content and co-content [20] [21].
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3.2.1. Linear resistor

For a current-controlled (resp. voltage-controlled) resistor, the con-
stitutive law is v = ê(i) = Ri (resp. i = f̂(v) = v/R). By
consequence its current and voltage potentials are given by

D(i) =

� i

0

ê(f) df =

� i

0

Rf df =
Ri2

2
(19)

D�(v) =

� v

0

f̂(e) de =

� v

0

e
R

de =
v2

2R
. (20)

Introduce function P as P (v, i) = D(i) + D�(v), then, for all
(v, i) belonging on the characteristic curve, the power can be given
by v · i (product-type), P (v, i) (sum-type), P (v, f̂(v)) (voltage-
controlled) and P (ê(i), i) (current-controlled), that is

P (v, i) = v·i = D(i)+D�(v) =
1
2

�
Ri2 +

v2

R

�
=

v2

R
= Ri2.

(21)
In this particular case, we have D(i) = D�(v) = Ri2 because of
linearity (for v = Ri) but this result should not be extrapolated as
the next example will show.

3.2.2. P-N Diode

For a voltage controlled P-N diode, the constitutive law is given by

i = f̂(v) = IS

�
exp

�
v

nVT

�
� 1

�
(22)

where IS is the saturation current, n the ideality factor and VT the
thermal voltage. Its voltage potential is given by

D�(v) =

� v

0

f̂(e) de = nVT IS

�
exp

�
v

nVT

�
� v

nVT
� 1

�
.

(23)
Direct integration for the current potential does not lead to an eas-
ily integrable primitive, however because of bijectivity, we can
evaluate it indirectly by using the inverse map

v = ê(i) = f̂�1(i) = nVT ln

�
1 +

i
IS

�
, i > �IS (24)

and the Legendre transform D(i) =
�
vi � D�(v)

�
v=f̂�1(i)

:

D(i) = nVT IS

��
1 +

i
IS

�
ln

�
1 +

i
IS

�
� i

IS

�
(25)

Using the above definitions, the current and voltage potentials be-
ing known, the component can be used as being either flow or
effort-driven according to the constraints imposed by the circuit
interconnections.

3.3. External sources

For external voltage (resp. current) sources, the constitutive laws
v = ê(i) = V , (resp. i = f̂(v) = I) are independent of the
current (resp. voltage) variables and not bijective, with V (resp. I)
being the source parameter. This gives the powers

PV (v, i) = V i = D(i), PI(v, i) = vI = D�(v). (26)

f̂(v) = IS

�
exp

�
v

nVT

�
� 1

�

P (v, i) = vi = D(i) + D�(v)

D�(v)

D(i)

(v, i)

v

i

Figure 1: The areas occupied by the diode power P (v, i) and the
current and voltage potentials D(i) and D�(v) are shown in the
(v, i) plane for IS = 1, nVT = 1. It is geometrically clear that the
current and voltage potentials are complimentary and their sum
equals the power vi. It is also clear that in the nonlinear case
D(i) �= D�(v).

By consequence, for voltage (resp. current) sources, the voltage
potential D�(v) (resp. current potential D(i)) is degenerate and
null.

3.4. Summary

Using an appropriate permutation � (cf definition 2.2), the mixed
flow f̃ and its dual ẽ can be parametrized by a state variable x �
Rn, a dissipative variable w � Rp and an output y � Rm, where
the potential Z(w) (resp. S(y)) is an appropriate choice among
the dissipative (resp. external) current and voltage potentials im-
posed by the permutation �. (Please refer to [19] for more details.)

f̃ := [ẋ,w,y]T (27)

ẽ := [�H(x), �Z(w), �S(y)]T (28)

The power potential4 (1) can then be expressed as

P (ẽ, f̃) = ẽT f̃ = �H(x)Tẋ� �� �
Pc

+ �Z(w)Tw� �� �
Pd

+ �S(y)Ty� �� �
Pe

. (29)

Combining the definitions (27) and (28), with the Dirac structure
(6), leads to the skew-symmetric gradient form of Differential-
Algebraic Port-Hamiltonian equations as

�

�
ẋ
w
y

�

�

� �� �
f̃

= J

�

�
�H(x)
�Z(w)
�S(y)

�

�

� �� �
ẽ

�� �P
�ẽ

= J
�P

� f̃
(30)

4 Note that because of the uniform usage of the receiver convention for
each component (including sources), the power potentials represent the ab-
sorbed power by each component. This means that dissipative components
will absorb positive power, while sources will, on average, absorb negative
power to compensate for losses (but can temporarily receive power).
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Integrating (29) over a time interval [t0, t1] combined with the
power balance (7), leads to the conservation of the total energy

�E = H(x)

����
t1

t0

+

� t1

t0

Pd(t) dt +

� t1

t0

Pe(t) dt = 0. (31)

4. STRUCTURE-PRESERVING INTEGRATION SCHEME

The main objective of the numerical scheme is first and foremost,
to provide a structure-preserving method that conserves the invari-
ant (31) in discrete-time over each time-step. This offers the strong
guarantee that no artificial energy is either consumed or created by
the numerical scheme.To achieve this goal, thanks to the unified
representation of DAE circuits as gradient systems introduced in
section 3, it is now possible to generalize the usage of discrete
gradient methods [22] [23] for both dynamic and algebraic com-
ponents.

4.1. Discrete Gradients

Given a scalar potential H : Rn �� R, a point x � Rn and
a variation �x � Rn, a necessary and sufficient condition for a
function �H(x, �x) : Rn � Rn �� Rn to be a discrete gradient
is given by

�H(x, �x) · �x = H(x + �x) � H(x) (32)

�H(x, 0) = �H(x) (33)

Definition 4.1 (Average Discrete Gradient). Let x, �x � Rn, and
H : Rn �� R be a scalar potential. The average discrete gradient
is defined for an affine trajectory model x̂(�) = x + ��x by

�H(x, �x) :=

� 1

0

�H(x + ��x) d� (34)

Furthermore, using the gradient theorem, for separable poten-
tials of the form

H(x) =
N�

i=1

Hi(xi), (35)

the discrete gradient can be computed exactly by finite differences
on each scalar potential. It is given component-wise by

[�H(x, �x)]i :=

�
���

���

Hi(xi + �xi) � Hi(xi)
�xi

�xi �= 0

�Hi

�xi
(xi) �xi = 0

(36)

Finally, and only in the case of quadratic potentials of the form
H(x) = 1

2x
T Wx with W = WT � 0, does the discrete gradi-

ent correspond to evaluation of the gradient at the mid-point.

�H(x, �x) = �H

�
x +

1
2
�x

�
= W

�
x +

1
2
�x

�
(37)

The following result will also be exploited in the next section.

Property 4.1. Given a separable potential H : Rn �� R, as in
(35) of class C2, a point x � Rn, a variation � � Rn and its
discrete gradient �H(x, �) defined as (36), the derivative of the

discrete gradient with respect to the variation � is the diagonal
matrix ���H : (x, �) � Rn � Rn � Rn�n with entries

�
���H

�

i,i
=

�
����

����

�Hi(xi + �i) � �Hi(xi, �i)
�i

�i �= 0

1
2

�2Hi

�x2
i

(xi) �i = 0

(38)

Proof. see Appendix A.

4.2. Averaged System

Assuming over each time step �n = [tn, tn + h], an affine trajec-
tory model

z(tn + h�) = zn + ��zn (39)
where z = [x,w,y]T , and integrating (30) over �n, we obtain
the discrete structure-preserving system

�

�
�xn/h
w̄n

ȳn

�

� = J

�

��
�H(xn, �xn)
�Z(wn, �wn)
�S(yn, �yn)

�

�� (40)

where w̄n = wn + �wn/2, ȳn = yn + �yn/2. The DAE system
(30) has been converted to an algebraic system that needs to be to
solved for the average variation �zn = [�xn, �wn, �yn]T.

5. NEWTON ITERATION

Denote the variation � = �zn, solving the discrete algebraic sys-
tem (40) can be rewritten as the root-finding problem

F (��) = 0 (41)

where �� is the looked for solution and F is defined by

F (�) := D0zn + D1� � J�f̃P (zn, �), (42)

with D0 =

�

�
0 0 0
0 Ip 0
0 0 Im

�

�, D1 =

�

�
In/h 0 0

0 Ip/2 0
0 0 Im/2

�

�, where

In denote the n�n identity matrix and �f̃P = [�H, �Z, �S]T.

5.1. Newton update

For an estimate �k and a perturbation ��k, the true solution �� of
(41) can be written as �� = �k + ��k. Taylor series expansion
of F around �k, with ���k� sufficiently small yields

0 = F (�k + ��k) = F (�k) + [F �(�k)](��k) + O(���k�2).
(43)

If the Jacobian F � is invertible, neglecting high-order terms and
solving for �� leads to the Newton update

��k := �F �(�k)�1F (�k), �k+1 := �k + ��k, (44)

where the Jacobian of F is given by

F �(�) = D1 � J
�
���f̃P (zn, �)

�
. (45)

For a separable potential P , using property (4.1), ���f̃P is a di-
agonal matrix that can be computed from the knowledge of the
gradient, Hessian and discrete gradient of the potential.
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5.2. Convergence and stiffness

If the eigenvalues of the matrix A = D�1
1 J

�
���f̃P (zn, �)

�

are such that�A�2 = max(|�i|) < 1, the fixed-point induced by
(40) is contracting. The Banach fixed-point theorem guarantees
existence and unicity of the solution. It is then possible to approx-
imate the inverse of the Jacobian with the Neumann series identity

(I � A)�1 =
��

k=0

Ak � I + A + A2 + . . . (46)

to get the first (or any higher) order approximation

F �(�)�1 �
�
I + D�1

1 J
�
���f̃P (zn, �)

��
D�1

1 (47)

If max |�i| � 1, the system is said to be stiff, the series (46) is di-
vergent, and the approximation (47) is no longer valid. Solving the
system then requires a matrix inversion for each iteration. Using
the Newton-Kantorovich theorem, for a starting point �0, if there
exists positive constants �0, �, h0, such that �F �(�0)

�1� � �0,
F �(�) is locally �-Lipschitz and h0 := ���0� �0� < 1/2, then
the sequence {�k} converges quadratically to some unique ��

such that F (��) = 0. Please refer to [27] for more details.

6. CIRCUIT EXAMPLES

6.1. Envelope Follower

We consider the envelope follower circuit shown in figure 3 with
parameters C = 100 pF, IS = 2.52 nA, VT = 23 mV and n =
1.96. Kirchoff laws leads to the following Dirac structure:

�

�
iC
vD

iS

�

�

� �� �
f̃

=

�

�
0 1 0

�1 0 1
0 �1 0

�

�

� �� �
J

�

�
vC

iD
vS

�

�

� �� �
ẽ

. (48)

For this circuit we have x = [q], w = [vD], y = [iS ], f̃ =
[q̇, vD, iS ]T and the following potentials

H(q) =
q2

2C
, (49)

Z(vD) = nVT IS

�
exp

�
vD

nVT

�
� 1

�
� vDIS , (50)

S(iS) = V iS . (51)

Taking their gradients gives the right-hand side vector

ẽ =

�

�
vC

iD
vS

�

� =

�

�
�H(q)
�Z(vD)
�S(iS)

�

� =

�

���

q/C

IS

�
exp

�
vD

nVT

�
� 1

�

V

�

��� (52)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = �H(q)q̇� �� �
PC(q)

+ �Z(vD)vD� �� �
PD(vD)

+ �S(iS)iS� �� �
PS(iS)

. (53)

For the capacitor and voltage source, we obtain the discrete gradi-
ents

�H(q, �q) =
1
C

�
q +

�q
2

�
, �S(i, �i) = V, (54)

and after some algebraic manipulations (see appendix B), the dis-
crete gradient of the diode potential can be expressed as

�Z(v, �v) = IS

�
exp

�
v + �v/2

nVT

�
sinhc

�
�v

2nVT

�
� 1

�
.

(55)
where the sinhc term (sinhc := sinh(x)/x) acts as a correction
compared to evaluation of the gradient at the mid-point.

6.2. Diode Clipper

We consider the diode clipper circuit shown in figure 5 with pa-
rameters R = 1 k�, C = 100 nF, IS = 2.52 fA, VT = 23 mV
and n = 1. For the two diodes, with vD := vD1 and the diodes
current iD := iD1 � iD2 , the constitutive law is

iD = f̂(vD) = 2IS sinh

�
vD

nVT

�
. (56)

Its integration gives the voltage potential

D�
D(vD) =

� vD

0

f̂(v)dv = 2nVT IS

�
cosh

�
vD

nVT

�
� 1

�
.

(57)
Application of Kirchoff laws leads to the following Dirac struc-
ture: �

���

iC
vR

vD

iS

�

���

� �� �
f̃

=

�

���

0 1 �1 0
�1 0 0 1
1 0 0 0
0 �1 0 0

�

���

� �� �
J

�

���

vC

iR
iD
vS

�

���

� �� �
ẽ

. (58)

For this circuit, x = [q], w = [vR, vD]T, y = [iS ], f̃ = [q̇, vR, vD, iS ]T

and the potentials are

H(q) =
q2

2C
, Z(vR, vD) =

v2
R

2R
+ D�

D(vD), S(iS) = V iS .

(59)

Their gradients regenerates the mixed effort

ẽ =

�

���

vC

iR
iD
vS

�

��� =

�

���

�H
�ZR

�ZD

�S

�

��� =

�

����

q/C
vR/R

2IS sinh
�

vD
nVT

�

V

�

����
(60)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = �H(q)q̇� �� �
PC(q)

+ �ZR(vR)vR� �� �
PR(vR)

+ �ZD(vD)vD� �� �
PD(vD)

+ �S(iS)iS� �� �
PS(iS)

.

(61)
Similarily as in the envelope follower case, we have the discrete
gradients (54) for the capacitor and voltage source, with

�ZR(v, �v) =
1
R

�
v +

�v
2

�
(62)

for the resistor, and after some algebraic manipulations, the dis-
crete gradient of the diodes potential can be expressed as

�ZD(v, �v) = 2IS sinh

�
v + �v/2

nVT

�
sinhc

�
�v

2nVT

�
. (63)
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Figure 2: Envelope follower circuit driven by a 1V sinusoidal input
with fundamental frequency f = 40 Hz, fs = 4 kHz.

+
�vS

iS + �
vD

iD

+

�

vC

IC

Figure 3: Envelope Follower circuit

Figure 4: Diode clipper circuit driven by a 1V sinusoidal input
with fundamental frequency f = 400 Hz, fs = 44.1 kHz.

+
�vS

iS
+ �vR

iR

+

�

vC

iC iD1 +

�

vD2

iD2

Figure 5: Diode Clipper circuit
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6.3. Analysis

Simulation results for both circuits are shown in figure 2 and fig-
ure 4 with respective sampling frequencies 4 kHz and 44.1 kHz.
We remark that in both cases, the power balance is satisfied with
high precision. The relative error is of the order of the machine
epsilon (� = 2�53 � 1.11 · 10�16). This results in a vanishing
total energy variation.

For dissipative components, the absorbed power is always pos-
itive; the dissipated energy is thus monotonously increasing. For
dynamic components and sources, the power is alternatively ab-
sorbed and released, the difference being that sources have a de-
creasing average energy trend to compensate for losses in the dis-
sipative components.

Existence and uniqueness of the fixed points are guaranteed if
h < C/�D for the envelope follower and if h < C/ max(�D, �R)
for the diode clipper (proof is ommited) where �K stands for the
local Lipschitz constants �K = max� |���ZK(vK0 , �)| of the
diode and resistor components in a neighborhood around �0.

For the diode clipper circuit, the fixed-point does not converge,
but the Newton iteration does. We can remark that each time the
diodes are saturating, the precision of the power balance is slightly
deteriorated. This can be explained by two facts: the dissipated
power is also increasing during saturation and the system becomes
stiff, thus the numerical conditioning of the Jacobian in the Newton
iteration gets worse.

7. CONCLUSION

The main contribution of this paper consists in a) using the power-
balance as the core object from which all quantities in the system
are derived, b) generalizing the usage of potentials and their gra-
dients to represent the flow and effort variables for both dynamic
an algebraic components, c) keeping the sparse skew-symmetric
structure matrix J until numerical simulation, d) integration of the
system using the average discrete gradient. This leads to a consis-
tent structure-preserving approximation that conserves the form of
the original system in discrete-time.

It is also shown that the Jacobian of the Newton iteration has a
special structure that only involves diagonal and skew-symmetric
matrices. It can be computed only from the knowledge of the po-
tentials associated with each component and stiffness can be in-
ferred by inspection of the derivatives of the discrete gradient. Fur-
thermore the structure-preserving approach offers a valuable tool
to monitor the quality of our approximations with respect to the
power balance.

The main drawback of the approach is a direct consequence
from its strength. Indeed, the preservation of the power balance,
prevents the use of L-stable integrators (which limit the stiffness by
introducing artificial numerical dissipation) such as the Backward
Difference Formulas or Radau IIa methods [28] [29]. This imposes
some restrictions on the step size or the use of adaptive strategies.
However, since the average integration of the system can be in-
terpreted as a lowpass projector and first-order anti-aliasing filter
[30], parasitic oscillations at the Nyquist frequency which are typ-
ical of stiff systems are attenuated during the simulation.

Further perspectives include the use of higher-order trajectory
models, exponential integrators [31] which have shown to be effec-
tive in the simulation of stiff systems and more generally Lie-group
integrators [32] [33] whose trajectories belong, by construction, to
the system manifold.
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A. DISCRETE GRADIENT DERIVATIVE

Proof. To prove property 4.1 for H(x) a scalar potential, when the
variation � �= 0, using a) the quotient rule, b) the chain rule and c)
identification with the discrete gradient definition (36), we obtain

��H
��

a
=

[ �
�� (H(x + �) � H(x))]� � [H(x + �) � H(x)] ��

��

�2

b
=

1
�

�
�H
�x

(x + �)
�(x + �)

�v
� H(x + �) � H(x)

�

�

c
=

�H(x + �) � �H(x, �)
�

.

When � � 0, using a) the definition of the discrete gradient (36)
with b) Taylor series expansion about x and neglecting high order
terms when passing to the limit leads to

��H
��

(x, 0) := lim
��0

�H(x + �) � �H(x, �)
�

a
= lim

��0

�H(x + �)
�

� H(x + �) � H(x)
�2

b
= lim

��0

H �(x) + H ���
�

� H �(x)� + H ��(x)�2/2!
�2

=
1
2

�2H
�x2

(x)

B. DISCRETE GRADIENT OF THE DIODE POTENTIAL

Proof. Using a) the definition of the discrete gradient (36), b) the
definition of the diode potential (23) followed by c) factorization of
the mid-point exponential term, then d) identification of the sinh
and e) sinhc functions, the discrete gradient of the diode voltage
potential can be expressed as

�D�(v, �v)
a
:=

D�
D(v + �v) � D�

D(v)
�v

b
=

nVT IS

�v

�
exp

�
v + �v
nVT

�
� exp

�
v

nVT

�
� �v

nVT

�

c
= IS

�
nVT

�v
exp

�
v + �v/2

nVT

� �
e

�v
2nVT � e

� �v
2nVT

�
� 1

�

d
= IS

�
2nVT

�v
exp

�
v + �v/2

nVT

�
sinh

�
�v

2nVT

�
� 1

�

e
= IS

�
exp

�
v + �v/2

nVT

�
sinhc

�
�v

2nVT

�
� 1

�

and since sinhc(0) = 1, �D�(v, 0) = �D�(v) satisfies eq (33).

DAFX-8

DAFx-271
DAFx-271



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

MODELING TIME-VARYING REACTANCES USING WAVE DIGITAL FILTERS

Ólafur Bogason

Genki Instruments
Reykjavik, Iceland

olafur@genkiinstruments.com

Kurt James Werner

The Sonic Arts Research Centre (SARC)
School of Arts, English and Languages

Queen’s University Belfast, UK
k.werner@qub.ac.uk

ABSTRACT

Wave Digital Filters were developed to discretize linear time in-
variant lumped systems, particularly electronic circuits. The time-
invariant assumption is baked into the underlying theory and be-
comes problematic when simulating audio circuits that are by na-
ture time-varying. We present extensions to WDF theory that in-
corporate proper numerical schemes, allowing for the accurate sim-
ulation of time-varying systems.

We present generalized continuous-time models of reactive
components that encapsulate the time-varying lossless models pre-
sented by Fettweis, the circuit-theoretic time-varying models, as
well as traditional LTI models as special cases. Models of time-
varying reactive components are valuable tools to have when mod-
eling circuits containing variable capacitors or inductors or electri-
cal devices such as condenser microphones. A power metric is
derived and the model is discretized using the alpha-transform nu-
merical scheme and parametric wave definition.

Case studies of circuits containing time-varying resistance and
capacitance are presented and help to validate the proposed gener-
alized continuous-time model and discretization.

1. INTRODUCTION

Time-varying lumped systems involve at least one parameter, e.g.
the value of a resistor, that is changed over time. Many musical
circuits are time-varying, including auto-wah pedals, phasers, and
indeed most every circuit where a user can twist a knob on the fly.
Some circuits may involve time-varying reactances, for instance
ladder filters with variable inductors or stepped filters where re-
actances may be switched in and out. In virtual analog, stability
and energy-preservation under time-varying conditions has been
studied in, e.g., [1, 2, 3]. However in certain electrical devices,
e.g. condenser microphones, the dynamics of a time-varying reac-
tance (in that case, a capacitor) are the main operating principle of
the device and the system may not actually be energy-preserving
under time-varying conditions in continuous time. In virtual ana-
log, modeling time-varying reactances is essential, both to accu-
rately simulate time-varying phenomena in electrical systems and
to develop principles for time-varying digital filters based on static
analog filters, e.g. adaptive digital filtering.

Wave Digital Filters (WDFs) provide a computationally effi-
cient way to simulate lumped element models [4] with excellent
numerical properties. Recent developments in the field include
topological advances in linear and nonlinear circuits [5, 6, 7], the
introduction of new wave variable definitions, including paramet-
ric waves [8] and bi-parametric waves [9] and the development of
new discretization schemes [10] applied to WDFs [8, 11, 12]. In
the WDF literature there has been some research done on time-
varying systems. By giving up guaranteed stability, Strube ex-

tended the paradigm to two dimensions to model vocal tracts [13,
14]. Stability of passive, time-varying circuits [15, 16] has been
proven for WDF algorithms that employ power-normalized waves
as signal variables and guaranteed stable approaches to varying the
step-size on the fly have also been studied [17, 18].

The paper is structured as follows. In the rest of this section,
we discuss notation and background information. In §2 we discuss
continuous-time models of capacitors and inductors and propose
novel generalized models of these reactances. In §3 we discuss
discretization schemes for reactances in the WDF paradigm and
discretize the generalized models. We use the newly discretized
model to study the effects of time-varying resistance (§4) and re-
actance (§5) on the dc response of a RC circuit. §6 presents rec-
ommendations for time-varying WDF simulations and concludes.

1.1. Wave Variables

Instead of the Kirchhoff signal variables from circuit theory, volt-
age v and current i, in WDFs the wave-variables, a and b for in-
cident and reflected waves, are used [4]. The parametric wave
definition is a useful tool that was recently introduced [7, 8] as a
parametrization of the traditional wave-variables. At port 0 in a
circuit a linear transformation from the Kirchhoff domain K to the
Wave-domain W is defined as

�
a0

b0

�
= R�

0

�
R�1

0 1
R�1

0 �1

� �
v0

i0

�
= �KW

�
v0

i0

�
. (1)

When det (�KW) = �2R2��1
0 �= 0 (i.e. R0 �= 0), the inverse is

�
v0

i0

�
=

1
2
R��

0

�
R0 R0

1 �1

� �
a0

b0

�
= �WK

�
a0

b0

�
. (2)

Note that �WK�KW = �KW�WK = I irrespective of the value
of �, where I is the identity matrix. By varying the real parameter
�, a family of transforms that include the standard voltage, power-
normalized and current waves may be obtained

� �

�
�

�

1 voltage waves
1/2 power-normalized waves
0 current waves

. (3)

Plugging the definition (2) into the definition p0 = v0 i0 of
instantaneous power at a port 0 gives the wave-domain power

p0 =
1
4
R1�2�

0 (a2
0 � b2

0) . (4)

Note that the expression becomes independent of the port resis-
tance when power-normalized waves are used (� = 1/2) [15].
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Figure 1: Res. v. source.

Table 1: Source WDF mults.

Adapted? f g

No R�R0
R+R0

2R�
0

R+R0

R0 = R 0 R��1

1.2. Resistive Voltage Source Derivation

As an example of how to derive wave-domain equations using the
parametric wave definition, consider the resistive voltage source
(Fig. 1). In the Kirchhoff domain, its constitutive equation is

vin = v0 � R i0 , (5)

where vin is the voltage source value and R is the resistor’s value.
Since this source represent an instantaneous geometric relation-
ship, time indices in continuous and discrete time are suppressed.

Plugging in the parametric wave definition (2) and solving for
b0 yields the unadapted wave-domain equation

b0 =
R � R0

R + R0
a0 +

2R�
0

R + R0
vin . (6)

This wave-domain equation is adapted by setting R0 = R, yield-
ing the adapted wave-domain equation

b0 = R��1vin . (7)

Note that � does not affect the adaptation criteria or reflectance
(multiplication of incident wave a0) but rather only contributes to
scaling the input vin [15, 8].

In the rest of the paper, we will need to refer directly to the
adapted and unadapted multipliers in the resistive voltage source.
To enable this we will define a generic wave-domain equation

b0 = f a0 + g vin , (8)

where f is the reflectance and g is the input scaling. These values
are defined for unadapted and adapted resistive voltage sources in
Tab. 1. The corresponding signal flow graphs are given in Fig. 2.
Here triangles represent multiplications, + symbols represent ad-
dition, unfilled semicircles represent wave sources, filled semicir-
cles represent wave sinks. Throughout the paper a shaded back-
ground indicates that an element is the root of a WDF tree.

A full review of WDF elements defined with the parametric
wave definition is beyond the scope of this paper. The reader is
referred to [8] for a full catalog of WDF elements.

1.3. First-Order Difference Equation

In this paper we use multiplication coefficients of a first-order dif-
ference equation to show how parameters from continuous-time
models, discretization schemes and the choice of wave-variables
influence the WDF difference equation for reactive elements. We
chose a difference equation of common form [19] and notate coef-
ficients as d1, n0 and n1 (d for “denominator” and n for “numera-
tor”) rather than the more common a and b to avoid confusion with
wave variable notation [20]

b0[n] = �d1 b0[n � 1] + n0 a0[n] + n1 a0[n � 1] . (9)

We use direct-form I [19] filter topologies in all realizations.

+

ain bin

vin

f
g

(a) Unadapted resistive source.

bin ain

vin

g

(b) Adapted resistive source.

Figure 2: WDF signal flow graphs for resistive sources.

2. MODELING REACTIVE COMPONENTS

Here we review continuous-time capacitor and inductor models,
including traditional LTI models, models proposed by Fettweis,
and models used for time-varying components. Noting that they
differ only in terms of which quantities are differentiated, we pro-
pose novel generalized continuous-time capacitor and inductor mod-
els that include the previous three models as special cases.

2.1. Models from Traditional WDF Theory

In traditional WDF theory [4], which is based on classical circuit
theory, reactive elements were modeled as ideal. The constitutive
equations for these elements are

i(t) = C(t)
dv(t)

dt
, (10) v(t) = L(t)

di(t)
dt

, (11)

where C is the capacitor’s capacitance in Farads (F) and L is the
inductor’s inductance in Henries (H).

2.2. Fettweis’ Lossless Models

In [21], Fettweis proposed following time-varying models

i(t) =
�

C(t)
d
dt

��
C(t) v(t)

�
, (12)

v(t) =
�

L(t)
d
dt

��
L(t) i(t)

�
, (13)

for a capacitor and inductor respectively. These models are loss-
less [16] as will be shown in §2.4.

2.3. Models from Circuit Theory

In circuit theory time-varying reactive models are given by

i(t) =
dq(t)

dt
=

d(C(t)v(t))
dt

= C(t)
dv(t)

dt
+

dC(t)
dt

v(t) , (14)

v(t) =
d�(t)

dt
=

d(L(t)i(t))
dt

= L(t)
di(t)

dt
+

dL(t)
dt

i(t) , (15)

for a capacitor and inductor respectively [22, p. 40, 47].

2.4. Generalized Time-Varying Models

We propose a generalized time-varying model of a lumped reactive
element by incorporating the real parameter �

i(t) = C1��(t)
d
dt

�
C�(t) v(t)

�
, (16)

v(t) = L1��(t)
d
dt

�
L�(t) i(t)

�
, (17)
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for a capacitor and inductor respectively. These models include
the circuit-theoretic model (� = 1), Fettweis model (� = 1/2)
and traditional model (� = 0) as special cases.

Looking at the instantaneous power p(t) = v(t)i(t) for these
two models, we obtain the following expressions

pC,�(t) =
d
dt

EC(t) + 2EC(t)

�
� � 1

2

�
1

C(t)
dC
dt

, (18)

pL,�(t) =
d
dt

EL(t) + 2EL(t)

�
� � 1

2

�
1

L(t)
dL
dt

, (19)

where EC(t) = C(t)v2(t)/2 and EL(t) = L(t)i2(t)/2 are the
non-negative energies of the capacitor and the inductor. Note that
the instantaneous power reduces to the derivative of the energy in
the case of Fettweis (� = 1/2) and thus it is lossless [21, 16].

3. DISCRETIZATION

Here we review traditional LTI discretization via the bilinear trans-
form (BLT) and discretize our proposed models using the new �-
transform discretization scheme. The results of these discretiza-
tions (24)–(43) are collected in Tab. 2 at the end of the paper.

The traditional way to discretize an element in WDF theory [4]
involves first transforming its constitutive equation to the wave do-
main via (2) and then discretizing it using the BLT. Using this dis-
cretization on a capacitor yields (24) and on an inductor yields (34).
The BLT is derived from the unidirectional Laplace transform,
which assumes LTI and steady-state [23]. For most audio circuits,
neither of these assumptions hold true and BLT discretization will
cause errors.

Instead of using the BLT we use the �-transform discretization
scheme [10, 8]. The �-transform discretization scheme is a gen-
eralization that encompasses the trapezoidal discretization scheme
(� = 1), backward-Euler (� = 0) and forward-Euler (� � �) as
special cases. Like trapezoidal integration, it does not depend on
time-invariance or steady-state.

3.1. Discretizing the Generalized Model

To demonstrate how the �-transform discretization scheme is ap-
plied, we discretize our generalized capacitor model (16). Before
we go into the general case we show how to apply the trapezoidal
numerical scheme (� = 1). As in traditional WDF theory we be-
gin by applying (2) to transform (16) into the wave-domain

a0(t) � b0(t)
R�

0(t)C
1��(t)

=
d
dt

�
a0(t) + b0(t)

R��1
0 (t)C��(t)

�
. (20)

Each side is now integrated over the time interval [T (n � 1), Tn],
where T is the sampling period and n is the discrete-time sample
index. The trapezoidal rule [24] is used to approximate the inte-
grated expression on the left

� Tn

T(n�1)

a0(t) � b0(t)
R�

0(t)C
1��(t)

dt

� T
2

�
a0[n] � b0[n]

R�
0[n] C1��[n]

+
a0[n � 1] � b0[n � 1]

R�
0[n � 1] C1��[n � 1]

�
(21)

and the first fundamental theorem of calculus [25] to calculate the
expression on the right over the same time interval

� Tn

T(n�1)

d
dt

�
a0(t) + b0(t)

R��1
0 (t)C��(t)

�
dt

=
a0[n] + b0[n]

R��1
0 [n]C��[n]

� a0[n � 1] + b0[n � 1]

R��1
0 [n � 1]C��[n � 1]

. (22)

Combining (21) and (22) and solving for b0[n] gives us the mul-
tiplication coefficients shown in equation (32), for � = 1. The
multiplication coefficients for the BLT based capacitor is shown
in (24). These two sets of multiplier coefficients differ with respect
to time indices of the port resistance, and scaling of capacitance,
not dissimilar to the results obtained in [26].

The generalized difference equation can be obtained by dis-
cretizing (20) using the �-transform discretization scheme. As
shown in [10] a time-varying system of the form ẋ(t) = y(x, t)
may be discretized using the difference equation

(1 + �) x[n] � (1 + �) x[n � 1] = T y[n] + �T y[n � 1] (23)

Here ẋ is the right-hand side of (20) and y is the left-hand side.
Carrying this out and solving for b0[n] yields the multiplier co-
efficients (32). The inductor can be discretized using the same
method, yielding the multiplier coefficients (42). Tab. 2 shows
general discretizations, the three special cases (Traditional, Fet-
tweis, and Time-Varying) and the LTI discretization, as well as the
adapted (R0[n] chosen to set n0[n] = 0) versions of each, for both
the capacitor and the inductor.

4. CASE STUDY: TIME-VARYING RESISTANCES

In this section we simulate a simple series RC circuit involving
a time-varying resistance. Depending on whether the capacitor
is at the root of the WDF tree or not, this may cause simulation
inaccuracies using the BLT. By discretizing the capacitor using an
�-discretization, these inaccuracies are avoided.

In both cases, we allow the circuits to settle to a dc solution,
change the value of a resistor, and examine the effect on the output
variables under different discretization schemes [3]. In each case
we analytically derive the dc solution of the WDF so that we can
set initial conditions “at dc” without any wait.

4.1. Circuit Description

Consider the series RC circuit whose schematic is shown in Fig. 3a.
In this circuit, an ideal voltage source vin, resistor R1, and capac-
itor C1 are connected in series. The capacitor is characterized by
voltage vC,1 and current iC,1. Taking vin as the input and vC,1 as
the output of the circuit, it forms a first-order (6 dB/octave) low-
pass filter with a cutoff frequency of

fcutoff = 1/(2�R1C1) Hz . (44)

Fig. 3b shows the series RC circuit decomposed into two one-
port devices: the capacitor C1 and a resistive voltage source com-
posed of vin and R1. In such a simple circuit, the SPQR tree repre-
senting how the components are connected is trivial [27, 7]. How-
ever, this tree may be oriented in two different ways: with the re-
sistive source at the root (Fig. 3c) or with C1 at the root (Fig. 3d).
These two tree orientations correspond to two different WDF dia-
grams: Figs. 3e and 3f respectively.
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Figure 3: Series RC circuit schematic, decomposition into ports,
two possible SPQR trees, and two corresponding WDF diagrams.

The signal flow graphs corresponding to these WDFs use the
same notation as before (as well as delays, z�1) and are shown in
Fig. 4. In each case the output variables are formed by (1)

vC,1 = R1��
0 (aC,1 + bC,1)/2 , (45)

iC,1 = R��
0 (aC,1 � bC,1)/2 . (46)

Note however that the port resistance R0 and multipliers n0, n1,
d1, f , and g will be different. For example, n1 in Fig. 4a and
Fig. 4b are not the same. Port resistance and multiplier values will
be given later as we test out the different discretization techniques.

4.1.1. Description of DC Behavior

In continuous time, the dc behavior (assuming vin(t) = 1 V, �t <
0) of the series RC circuit (Fig. 3a) is easy to predict. At dc, ca-
pacitors “look like” open circuits (they have “infinite” resistance
at dc). Since no current may flow through C1 at dc, no current
may flow through R1 either, so no voltage may develop across R1.
This leads to a dc solution for the capacitor network variables:

VC,1 = 1 V , (47) IC,1 = 0 A . (48)
Here and throughout, capital letters indicate dc quantities. In Fig. 5
a time-domain simulation of the circuit settling towards dc from
zero initial conditions in response to the 1 V input is shown. Here
and throughout, the sampling rate is fs = 44 100 Hz.

4.1.2. Finding DC Solution of WDFs

We will use simple signal flow graph manipulation techniques [28,
29] to solve the dc solution of our simple WDFs.1 First we recall
a few elementary transformations on signal flow graphs:

1In general, for more complicated circuits, it could be more convenient
to use matrix-based techniques [30] to find dc solutions.
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(b) C1 as root.

Figure 4: WDF signal flow graphs for different tree orientations.

v
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Figure 5: RC circuit settling to dc. R1 = 1 k� and C1 = 0.1 µF.

• Two multipliers � and � in series may be replaced by a
single multiplier � �.

• Two multipliers � and � in parallel may be replaced by a
single multiplier � + �.

• A self-loop though a multiplier � may be replaced by a mul-
tiplier 1/(1 � �). This creates a singularity when � = 1.

After a circuit has converged to dc, delays should be “trans-
parent” so their outputs should equal their inputs, i.e., they can be
replaced by a unity-gain, delay-free connection.

4.1.3. DC Solution with C1 as Leaf

According to this logic, Fig. 4a at dc is shown in Fig. 6a. We see
that a self-loop through �d1 can be removed, giving Fig. 6b. Here
the multiplier 1/(1 + d1) and n1 can be combined, giving Fig. 6c.
Here the multipliers n1/(1 + d1) and f can be combined, giving
Fig. 6d. Here the self-loop through fn1/(1+d1) can be removed,
giving Fig. 6e. Finally, the gains g and (1 + d1)/(1 + d1 � fn1)
can be combined, giving Fig. 6f which solves for Bin in terms of
Vin. This can be used to find the dc solution

AC,1 = Bin =
g(1 + d1)

1 + d1 � fn1
Vin (49)

Ain = BC,1 =
n1

1 + d1
AC,1 =

g n1

1 + d1 � fn1
Vin . (50)
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Figure 6: Finding dc solution for series RC WDF with source at root and C1 at leaf.
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Figure 7: Finding dc solution for series RC WDF with C1 at root and source at leaf.

Notice that n1/(1 + d1) = 1. Recall that BC,1 and AC,1 are also
the values stored in the two delays. That is, they are the specific
values that should be stored in those delays to set up the WDF as
if it has converged to steady-state. These quantities are combined
using (2) to find the dc solution for the network in terms of the
WDF multipliers and input:

VC,1 =
g(1 + d1 + n1)R

1��
0

2(1 + d1 � fn1)
Vin (51)

IC,1 =
g(1 + d1 � n1)R

��
0

2(1 + d1 � fn1)
Vin . (52)

Now we can check these values, making sure that they corre-
spond to the continuous-time steady-state solution (47)–(48). This
is done by plugging in the values for the multipliers from each
discretization (see Tab. 2). We will do this in the general case
only, since when R1 and C1 are not changing (remember we are
finding a steady-state solution) then it can encompass all the other
discretizations mentioned, including the LTI ones.

Plugging in the multiplier values from the adapted generalized
model (33), the unadapted resistive voltage source (Tab. 1) and
circuit input values (51)–(52)

Vin = 1 V g = 2R�
0/(R1 + R0)

R0 = T/(C1(1 + �)) n1 = (� + 1)/2

f = (R1 � R0)/(R1 + R0) d1 = (� � 1)/2

yields the the dc wave solutions

AC,1 = Bin = Ain = BC,1 = R��1
0 . (53)

combining these solutions and the wave definition (2) yields the dc
Kirchhoff solution

VC,1 = 1 V (54) IC,1 = 0 A . (55)
This matches the continuous-time dc solution (47)–(48), which is
expected because the entire family of �-discretizations (except the
degenerate � = �1) should be consistent (for the LTI versions,
dc is matched). As a sanity check we can run a simulation for a
long time (many times longer than the time constant of the circuit)
to confirm both the wave-domain (53) and Kirchhoff-domain dc
solutions (51)–(52).

4.1.4. DC Solution with C1 as Root

Fig. 4b at dc is shown in Fig. 7a. We see that the parallel multi-
pliers n0 and n1 can be combined, giving Fig. 7b. Here the self
loop through �d1 can be removed, giving Fig. 7c. Finally, the se-
ries multipliers n0 + n1 and 1/(1 + d1) can be combined, giving
Fig. 7d which solves for the dc wave variables:

AC,1 = Bin = g Vin , (56)

Ain = BC,1 =
n0 + n1

1 + d1
AC,1 . (57)
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v
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Figure 8: Changing R1 after 5 samples with various � �
{0, 1/4, 1/2, 3/4, 1}. C1 at root of WDF tree. � = 1.

Notice that (n0+n1)/(1+d1) = 1. These quantities are combined
using (2) to find the dc solution for the network in terms of the
WDF multipiers and input

VC,1 =
(1 + n0 + n1)R

1��
0

2(1 + d1)
Vin , (58)

IC,1 =
(1 � n0 + n1)R

��
0

2(1 + d1)
Vin . (59)

Plugging in the multiplier values for the adapted resistive source
(Tab. 1) and discretized capacitor (32) as before

Vin = 1 V n0 = (T � (1 + �)R0C1)/(T + (1 + �)R0C1)

R0 = R1 n1 = (T� + (1 + �)R0C1)/(T + (1 + �)R0C1)

g = R��1
1 d1 = (T� � (1 + �)R0C1)/(T + (1 + �)R0C1)

yields the dc wave solutions

AC,1 = Bin = Ain = BC,1 = R��1
1 . (60)

Note again that BC,1 and AC,1 are the values to be stored in the
two delays. Combining (60) and the wave definition (2) yields the
dc Kirchhoff solution

VC,1 = 1 V (61) IC,1 = 0 A . (62)

Again this matches the continuous-time dc solution (47)–(48) and
sanity check simulations also confirm this.

4.1.5. Time-Varying Simulations

We now run a simulation of the series RC circuit with time-varying
resistor values. In this simulation, the resistor and capacitor values
vary as a function of the sample index n according to

R1[n] =

�
100 � , n < 5
1 k� , n � 5

(63) C1[n] = 0.1 µF . (64)

Recalling the equation for the filter’s cutoff frequency (44), this
circuit acts as a filter whose cutoff frequency varies with time

fcutoff �
�

15.9 kHz , n < 5
1.59 kHz , n � 5

. (65)

v
C,1

i
C,1

Figure 9: Changing C1 after 5 samples with various � �
{0, 1/4, 1/2, 3/4, 1}. � = 1 and � = 1.

WDF simulations of this circuit are made using the computa-
tional strutures in Fig. 4, using BLT discretizations and the gener-
alized discretizations (with � = 1). Because the capacitance does
not change over time, the value of � does not matter. We start
the simulations at their dc solutions as calculated in the previous
section. That is, the delay registers are loaded at n = 0 with the
appropriate wave dc solutions (53) or (60).

For the case where C1 is the leaf of the tree (Fig. 4b), there are
no errors for any values of � for either the BLT or the generalized
discretization. This can be explained by comparing (25) and (27),
which are equivalent when the capacitor’s value is static. Surpris-
ingly, even though the BLT discretization should not be valid for
time-varying circuits, it is acceptable for all values of � when C1

is a leaf. The generalized transform, for all values of � and �, has
no errors since it has been discretized correctly.

In Fig. 8 simulations are shown using BLT discretizations (24)
for the case where C1 is the root of the tree (Fig. 4b). For voltage-
wave BLT discretization (� = 1) we get the correct response, but
for BLT discretization for any other � there are spurious transients.
This discrepancy can be explained by comparing (24) and (26).
Even for a static capacitor value, the BLT does not match the trape-
zoidal rule for the n1 and d1 coefficients except for the case � = 1
(voltage waves). Notice that for the inductor equations, this prop-
erty would only hold for � = 0 (current waves).

5. CASE STUDY: TIME-VARYING REACTANCES

Now we study the series RC circuit with a time-varying capacitor
value. In this simulation, the capacitor value vary as a function of
the sample index n according to

R1[n] = 1 k� (66) C1[n] =

�
1.0 µF , n < 5
0.1 µF , n � 5

. (67)

Recalling the equation for the filter’s cutoff frequency (44),
this circuit acts as a filter whose cutoff frequency varies as

fcutoff �
�

0.159 kHz , n < 5
1.59 kHz , n � 5

. (68)

WDF simulations of this circuits are made using the compu-
tational structures in Fig. 4, using the generalized discretization
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(with � = 1). Again we assume that the simulation has converged
to a dc solutions (53) or (60) by time n = 0.

For both cases, where C1 is the root of the tree (Fig. 2b) or the
leaf of the tree (Fig. 2b), Fig. 9 shows simulations using (32) or
(33). Since the generalized discretization is used correctly, there
is no difference in behavior between the two configurations. By
varying � a family of responses are obtained. For � = 0 (tra-
ditional model), there is no transient, i.e., the capacitor’s state is
maintained under time-varying conditions. For � = 1/2 (Fettweis
model), the energy is maintained but there is a transient. For � = 1
(time-varying circuit theory model), the transient is the largest. We
cannot necessarily say that one behavior is intrinsically the best;
the appropriate choice of � will depend on the desired behavior.

6. CONCLUSIONS

In this paper we argue for the use of proper numerical schemes
since the theory that lies at the foundation of the discretization
methods used in WDFs is invalid under time-varying conditions.
Numerical schemes like the �-transform discretization and trape-
zoidal rule, however, have no problems with time-varying systems
when applied properly.

If your goal is to model LTI circuits, traditional bilinear trans-
form based discretizations generally suffice. In the case where a
reactance is placed at the root of a tree but other elements may
change its port resistance, you should discretize it using the trape-
zoidal method in order to avoid inaccuracies in the simulation.

When faced with the problem of simulating time-varying re-
actances we would recommend to gather data and use any number
of optimization methods to get an estimate for a suitable value of
�. For some circuits the effects caused by time-varying reactances
make up an important part of the sound, such as is the case with
stepped filters, or even the intrinsic operation of the device, e.g.
condenser microphone. Conversely in other cases the “smooth-
ness” and/or reduction of transient may be a desired behavior. In
any case, the parameter � in our proposed continuous-time model
allows the algorithm designer to control the behavior.

In closing, the combination of the novel generalized continuous-
time capacitor and inductor models, �-discretizations, and para-
metric wave definition gives new tools that may be useful when
creating audio effects and gives audio dsp designers more control
over how energy is stored in discretized reactances.
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ABSTRACT

In this paper, we focus on studying nonlinear behavior of the pickup
of an electric guitar and on its modeling. The approach is purely
experimental, based on physical assumptions and attempts to find
a nonlinear model that, with few parameters, would be able to pre-
dict the nonlinear behavior of the pickup. In our experimental
setup a piece of string is attached to a shaker and vibrates per-
pendicularly to the pickup in frequency range between 60 Hz and
400 Hz. The oscillations are controlled by a linearizion feedback
to create a purely sinusoidal steady state movement of the string.
In the first step, harmonic distortions of three different magnetic
pickups (a single-coil, a humbucker, and a rail-pickup) are com-
pared to check if they provide different distortions. In the second
step, a static nonlinearity of Paiva’s model is estimated from ex-
perimental signals. In the last step, the pickup nonlinearities are
compared and an empirical model that fits well all three pickups is
proposed.

1. INTRODUCTION

The beautiful sounds created by musical instruments, whether
acoustic or electro-acoustic, relies very often on a nonlinear mech-
anism and the electric guitar is obviously no exception. The heart
of an electric guitar is a pickup, a nonlinear sensor that captures
the string vibrations and translates them into an electric signal
[1, 2, 3, 4]. A magnetic pickup is basically composed of a set
of permanent magnets surrounded by an electric coil (see Figure
1). A ferromagnetic string vibrating in the vicinity of the pickup
results in a variation of the magnetic flux through the coil, and, ac-
cording to the Faraday’s law, an electrical voltage is then induced
across the coil [3].

Since first pickups appeared almost a century ago, there have
been thousands of pickup models, each of them providing different
output. Almost all the electric-guitar players have probably asked
the puzzling question of what distinguishes one particular pickup
from another. Why is it that some sound warmer, some cleaner and
some more distorted ? The answer to this question is important
not only for guitar players but also for pickup manufactures and
for digital audio effects engineers, especially those working with
instrument synthesis [5, 6, 7]. A few models of pickup available in
the literature may help to find the answer to this tricky question.

Some of these models are based on physical approaches us-
ing either integral equations [3, 8] or port-Hamiltonian systems
[9, 10] while others are based on block-oriented models combin-
ing linear and nonlinear blocks together [11, 12]. In [11] Paiva
shows that the sound of a pickup is influenced by three main prop-
erties: 1) the pickup position and width which are closely related
to the string vibration, 2) the pickup high impedance which to-
gether with the input impedance of the device to which the guitar
is plugged forms a linear filter, and 3) a nonlinear behavior of the

6 permanent magnets

or pole pieces

coil

base plate

Figure 1: Schematic representation of a "single-coil" pickup.

d
dt

static

NLfnc

x(t) �(t) u(t)

Figure 2: Block diagram of the pickup nonlinear model, with x(t)
the string displacement, �(t) the magnetic flux, and u(t) the out-
put voltage of the pickup.

pickup. The main core of the Paiva’s model [11] describing the
magneto-electric conversion is based on a simple static nonlinear-
ity representing the nonlinear relation between the string displace-
ment and the magnetic flux, followed by a time derivative (see
Figure 2). In [13, 14] we have experimentally shown, that this
simple model, called Hammerstein system, is sufficiently precise
for pickup nonlinear modeling and that more complicated models,
such as a Generalized Hammerstein model, converge back to the
simple Hammerstein system.

This paper focuses on experimental measurement of the static
nonlinear block of Paiva’s model and on comparison of nonlinear
behavior of several pickups. Three different pickups of brand Sey-
mour Duncan are chosen: 1) "SSL-5" - a single-coil pickup, 2)
"SH-2N" - a humbucker (double-coil) pickup and 3) "STHR-1B
Hot Rails" - a humbucker rail pickup using a rail in place of a row
of six pole pieces. After presenting our experimental setup in sec-
tion 2, a preliminary comparative measurement of harmonic dis-
tortion of each pickup is presented for two different pickup/string
distances (section 2.1). Even if distortions of these three pick-
ups are of the same nature, the difference in distortion between
each pickup is visible not only in the spectra but also in the time-
domain waveforms of the voltage output. To find the origin of
this difference, we focus on the experimental identification of the
static nonlinearity of the pickup. In section 3, the pickup nonlinear
behavior is characterized experimentally leading to estimation of
the input-output curve representing the static nonlinearity of the
pickup. Finally, in section 4, all tested pickups are compared and
an empirical law that fits well all the measurements at different
pickup/string distances is proposed.
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electromagnetic shielding

pushing rod

shaker

amplifier

piece of string

measured

acceleration

accelerometerpickup

measured

voltage

signal generation with

active harmonic control

Figure 3: Configuration of the measurement setup.

2. EXPERIMENTAL SETUP & HARMONIC
DISTORTION TEST

On the one hand, the identification of linear and nonlinear sys-
tems is generally based on a knowledge of input and output signals
where the input signal is perfectly controlled (usually a random or
deterministic signal such as sine, swept-sine, multi-tone, ...). On
the other hand, the input signal of the pickup is the string displace-
ment, guided by the laws of vibrations, which is difficult to control.

In order to overcome this problem, a specific measurement
setup depicted in Figure 3 is used. A piece of string (8 cm long
and 1 mm in diameter) is glued to a composite plate (3 x 8 cm)
which is rigidly connected to an electrodynamic shaker (Brüel &
KjæLDS V406). The shaker, driven by a Devialet D-premier am-
plifier, R.M.E Fireface 400 sound card, and a personal computer,
is used as a source of the string displacement. The string is then
placed next to the pickup’s 6th pole piece (low E string position)
at a distance d0 so that the string can oscillate around d0 with am-
plitude ±dmax (Figure 4). To avoid a possible disturbance by the
electromagnetic field of the shaker, an electromagnetic shielding
cage is placed around the shaker. An accelerometer PCB 352C22
is fixed to the composite plate (firmly fixed to the string). The
sound card R.M.E Fireface 400 is then used to acquire both the sig-
nal a(t) from the accelerometer (through a PCB sensor signal con-
ditioner 482C series) and the output voltage u(t) from the pickup
(directly connected to the sound card instrument input with input
impedance of 470 k⌦).

d00 x

±dmax

string

pole piece of pickup

Figure 4: Schematic representation of the pickup/string distance
d0 given by the distance between the string rest position and the
pickup magnet (or its pole piece), and of the amplitude dmax of
the string excursion, defining the total displacement d0 ± dmax.

2.1. Measurement of pickup’s harmonic distortion

Such a measurement setup can be used to control the input signal
(displacement of the string - deduced from the measured accelera-
tion) and to analyze the behavior of the pickup. However, in order
to analyze the pickup from the nonlinear point of view, one would
desire that the shaker, used to displace the string, behaves linearly.
Otherwise, the displacement would be contaminated by the nonlin-
earities of the shaker which would make the identification of the
nonlinear behavior of the pickup much more difficult. In [13, 14],
a procedure based on swept-sine measurement [15], that allows to
post-process the measured data and to identify the nonlinear sys-
tem under test in terms of Generalized Hammerstein model, has
been used. While efficient, this technique cannot fix the excitation
signal in real time.

Recently, a simple and robust adaptive technique that can pre-
distort the input signal in a real time to create a perfect periodi-
cal signal at the output of the shaker (with spectral purity up to
100 dB) has been proposed in [16]. Using this technique, we can
generate a pure harmonic displacement even for large amplitudes,
canceling completely the nonlinearity of the shaker. Therefore, if
the measured acceleration, and consequently the string displace-
ment, is ensured to be purely harmonic, the harmonic distortion
observed at the output voltage of the pickup can be associated only
to the nonlinearity of the pickup.

The results of this "harmonic excitation" experiment are de-
picted in Figure 5 for all three tested pickups and for two dif-
ferent pickup/string distances d0 = 3 and 5 mm. The harmonic
excitation with dmax = 2 mm and frequency 80 Hz, chosen in
accordance with free vibrations of an E-string, is imposed to the
string. One can see from Figure 5 that the nonlinear distortion
of all three tested pickups has a similar character, but each output
differs. The difference is visible not only in the frequency do-
main but also in the time domain. It is of no surprise that both
humbucker pickups (SH-2N and the "STHR-1B Hot Rails") pro-
vide signals with higher level and higher distortion compared to
a single-coil "SSL-5". The humbucker pickups also exhibit much
stronger distortion when placed closer to the string (d0 = 3 mm).
When placed further from the string (d0 = 5 cm ), the level and
distortion are surprisingly much more similar. In order to under-
stand the origin of these differences in distortion generated by the
pickups, we provide the following set of experiments, all of them
conducted using the experimental setup described at the beginning
of this section.
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Figure 5: Waveforms (green) and spectra (blue) of the output voltage of three pickups under test: a single-coil pickup (SSL-5) on the left, a
humbucker double-coil pickup (SH-2N) in the middle (with gray background), and a rail pickup (STHR-1B Hot Rails) on the right. Results
depicted for two different pickup/string distances d0 = 3 mm and d0 = 5 mm. The string is placed in front of the pickup’s 6th pole piece
(low E string position).
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3. EXPERIMENTAL ESTIMATION OF THE PICKUP
NONLINEARITY

Since the Paiva’s block-model [11] (static nonlinearity followed
by the time derivative, see Figure 6(a)) has been experimentally
verified in [13, 14], following experiments are focused on identifi-
cation of the static nonlinearity directly from experimental signals.

To make a link between the physics and the block-model from
Figure 6(a), we recall the Faraday’s law of induction that defines
the voltage u(t) generated at the output of a coil with N turns as

u(t) = �N
d�c(t)
dt

, (1)

�c(t) being the magnetic flux passing through the coil. Compar-
ing this law with the block-model, we can see, that the signal �(t)
(time integral of the voltage u(t)) has the dimensions of the mag-
netic flux [V · s] and differs from the real flux �c(t) of the coil
by sign and by number of turns N . The signal �(t) can be easily
deduced from the measured voltage u(t) simply by integrating

�(t) =

� t

��
u(t�)dt� + C. (2)

Note, that an unknown constant of integration C, inherent in the
construction of anti-derivatives, appears at the end of Equation (2).
This constant is related to the direct component (DC) of the mag-
netic flux passing through the voice coil.

The block-model then assumes that there exists a direct static
nonlinear relation between the time integral of the voltage �(t)
and the string displacement x(t)

�(t) = NLfnc

�
x(t)

�
. (3)

In the following, these two quantities �(t) and x(t), derived from
the measured voltage and acceleration1, are used to estimate the
input-output (I/O) relation of the static function NLfnc. The term
"static" means, that it is independent of frequency, and that an
I/O relation depicted in a graph (translated to Matlab language as
plot(x,phi)) should exhibit no area inside the closed curve.

In Figure 6, the procedure explained above is depicted us-
ing the experimental results ("SSL-5" pickup, d0 = 3 mm, and
dmax = 2.8 mm). Since the I/O relation should not depend on fre-
quency, we use 60 Hz (resonant frequency of the shaker) to achieve
larger amplitude dmax of displacement. The validation of this as-
sumption through an experiment is provided in section 3.2. From
the results depicted in Figure 6 we can conclude that the signal
�(t), depicted in Figure 6(c), is very distorted and that, contrary
to the assumption of a static nonlinearity, the I/O relation (Fig-
ure 6(d)) gives a curve with a non-negligible area inside the closed
curve. The area can be simply explained by a small phase shift
due to a time delay between the measured voltage and acceleration
(e.g. due to the sensor signal conditioner). After applying a time
delay (the actual time delay of 0.23 ms is the same for all measure-
ments and independent of frequency), the I/O relation (Figure 6(e))
shows a nice smooth curve (with no closed curve area) that repre-
sents an estimate of the static nonlinear function NLfnc.

As shown in the experiment with the harmonic distortion pre-
sented in Figure 5 the distortion differs for different pickup/string
positions d0. The following two experiments are thus focused on:
1) the influence of the pickup/string position d0 on the static non-
linear function NLfnc, and 2) the frequency dependence.

1integrating and differentiating in the frequency domain

d
dt

static
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(a) block diagram of the pickup model

(b) displacement
(obtained from measured acceleration)

(c) time integral of
measured voltage

(d) time integral of voltage vs. displacement

(e) time integral of voltage vs. displacement after time-delay correction
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static NLfnc

Figure 6: (a) A block diagram of the pickup model with the mea-
sured signals (b) string displacement (obtained from the measured
acceleration), (c) time integral of the measured voltage, and (d-e)
a plot of time integral of voltage vs. string displacement in an I/O
graph to estimated the form of the static nonlinear function; (d)
without any correction, (e) a time-delay compensation is applied.
Measurements performed on a SSL-5 pickup with a string placed
at d0 = 3 mm from the pickup’s 6th pole piece (low E string posi-
tion) and oscillating harmonically with amplitude dmax = 2.8 mm
at 60 Hz.

DAFX-4

DAFx-283
DAFx-283



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

3.1. Influence of the pickup/string distance d0

The previous experimental result shows that the I/O relation of the
static function NLfnc representing the static nonlinear block can
be obtained directly from the string displacement (derived from
measured acceleration) and from the time integral of the measured
voltage of the pickup’s output. The physical model of the guitar
pickup proposed in [8] suggests that the nonlinear behavior of the
pickup is influenced by the pickup/string distance d0.

To study the influence of d0 on the static nonlinear function
NLfnc of the model (see Figure 2), the following experiment is
made for pickup/string distances d0 = 3 mm, 5 mm, 7 mm, and
10 mm. The amplitude of the string displacement is dmax =
3.5 mm for all the measurements except for d0 = 3 mm, for which
dmax is set to 2.8 mm to avoid the string hitting the pickup.

The resulting I/O curves representing the NLfnc are shown in
Figures 7(a-d). The nonlinear I/O relation between the string dis-
placement and the time integral of the voltage is much more non-
linear when the string is closer to the pickup (e.g. for d0 = 3 mm,
see Figure 7(a)) than when the string is much further (d0 = 10 mm,
see Figure 7(d)) even if, in this particular case with d0 = 3 mm, the
amplitude dmax of the string displacement is larger for the mea-
surement made at other pickup/string distances.

We can see from Figures 7(a-d) that the nonlinear behavior of
the pickup (I/O curve) varies a lot with the pickup/string distance
d0. One could consequently conclude that when a guitar player
changes the distance d0 of the string, a different static nonlinear
function NLfnc applies. Indeed, as shown in Equation (2), the sig-
nal �(t), obtained as a time integral of the measured voltage u(t),
is missing the unknown constant of integration C. Consequently,
the I/O curves can be offset (shifted vertically) with the same rel-
ative result. The offset has no consequence on the output voltage
u(t) due to the time derivative block. Figure 7(d) shows each I/O
curve from Figures 7(a-d) plotted with an offset to achieve the best
superposition. The superposition of the I/O curves, measured at
different pickup/string distances d0, is almost perfect, indicating
that there is only one static nonlinear function NLfnc no matter the
pickup/string distance d0. Therefore, when a guitar player changes
the distance d0 of the string, the same static nonlinear function
NLfnc applies.

3.2. Independent of frequency ?

To verify that the nonlinear function NLfnc is really static, i.e. inde-
pendent of frequency, a similar measurement is conducted on the
SSL-5 pickup for different frequencies (60 Hz, 80 Hz, and 400 Hz)
for a given pickup/string distance d0 = 4 mm. The amplitude
dmax differs for each measurement due to the physical limits of
the shaker at different frequencies. While at low frequencies (e.g.
60 Hz) the shaker can provide a dmax close to 3 mm, for the same
driving voltage at 400 Hz it provides a dmax lower than 1 mm.

Each I/O relation estimated from the measured signals for dif-
ferent frequencies is provided in Figure 8. The I/O curve obtained
for 60 Hz (Figure 8(a)) is more curved than the one obtained for
80 Hz (Figure 8(b)), indicating a higher nonlinear distortion at
60 Hz. The I/O curve for 400 Hz (Figure 8(c)) is almost a per-
fect straight (linear) line.

Similarly to the previous results, one could conclude that the
pickup behavior vary a lot with frequency (high distortion for low
frequencies and low distortion for high frequencies). Nevertheless,
it must not be forgotten that the string displacement have not the
same value of amplitude dmax (see the x-axis in Figures 8(a-c)).
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(a) d0 = 3 mm (b) d0 = 5 mm

(c) d0 = 7 mm (d) d0 = 10 mm

(e) superposition of measurements
with d0 = 3 mm, 5 mm, 7 mm, and 10 mm

Figure 7: I/O graphs (time integral of measured voltage vs. string
displacement) for four different pickup/string distances d0 (a)
3 mm, (b) 5 mm, (c) 7 mm, and (d) 10mm. All the four I/O graphs
are superposed in (e) where each time integral of measured volt-
age is offset by an unknown constant of integration. Measurements
performed on a SSL-5 pickup with a string oscillating harmoni-
cally with amplitude dmax = 2.8 mm around d0 = 3 mm and with
amplitude dmax = 3.5 mm around d0 = 5 mm, d0 = 7 mm, and
d0 = 10 mm. The frequency is chosen to be 60 Hz in order to
maximize the displacement of the shaker. The string is placed in
front of the pickup’s 6th pole piece (low E string position).

As in the previous experiment, each of the I/O curves can be offset
(shifted vertically) to compensate for the unknown constant of in-
tegration (Equation (2)). The superposition of the offset I/O curves
measured at different frequencies, depicted in Figure 8(d), results
in an almost perfect superposition confirming the hypothesis of
non frequency dependent static nonlinear function NLfnc.

3.3. Discussion

These experiments conducted on the SSL-5 pickup show that a
single static nonlinear function NLfnc can be used, no matter the
distance d0 to which the guitar player sets the string. In other
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10-4
(a) 60 Hz (b) 80 Hz (c) 400 Hz

(d) superposition of 60 Hz, 80 Hz, and 400 Hz curves

Figure 8: I/O graphs (plot of the time integral of measured voltage
vs. string displacement) for three different excitation frequencies
(a) 60 Hz, (b) 80 Hz, (c) 400 Hz, and (d) all the three I/O graphs
for three different frequencies superposed in one I/O graph. Each
time integral of measured voltage is offset by an unknown constant
of integration. Measurements performed on a SSL-5 pickup with a
string placed at d0 = 4 mm in front of the pickup’s 6th pole piece
(low E string position).

words, d0 and dmax join together into a single variable x repre-
senting the instantaneous distance of the string from the pickup
(see the schematic representation in Figure 4). Consequently, the
parameters d0, dmax, and the frequency of string vibration, are pa-
rameters associated to the string displacement (input of NLfnc), not
to the pickup nonlinearity NLfnc or its parameters.

Note also that the output voltage of the pickup is proportion-
ally related to the gradient of the I/O curve, or, i.e. to the gradient
of the magnetic flux (time integral of the voltage). Indeed combin-
ing Equations (1 - 3), one can write

u(t) =
d�(t)
dt

=
dNLfnc {x(t)}

dt
=

@NLfnc

@x
dx(t)
dt

. (4)

The output voltage is thus proportional both to the velocity of the
string and to the instantaneous gradient of the static nonlinear func-
tion NLfnc. It is thus straightforward to guess from Figure 7 how
the string position d0 influences the level of output signal and the
nonlinear distortion. For string position d0 = 3 mm, close to the
pickup, the I/O curve is very steep indicating high induced voltage
at the output of the pickup. It is also curved due to the gradient
variation, indicating a high nonlinear distortion. In the opposite
way, for larger distance from the pickup (e.g. d0 = 10 mm) the
slope is weak and the curve flatter, resulting in a smaller voltage
output with less distortion.

4. A SINGLE EMPIRICAL MODEL FOR ALL PICKUPS

In this section we provide the comparative results of three different
pickups of brand Seymour Duncan: "SSL-5" - a single-coil pickup,
"SH-2N" - a humbucker (double-coil) pickup, and "STHR-1B Hot
Rails" a humbucker rail pickup. The goals of this section are three-
fold: (1) to verify that the findings proposed in the previous exper-
iment on SSL-5 pickup also apply to the other pickups, (2) to see
if there is any difference between the nonlinear I/O curves of each
pickup and, if yes, what makes this difference, and (3) to provide
an empirical model (other than the polynomial one) that, with min-
imal amount of parameters, would be able to predict the pickup
nonlinear behavior.

4.1. Experiments on different pickups

All the three tested pickups are measured in the same way as the
SSL-5 pickup in the previous section. The comparative table pro-
vided in Figure 9 shows the estimated NLfnc of these three pickups.
Observing the I/O graphs created by superposing the four measure-
ments for different d0 one can note that the conclusions proposed
in the previous section for the single-coil (SSL-5) also apply to
the humbucker (double-coil) pickups SH-2N and STHR-1B Hot
Rails. Roughly speaking we can also predict the behavior of the
pickups by observing the shapes of each nonlinear function NLfnc.
Following Equation (4), in which the pickup output voltage is pro-
portional to the instantaneous value of the gradient of the NLfnc,
we can deduce that the SH-2N and STHR-1B will produce higher
output level than the SSL-5 when the string is placed close (e.g.
d0 = 3 mm) to the pickup since the slope (gradient) of the NLfnc is
much higher. On the other hand when the string is placed at the
distance of d0 = 5 mm, the slopes of the NLfnc are smaller and
similar for all the three pickups, thus the amplitude of the output
voltage should be smaller and similar for all pickups. This is per-
fectly correlated with the results presented in Figure 5 in which
the signals and spectra of the pickups’ output voltage are depicted.
Similarly, the level of distortion of these signals is well correlated
with the variations of the slope of the static nonlinear functions
NLfnc from Figure 9.

4.2. Single empirical model

To replicate the laws of physics that describe the nonlinear be-
havior of the pickup, represented by the static nonlinear function
NLfnc, it is desirable to find a fitting function that would fit the I/O
law of the NLfnc using few parameters. It could be used not only
for sound synthesis of an electric guitar but also to quantitatively
differentiate pickups through these parameters.

A polynomial fit (based on Taylor series) is usually the most
common way to model a static nonlinear function when the an-
alytical formula is not known or simply to reduce the computa-
tional cost of a platform on which the model of the pickup is im-
plemented [1, 12]. The main disadvantages of a polynomial fit
are, first, a missing physical interpretation and, second, the need
of a high number of parameters in order to fit the curve correctly.
Note, that the spectra of the SH-2N voltage output measured for
a sinusoidally oscillating string around d0 = 3 mm with ampli-
tude dmax = 2 mm (see Figure 5) contains more than 20 harmon-
ics. The polynomial fit would thus need at least 20 coefficients to
reproduce a similar result which would be very impractical. Re-
ducing the number of coefficients would lead to lower precision of
the model. Moreover, all the measurement I/O curves presented in
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this paper for different kinds of pickups rather exhibit a law similar
to an exponential decay one which is difficult to fit a polynomial
with few coefficients. Our attempt to fit the I/O curves with one
exponential law revealed to be unsuccessful (high deviation on ex-
tremities of the I/O curves). A sum of two exponentials seemed to
fit better the I/O behavior, but two exponentials require too many
parameters for the fitting and do not seem to be really justified
from the point of view of the physical laws of electromagnetism.

On the other hand, the basic magnetic field B(x) of a cylindri-
cal magnet (or a solenoid) along its x-axis is analytically described
as [8]

B(x) =
Br

2

�
x+ L�

r2 + (x+ L)2
� x�

r2 + x2

�
, (5)

where Br is the remanent flux density of the magnet, r its radius,
and L its length. Despite the fact that this relation is not describing
the magnetic flux of the coil as a response to oscillating string in
its proximity, we tried to find the best fit to the I/O curves using
Equation (5) ... with no success (similar results that the exponen-
tial model). Inspired by this simple model, we tried to modify
equation (5) empirically to find a better fit. Indeed, replacing both
square roots by cube roots surprisingly led to very successful fit
for all three studied pickups. Then, the following equation

NLfnc(x) = A

�
x+ Leq

3
�

r2eq + (x+ Leq)2
� x

3
�

r2eq + x2

�
, (6)

provides an empirical model of the static nonlinear function NLfnc
with only three parameters. Moreover, since the model is based on
the physical basis, even if modified empirically, we can associate
the model parameters to an equivalent cylindrical magnet with an
equivalent radius req , and an equivalent length Leq . The constant
A then includes the remanent flux density Br as well as the string
characteristics such as diameter and material properties.

The measured I/O curves of the static nonlinear function NLfnc
depicted in Figure 9 are fitted using Equation (6). The best fit is
plotted in a black & white dashed curve in the same figure and
the estimated parameters A, Leq , and req are provided for each
pickup under each I/O curve. Note that the parameters Leq and
req correspond to credible values of the length and radius of an
equivalent magnet.

The output �(t) of the static nonlinear block (Figure 2) can be
easily derived from Equation (6) as

�(t) = A

�
x(t) + Leq

3
�

r2eq + [x(t) + Leq]2
� x(t)

3
�

r2eq + x2(t)

�
. (7)

This equation can be used to directly calculate the output �(t) of
the static nonlinear function to any string displacement x(t), sinu-
soidal (x(t) = d0 + dmax sin(2⇡f0t)) or musical (offset by d0).
One can then simply calculate the time-derivative of �(t) to di-
rectly deduce the output voltage u(t) of the pickup. Another pos-
sibility is to provide directly the voltage output u(t) as a function
of input string vibration x(t) (still offset by d0) using the gradient
of the static nonlinear function NLfnc (see Equation (4)) as

u(t) =
@NLfnc

@x
dx
dt

, (8)

with

@NLfnc

@x
= A

�
(x(t) + Leq)

2 + 3r2eq

3
�
[x(t) + Leq]2 + r2eq

�4/3 �
x2(t) + 3r2eq

3
�
x2(t) + r2eq

�4/3

�
.

(9)

5. CONCLUSIONS

In this paper, the pickup nonlinear behavior is studied from an ex-
perimental point of view considering three different pickups: a
single coil pickup, a humbucker, and a rail pickup. The experi-
mental setup using a piece of string attached to a shaker, whose
displacement is actively controlled to provide a spectrally pure
(without distortion) sinusoidal excitation, shows that the output
of each studied pickup differs and that the distance between the
string and the pickup plays an important role in voltage distortion.
It is next shown, that the model proposed by Paiva, consisting of
a static nonlinear function followed by a time derivative, corre-
sponds to the experiments and that the static nonlinear function is
independent of frequency and follows the same rule no matter the
pickup/string distance. Moreover, an empirical model describing
the pickup nonlinear behavior is proposed.

Future works on this topic will focus on the measurements of
string displacement along x and y axes, on comparison between
the same types of pickups of different brands, on the dependence
on the string properties (width, material, ...), as well as on analyti-
cal modeling that could justify (or find better) the empirical model
proposed in this paper.
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ABSTRACT

The Serge Triple Waveshaper (TWS) is a synthesizer module de-
signed in 1973 by Serge Tcherepnin, founder of Serge Modular
Music Systems. It contains three identical waveshaping circuits
that can be used to convert sawtooth waveforms into sine waves.
However, its sonic capabilities extend well beyond this particular
application. Each processing section in the Serge TWS is built
around what is known as a Norton amplifier. These devices, unlike
traditional operational amplifiers, operate on a current differencing
principle and are featured in a handful of iconic musical circuits.
This work provides an overview of Norton amplifiers within the
context of virtual analog modeling and presents a digital model
of the Serge TWS based on an analysis of the original circuit.
Results obtained show the proposed model closely emulates the
salient features of the original device and can be used to generate
the complex waveforms that characterize “West Coast” synthesis.

1. INTRODUCTION

In the early 1970s, during the heyday of companies like Moog,
ARP, and Buchla, access to modular synthesizers was mostly re-
stricted to renowned musicians and members of the academic com-
munity. In those days a decently-equipped modular synthesizer,
such as the Moog System 551, could easily cost tens of thousands
of dollars. Frustrated by the high price tags of these instruments,
Serge Tcherepnin, a then-professor of music composition at Cali-
fornia Institute of the Arts (CalArts) decided to design a modular
synthesizer that would be both affordable and powerful. With the
support of a few CalArts students and faculty members, Serge set
up a scheme in which people would pay $700 up front for parts
and work on an improvised assembly line building their own six-
module system [1, 2]. Serge’s synthesizers became so successful
that in 1975 he decided to leave his teaching position at CalArts to
found Serge Modular Music Systems.

Since the beginning, Serge’s approach to synthesizer design
was heavily inspired by the work of Don Buchla on what is now
known as “West Coast” synthesis. West Coast synthesis explored
the use of non-traditional interfaces, such as step sequencers, and
focused on timbre manipulation at waveform level via some form
of nonlinear waveshaping [3]. In particular, Serge proposed ex-
panding the signal path used in traditional subtractive synthesis by
adding a “Wave Processor” stage between the oscillator and the
voltage-controlled filter (VCF) [1]. Modules such as the Serge
Wave Multipliers (VCM) [4], and the Triple Waveshaper (TWS)
were designed for this purpose.

� Correspondence related to this work should be addressed to
geoffrey.gormond@gmail.com

1https://www.moogmusic.com/products/modulars/system-55

In this work we study the internal design of the Serge TWS
module and propose a model for its digital implementation. The
TWS is a processing module designed in 1973 as part of the first
generation of Serge modules. As explained by Rich Gold2 in his
book An Introduction to the Serge Modular Music System, “the
TWS module contains three identical devices which can be used
to convert sawtooth waves into sine waves and can provide a wide
range of other forms of sound and timbre modification. The timbre
can be affected by a manual pot and two different VC inputs which
operate on the sound in two different ways. It is a useful module
for producing interesting and changing sound timbres, something
difficult to achieve in other synthesizers” [5].

The motivation behind this study is to provide a better under-
standing of the Serge TWS, of which there is very little informa-
tion available in the public domain, and to produce a “virtual ana-
log” (VA) model that can be incorporated into a software-based
synthesis environment. VA modeling is a popular area of study
dedicated to emulating the behavior of vintage analog audio de-
vices in the digital domain. This is highly desirable partly because
nearly fifty years later, vintage analog synthesizers are still pro-
hibitively expensive and hard to have access to. In a way, the mo-
tivation behind this kind of research is not much different from
that of Serge Tcherepnin’s when he started designing musical in-
struments.

Previous research on VA modeling of synthesizer circuits has
concentrated on VCFs [6, 7, 8, 9, 10], oscillators [11, 12, 13], and
effects processors [4, 14, 15]. Of related interest to this study
is the pioneering work done during the 1970s on digital wave-
shaping synthesis [16, 17, 18]. This type of synthesis (much like
West Coast synthesis) exploited the use of nonlinear waveshap-
ing, e.g., via Chebyshev polynomials, to create harmonically-rich
sounds from sinusoidal waveforms. These techniques are, in turn,
closely related to popular digital synthesis methods such as fre-
quency modulation and phase distortion synthesis [19, 20], which
also relied on spectral manipulation via attribute modulation.

This paper is organized as follows. Section 2 provides an
overview of Norton amplifiers, the component around which the
module is based. Section 3 focuses on the analysis of the Serge
TWS circuit. In Section 4 we observe the time- and frequency-
domain behavior of the proposed model. Finally, Section 5 pro-
vides concluding remarks.

2Rich Gold was part of the group of CalArts affiliates who worked on
the design of the first Serge synthesizers. He was also responsible for the
design of many of the emblematic Serge panels, which featured geometri-
cal shapes instead of text labels [1].
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(a)(a) (b)(b)

Figure 1: Circuit diagram for (a) the input stage and (b) a sim-
plified equivalent circuit of a typical Norton amplifier. Figures
adapted from [22].

2. NORTON AMPLIFIERS

Whereas the output voltage of the common operational amplifier is
proportional to the voltage difference across its input terminals, the
output of a Norton amplifier is proportional to the difference in the
currents flowing into its input terminals [21]. Accordingly, Norton
amplifiers are said to operate on a current differencing principle.
This functionality is achieved by replacing the typical differential
opamp input stage with a transistor configuration employing a cur-
rent mirror at the positive input terminal to drain current from the
negative input terminal, as shown in Fig. 1(a). As a first large-
signal approximation, and as suggested in [22], a Norton amplifier
can be modeled by the circuit shown in Fig. 1(b). Here, the tran-
sistor at the negative input terminal has been abstracted to a single
base–emitter junction diode. Similarly, the current mirror has been
reduced to a diode at the positive terminal and a current source that
drains a replica of the positive input current from the negative ter-
minal. A bias current source is added to the negative terminal and
the output is represented as a voltage source that depends on the
input currents. When negative feedback is applied, the output of
the device settles at a voltage that minimizes the current difference
between the input terminals [23]. This behavior is similar to that of
conventional op-amps that seek to minimize the voltage difference
across the inputs under negative feedback.

In typical applications, the diode at the negative input termi-
nal remains forward biased if the small bias current Ibias = 30 nA
is supplied to the negative input. Usually, this current is available
when negative feedback is applied. The diode associated with the
current mirror at the positive input terminal is commonly biased
separately with a resistive connection to the power supply [24, 25].
With the diodes forward biased, the input terminals of the device
are clamped to a diode drop above ground potential and the in-
put pins can be treated as fixed voltage nodes. This fixed voltage
assumption is the basis for many of the circuit design equations
associated with Norton amplifiers [22, 23].

Compared to voltage-differencing operational amplifiers, Nor-
ton amplifiers are relatively uncommon devices in audio applica-
tions. Nevertheless, iconic vintage devices, such as VCFs in ARP
synthesizers [26, 27], were designed around the LM3900; an inte-
grated circuit housing four identical Norton amplifiers. This–now
obsolete–device was favored by circuit designers for various ap-
plications due to its compactness, low cost and robust operation
with a wide range of unipolar supply voltages. For instance, the
LM3900 is capable of nearly full output voltage swings from ap-
proximately ground level (around 90 mV) to one diode drop be-
low the supply voltage while maintaining stability [22]. The de-
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Figure 2: Circuit diagram for a single stage of the Serge TWS
module. Figure adapted from [29].

vice even played a hidden role in shaping the sound aesthetics of
video games, as the sound effects and the iconic background loop
in the hit arcade game Space Invaders were implemented with ded-
icated synthesis circuits designed around the LM3900 [28]. More-
over, the LM3900 is particularly abundant in the designs of Serge
Tcherepnin, who employed it widely to implement a variety of his
synthesizer modules (e.g., the dual universal slope generator 3, the
smooth & stepped generator 4, the bottom section of the VCM 5,
a touch responsive keyboard 6, envelope generators 7, and many
more). In the next section, we present a circuit analysis of the
Serge TWS, an audio processor where the LM3900 was employed
in an unconventional manner to perform complex waveshaping.

3. THE SERGE TWS

Figure 2 shows a simplified schematic of a single stage of the Serge
TWS [29]. The circuit takes a single input signal and applies a
static waveshaping function to it. Control voltages VC1 and VC2 are
then used to change the shape of this function. Figure 3(a) shows
the model of the circuit used in this study. Here, we have substi-
tuted the LM3900 for the large-signal model described in Section
2. Additionally, the circuitry associated with the control voltage
inputs VC1 and VC2 has been collapsed into ideal current sources IA
and IB, respectively, both of which range from 0–3 µA. The range
of these current sources was based on the standard used in Serge
synthesizers, which expects DC-coupled and AC-coupled (i.e. au-
dio) signals to range between approximately 0–5 V and ±2.5 V,
respectively. The blue diodes in Fig. 3(a) represent the BJT base–
emitter junctions inside the LM3900, while the red diodes repre-
sent standard 1N4148 silicon signal diodes.

We divide the analysis of the circuits in two parts. First, we
look at the input section and compute the value of currents Ip and
If. Once these currents are known we proceed to analyze the feed-
back portion of the circuit and the output section. These steps are
detailed in the following subsections.

3www.cgs.synth.net/modules/cgs114_dusg.html
4www.cgs.synth.net/modules/cgsssg_ssg.html
5www.cgs.synth.net/modules/cgs113_vcm.html
6www.cgs.synth.net/modules/cgs86_trk.html
7www.cgs.synth.net/modules/cgs76_env.html
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<latexit sha1_base64="F0ShrhsrXjkLU0fCEb/zr//2imo=">AAAB6XicbZC7TsMwFIZPyq2UW4GRxaIgMVVJF2CiEgtjuYRWaqPKcZ3Wqu1EtoNURX0EFgZArDwEKw/AxMabMOJeBmj5JUuf/v8c+ZwTJpxp47pfTm5hcWl5Jb9aWFvf2Nwqbu/c6jhVhPok5rFqhFhTziT1DTOcNhJFsQg5rYf981Fev6NKs1jemEFCA4G7kkWMYGOt66t2pV0suWV3LDQP3hRKZ98fb+8AUGsXP1udmKSCSkM41rrpuYkJMqwMI5wOC61U0wSTPu7SpkWJBdVBNh51iA6t00FRrOyTBo3d3x0ZFloPRGgrBTY9PZuNzP+yZmqikyBjMkkNlWTyUZRyZGI02ht1mKLE8IEFTBSzsyLSwwoTY69TsEfwZleeB79SPi27l16pegAT5WEP9uEIPDiGKlxADXwg0IV7eIQnhzsPzrPzMinNOdOeXfgj5/UH5deQpw==</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

VDC
<latexit sha1_base64="KhKSZA8jAAt2J81rjBB7iQdrgcY=">AAAB83icbVA9TwJBEJ3DLwQ/UEubi2hiRe5s1I4EC0tMPCCBC9lbFtiwt3fuzhHJhcY/YWOhxtb/4G+w0n/j8lEo+JJJXt6bycy8IBZco+N8W5mV1bX1jexmLr+1vbNb2Nuv6ShRlHk0EpFqBEQzwSXzkKNgjVgxEgaC1YNBZeLXh0xpHslbHMXMD0lP8i6nBI3k19otZPeYxOlVZdwuFJ2SM4W9TNw5KZbzD18fAFBtFz5bnYgmIZNIBdG66Tox+ilRyKlg41wr0SwmdEB6rGmoJCHTfjo9emyfGKVjdyNlSqI9VX9PpCTUehQGpjMk2NeL3kT8z2sm2L3wUy7jBJmks0XdRNgY2ZME7A5XjKIYGUKo4uZWm/aJIhRNTjkTgrv48jLxzkqXJefGLZaPYYYsHMIRnIIL51CGa6iCBxTu4BGe4cUaWk/Wq/U2a81Y85kD+APr/QeO/5RN</latexit>

VDC
<latexit sha1_base64="KhKSZA8jAAt2J81rjBB7iQdrgcY=">AAAB83icbVA9TwJBEJ3DLwQ/UEubi2hiRe5s1I4EC0tMPCCBC9lbFtiwt3fuzhHJhcY/YWOhxtb/4G+w0n/j8lEo+JJJXt6bycy8IBZco+N8W5mV1bX1jexmLr+1vbNb2Nuv6ShRlHk0EpFqBEQzwSXzkKNgjVgxEgaC1YNBZeLXh0xpHslbHMXMD0lP8i6nBI3k19otZPeYxOlVZdwuFJ2SM4W9TNw5KZbzD18fAFBtFz5bnYgmIZNIBdG66Tox+ilRyKlg41wr0SwmdEB6rGmoJCHTfjo9emyfGKVjdyNlSqI9VX9PpCTUehQGpjMk2NeL3kT8z2sm2L3wUy7jBJmks0XdRNgY2ZME7A5XjKIYGUKo4uZWm/aJIhRNTjkTgrv48jLxzkqXJefGLZaPYYYsHMIRnIIL51CGa6iCBxTu4BGe4cUaWk/Wq/U2a81Y85kD+APr/QeO/5RN</latexit>

I2
<latexit sha1_base64="r27qjwJlTaEQZJY081oywagkNBA=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVVJF2CiEgtsRRBaqY0qx3Vaq44T2Q5SFfURWBgAsfIQrDwAExtvwoh7GaDllyx9+v9z5HNOkAiujeN8odzC4tLySn61sLa+sblV3N651XGqKPNoLGLVCIhmgkvmGW4EaySKkSgQrB70z0d5/Y4pzWN5YwYJ8yPSlTzklBhrXV+2K+1iySk7Y+F5cKdQOvv+eHsHgFq7+NnqxDSNmDRUEK2brpMYPyPKcCrYsNBKNUsI7ZMua1qUJGLaz8ajDvGhdTo4jJV90uCx+7sjI5HWgyiwlRExPT2bjcz/smZqwhM/4zJJDZN08lGYCmxiPNobd7hi1IiBBUIVt7Ni2iOKUGOvU7BHcGdXngevUj4tO1duqXoAE+VhD/bhCFw4hipcQA08oNCFe3iEJyTQA3pGL5PSHJr27MIfodcf2CqQng==</latexit>

I2
<latexit sha1_base64="r27qjwJlTaEQZJY081oywagkNBA=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVVJF2CiEgtsRRBaqY0qx3Vaq44T2Q5SFfURWBgAsfIQrDwAExtvwoh7GaDllyx9+v9z5HNOkAiujeN8odzC4tLySn61sLa+sblV3N651XGqKPNoLGLVCIhmgkvmGW4EaySKkSgQrB70z0d5/Y4pzWN5YwYJ8yPSlTzklBhrXV+2K+1iySk7Y+F5cKdQOvv+eHsHgFq7+NnqxDSNmDRUEK2brpMYPyPKcCrYsNBKNUsI7ZMua1qUJGLaz8ajDvGhdTo4jJV90uCx+7sjI5HWgyiwlRExPT2bjcz/smZqwhM/4zJJDZN08lGYCmxiPNobd7hi1IiBBUIVt7Ni2iOKUGOvU7BHcGdXngevUj4tO1duqXoAE+VhD/bhCFw4hipcQA08oNCFe3iEJyTQA3pGL5PSHJr27MIfodcf2CqQng==</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

If
<latexit sha1_base64="6PMKXcz3+jCJSaQodV+ZtFig5Wo=">AAAB8nicbVA9SwNBEJ2LXzFGjVraHEbBKtzZqF3ARrsIngkkR9jb7CVL9vaW3TkxHPkbNhYqtv4aOzt/ipuPQhMfDDzem2FmXqQEN+h5X05hZXVtfaO4Wdoqb+/sVvb2702aacoCmopUtyJimOCSBchRsJbSjCSRYM1oeDXxmw9MG57KOxwpFiakL3nMKUErdW66HWSPmKk8HncrVa/mTeEuE39OqvVyrL4BoNGtfHZ6Kc0SJpEKYkzb9xSGOdHIqWDjUiczTBE6JH3WtlSShJkwn948dk+s0nPjVNuS6E7V3xM5SYwZJZHtTAgOzKI3Ef/z2hnGF2HOpcqQSTpbFGfCxdSdBOD2uGYUxcgSQjW3t7p0QDShaGMq2RD8xZeXSXBWu6x5t361fgwzFOEQjuAUfDiHOlxDAwKgoOAJXuDVyZxn5815n7UWnPnMAfyB8/EDmgGTsg==</latexit>

If
<latexit sha1_base64="6PMKXcz3+jCJSaQodV+ZtFig5Wo=">AAAB8nicbVA9SwNBEJ2LXzFGjVraHEbBKtzZqF3ARrsIngkkR9jb7CVL9vaW3TkxHPkbNhYqtv4aOzt/ipuPQhMfDDzem2FmXqQEN+h5X05hZXVtfaO4Wdoqb+/sVvb2702aacoCmopUtyJimOCSBchRsJbSjCSRYM1oeDXxmw9MG57KOxwpFiakL3nMKUErdW66HWSPmKk8HncrVa/mTeEuE39OqvVyrL4BoNGtfHZ6Kc0SJpEKYkzb9xSGOdHIqWDjUiczTBE6JH3WtlSShJkwn948dk+s0nPjVNuS6E7V3xM5SYwZJZHtTAgOzKI3Ef/z2hnGF2HOpcqQSTpbFGfCxdSdBOD2uGYUxcgSQjW3t7p0QDShaGMq2RD8xZeXSXBWu6x5t361fgwzFOEQjuAUfDiHOlxDAwKgoOAJXuDVyZxn5815n7UWnPnMAfyB8/EDmgGTsg==</latexit>

I3
<latexit sha1_base64="AYySXgfeFbLY+pKD9Aezi2tea3o=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVUJDMBEJRbYiiC0UhtVjuu0Vh0nsh2kKuojsDAAYuUhWHkAJjbehBH3MkDLL1n69P/nyOecIBFcG8f5Qrm5+YXFpfxyYWV1bX2juLl1q+NUUebRWMSqHhDNBJfMM9wIVk8UI1EgWC3onQ/z2h1TmsfyxvQT5kekI3nIKTHWur5sHbWKJafsjIRnwZ1A6ez74+0dAKqt4mezHdM0YtJQQbRuuE5i/Iwow6lgg0Iz1SwhtEc6rGFRkohpPxuNOsD71mnjMFb2SYNH7u+OjERa96PAVkbEdPV0NjT/yxqpCU/8jMskNUzS8UdhKrCJ8XBv3OaKUSP6FghV3M6KaZcoQo29TsEewZ1eeRa8w/Jp2blyS5U9GCsPO7ALB+DCMVTgAqrgAYUO3MMjPCGBHtAzehmX5tCkZxv+CL3+ANmtkJ8=</latexit>

I3
<latexit sha1_base64="AYySXgfeFbLY+pKD9Aezi2tea3o=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVUJDMBEJRbYiiC0UhtVjuu0Vh0nsh2kKuojsDAAYuUhWHkAJjbehBH3MkDLL1n69P/nyOecIBFcG8f5Qrm5+YXFpfxyYWV1bX2juLl1q+NUUebRWMSqHhDNBJfMM9wIVk8UI1EgWC3onQ/z2h1TmsfyxvQT5kekI3nIKTHWur5sHbWKJafsjIRnwZ1A6ez74+0dAKqt4mezHdM0YtJQQbRuuE5i/Iwow6lgg0Iz1SwhtEc6rGFRkohpPxuNOsD71mnjMFb2SYNH7u+OjERa96PAVkbEdPV0NjT/yxqpCU/8jMskNUzS8UdhKrCJ8XBv3OaKUSP6FghV3M6KaZcoQo29TsEewZ1eeRa8w/Jp2blyS5U9GCsPO7ALB+DCMVTgAqrgAYUO3MMjPCGBHtAzehmX5tCkZxv+CL3+ANmtkJ8=</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

IB
<latexit sha1_base64="iqzUlwvSJ+4EyfY/XhogJTnCJec=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdBA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H6LOT8Q==</latexit>

IB
<latexit sha1_base64="iqzUlwvSJ+4EyfY/XhogJTnCJec=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdBA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H6LOT8Q==</latexit>

VDP
<latexit sha1_base64="2bBx6T6kWFlP0dtyJqKWXAVPOIA=">AAAB83icbVC7TsNAEFzzDAmPACWNRUCiimwaoIsEBWWQcBIpsaLz5Zyccj6bu3VEZKXhJ2goANHyD3wDFfwNl0cBCSOtNJrZ1e5OkAiu0XG+raXlldW19dxGvrC5tb1T3N2r6ThVlHk0FrFqBEQzwSXzkKNgjUQxEgWC1YP+5divD5jSPJa3OEyYH5Gu5CGnBI3k19otZPeYJtlVddQulpyyM4G9SNwZKVUKD18fAFBtFz9bnZimEZNIBdG66ToJ+hlRyKlgo3wr1SwhtE+6rGmoJBHTfjY5emQfG6Vjh7EyJdGeqL8nMhJpPYwC0xkR7Ol5byz+5zVTDM/9jMskRSbpdFGYChtje5yA3eGKURRDQwhV3Nxq0x5RhKLJKW9CcOdfXiTeafmi7Ny4pcoRTJGDAziEE3DhDCpwDVXwgMIdPMIzvFgD68l6td6mrUvWbGYf/sB6/wGis5Ra</latexit>

VDP
<latexit sha1_base64="2bBx6T6kWFlP0dtyJqKWXAVPOIA=">AAAB83icbVC7TsNAEFzzDAmPACWNRUCiimwaoIsEBWWQcBIpsaLz5Zyccj6bu3VEZKXhJ2goANHyD3wDFfwNl0cBCSOtNJrZ1e5OkAiu0XG+raXlldW19dxGvrC5tb1T3N2r6ThVlHk0FrFqBEQzwSXzkKNgjUQxEgWC1YP+5divD5jSPJa3OEyYH5Gu5CGnBI3k19otZPeYJtlVddQulpyyM4G9SNwZKVUKD18fAFBtFz9bnZimEZNIBdG66ToJ+hlRyKlgo3wr1SwhtE+6rGmoJBHTfjY5emQfG6Vjh7EyJdGeqL8nMhJpPYwC0xkR7Ol5byz+5zVTDM/9jMskRSbpdFGYChtje5yA3eGKURRDQwhV3Nxq0x5RhKLJKW9CcOdfXiTeafmi7Ny4pcoRTJGDAziEE3DhDCpwDVXwgMIdPMIzvFgD68l6td6mrUvWbGYf/sB6/wGis5Ra</latexit>

Ibias
<latexit sha1_base64="8ZrKJxE6UZ+k6wIkzDV+PSrPlR8=">AAAB93icbVC7TsNAEFyHVwiBGChpLAISVWTTAF0kGuiChEmkxIrOl3Nyyvls3a0RwcqX0FAAouVX6Oj4FC6PAhJGWmk0s6vdnTAVXKPrflmFldW19Y3iZmmrvL1TsXf37nSSKcp8mohEtUKimeCS+chRsFaqGIlDwZrh8HLiN++Z0jyRtzhKWRCTvuQRpwSN1LUr190OsgfM0jzkRI+7dtWtuVM4y8Sbk2q9HKXfANDo2p+dXkKzmEmkgmjd9twUg5wo5FSwcamTaZYSOiR91jZUkpjpIJ8ePnaOjdJzokSZkuhM1d8TOYm1HsWh6YwJDvSiNxH/89oZRudBzmWaIZN0tijKhIOJM0nB6XHFKIqRIYQqbm516IAoQtFkVTIheIsvLxP/tHZRc2+8av0IZijCARzCCXhwBnW4ggb4QCGDJ3iBV+vRerberPdZa8Gaz+zDH1gfP2ntlTo=</latexit>

Ibias
<latexit sha1_base64="8ZrKJxE6UZ+k6wIkzDV+PSrPlR8=">AAAB93icbVC7TsNAEFyHVwiBGChpLAISVWTTAF0kGuiChEmkxIrOl3Nyyvls3a0RwcqX0FAAouVX6Oj4FC6PAhJGWmk0s6vdnTAVXKPrflmFldW19Y3iZmmrvL1TsXf37nSSKcp8mohEtUKimeCS+chRsFaqGIlDwZrh8HLiN++Z0jyRtzhKWRCTvuQRpwSN1LUr190OsgfM0jzkRI+7dtWtuVM4y8Sbk2q9HKXfANDo2p+dXkKzmEmkgmjd9twUg5wo5FSwcamTaZYSOiR91jZUkpjpIJ8ePnaOjdJzokSZkuhM1d8TOYm1HsWh6YwJDvSiNxH/89oZRudBzmWaIZN0tijKhIOJM0nB6XHFKIqRIYQqbm516IAoQtFkVTIheIsvLxP/tHZRc2+8av0IZijCARzCCXhwBnW4ggb4QCGDJ3iBV+vRerberPdZa8Gaz+zDH1gfP2ntlTo=</latexit>

Vin
<latexit sha1_base64="ev4bYR1DNhR+6WqPdNccTc4wCBk=">AAAB83icbVBNS8NAEJ34WeNX1aOXYBU8lcSLeiuI4LGCaQttKJvtpl262cTdSbGE/g4vHqp49c9484d4d/tx0NYHA4/3ZpiZF6aCa3TdL2tldW19Y7OwZW/v7O7tFw8OazrJFGU+TUSiGiHRTHDJfOQoWCNVjMShYPWwfzPx6wOmNE/kAw5TFsSkK3nEKUEjBbV2C9kTZmnO5ahdLLlldwpnmXhzUqrYt99jAKi2i5+tTkKzmEmkgmjd9NwUg5wo5FSwkd3KNEsJ7ZMuaxoqScx0kE+PHjlnRuk4UaJMSXSm6u+JnMRaD+PQdMYEe3rRm4j/ec0Mo6vA/JNmyCSdLYoy4WDiTBJwOlwximJoCKGKm1sd2iOKUDQ52SYEb/HlZeJflK/L7r1XqpzCDAU4hhM4Bw8uoQJ3UAUfKDzCM4zh1RpYL9ab9T5rXbHmM0fwB9bHD7DtlFw=</latexit>

Vin
<latexit sha1_base64="ev4bYR1DNhR+6WqPdNccTc4wCBk=">AAAB83icbVBNS8NAEJ34WeNX1aOXYBU8lcSLeiuI4LGCaQttKJvtpl262cTdSbGE/g4vHqp49c9484d4d/tx0NYHA4/3ZpiZF6aCa3TdL2tldW19Y7OwZW/v7O7tFw8OazrJFGU+TUSiGiHRTHDJfOQoWCNVjMShYPWwfzPx6wOmNE/kAw5TFsSkK3nEKUEjBbV2C9kTZmnO5ahdLLlldwpnmXhzUqrYt99jAKi2i5+tTkKzmEmkgmjd9NwUg5wo5FSwkd3KNEsJ7ZMuaxoqScx0kE+PHjlnRuk4UaJMSXSm6u+JnMRaD+PQdMYEe3rRm4j/ec0Mo6vA/JNmyCSdLYoy4WDiTBJwOlwximJoCKGKm1sd2iOKUDQ52SYEb/HlZeJflK/L7r1XqpzCDAU4hhM4Bw8uoQJ3UAUfKDzCM4zh1RpYL9ab9T5rXbHmM0fwB9bHD7DtlFw=</latexit>

220k
<latexit sha1_base64="pYgkPvsbXLcepL0KlLx9SLtE0q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lyqd4KXjxWMLbQhrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8KOVMG9f9diobm1vbO9Xd2t7+weFR/fjkUSeZIjQgCU9UL8KaciZpYJjhtJcqikXEaTea3hZ+94kqzRL5YGYpDQUeSxYzgk0h+b47HdYbbtNdAK0TryQNKNEZ1r8Go4RkgkpDONa677mpCXOsDCOczmuDTNMUkyke076lEguqw3xx6xxdWmWE4kTZkgYt1N8TORZaz0RkOwU2E73qFeJ/Xj8z8XWYM5lmhkqyXBRnHJkEFY+jEVOUGD6zBBPF7K2ITLDCxNh4ajYEb/XldRL4zZume+832hdlGlU4g3O4Ag9a0IY76EAABCbwDK/w5gjnxXl3PpatFaecOYU/cD5/AIakjVQ=</latexit>

220k
<latexit sha1_base64="pYgkPvsbXLcepL0KlLx9SLtE0q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lyqd4KXjxWMLbQhrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8KOVMG9f9diobm1vbO9Xd2t7+weFR/fjkUSeZIjQgCU9UL8KaciZpYJjhtJcqikXEaTea3hZ+94kqzRL5YGYpDQUeSxYzgk0h+b47HdYbbtNdAK0TryQNKNEZ1r8Go4RkgkpDONa677mpCXOsDCOczmuDTNMUkyke076lEguqw3xx6xxdWmWE4kTZkgYt1N8TORZaz0RkOwU2E73qFeJ/Xj8z8XWYM5lmhkqyXBRnHJkEFY+jEVOUGD6zBBPF7K2ITLDCxNh4ajYEb/XldRL4zZume+832hdlGlU4g3O4Ag9a0IY76EAABCbwDK/w5gjnxXl3PpatFaecOYU/cD5/AIakjVQ=</latexit>

R1
<latexit sha1_base64="iK/Jo8FMAmxTGVn7zXaURPK/FlA=">AAAB6XicbZC7TgMxEEVneYbwClDSWAQkqmiXBqiIREMZHksiJavI6ziJFa93Zc8iRat8Ag0FIFo+gpYPoKLjTyhxHgUkXMnS0b0z8syEiRQGXffLmZtfWFxazq3kV9fWNzYLW9u3Jk414z6LZaxrITVcCsV9FCh5LdGcRqHk1bB3Psyrd1wbEasb7Cc8iGhHibZgFK11fdX0moWiW3JHIrPgTaB49v3x9g4AlWbhs9GKWRpxhUxSY+qem2CQUY2CST7IN1LDE8p6tMPrFhWNuAmy0agDcmCdFmnH2j6FZOT+7shoZEw/Cm1lRLFrprOh+V9WT7F9EmRCJSlyxcYftVNJMCbDvUlLaM5Q9i1QpoWdlbAu1ZShvU7eHsGbXnkW/KPSacm99IrlfRgrB7uwB4fgwTGU4QIq4AODDtzDIzw50nlwnp2XcemcM+nZgT9yXn8A5FSQpg==</latexit>

R1
<latexit sha1_base64="iK/Jo8FMAmxTGVn7zXaURPK/FlA=">AAAB6XicbZC7TgMxEEVneYbwClDSWAQkqmiXBqiIREMZHksiJavI6ziJFa93Zc8iRat8Ag0FIFo+gpYPoKLjTyhxHgUkXMnS0b0z8syEiRQGXffLmZtfWFxazq3kV9fWNzYLW9u3Jk414z6LZaxrITVcCsV9FCh5LdGcRqHk1bB3Psyrd1wbEasb7Cc8iGhHibZgFK11fdX0moWiW3JHIrPgTaB49v3x9g4AlWbhs9GKWRpxhUxSY+qem2CQUY2CST7IN1LDE8p6tMPrFhWNuAmy0agDcmCdFmnH2j6FZOT+7shoZEw/Cm1lRLFrprOh+V9WT7F9EmRCJSlyxcYftVNJMCbDvUlLaM5Q9i1QpoWdlbAu1ZShvU7eHsGbXnkW/KPSacm99IrlfRgrB7uwB4fgwTGU4QIq4AODDtzDIzw50nlwnp2XcemcM+nZgT9yXn8A5FSQpg==</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

Ip
<latexit sha1_base64="YlOWI5FH9AGnad6O5MMdUXgHqVM=">AAAB8nicbVC7TsNAEFyHV0h4BChpLAISVWTTAF0kGuiChEmk2IrOl3Nyytk+3a0RkZXfgIICEC0fwTfQ8R98AJdHAQkjrTSa2dXuTigF1+g4X1ZhaXllda24XipvbG5tV3Z2b3WaKco8mopUtUKimeAJ85CjYC2pGIlDwZrh4GLsN++Y0jxNbnAoWRCTXsIjTgkayb/q+MjuMZO5HHUqVafmTGAvEndGqvXy9+MHADQ6lU+/m9IsZglSQbRuu47EICcKORVsVPIzzSShA9JjbUMTEjMd5JObR/aRUbp2lCpTCdoT9fdETmKth3FoOmOCfT3vjcX/vHaG0VmQ80RmyBI6XRRlwsbUHgdgd7liFMXQEEIVN7fatE8UoWhiKpkQ3PmXF4l3UjuvOddutX4IUxRhHw7gGFw4hTpcQgM8oCDhAZ7hxcqsJ+vVepu2FqzZzB78gfX+A3DElFA=</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

(a)
<latexit sha1_base64="rKRbFtVcEiTinU3/s9F9/z99Mng=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5pgQw4atSOxscToCQlcyN4yBxv29i67eybkwk+wsVBj6z+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjx61HGqGHosFrHqBFSj4BI9w43ATqKQRoHAdjC+mfntJ1Sax/LBTBL0IzqUPOSMGivdV+lFv1xxa+4cZJXUc1KBHK1++as3iFkaoTRMUK27dTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYZQX355lXiN2nXNvWtUmmd5GkU4gVOoQh0uoQm30AIPGAzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AOzOjP0=</latexit>

(a)
<latexit sha1_base64="rKRbFtVcEiTinU3/s9F9/z99Mng=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5pgQw4atSOxscToCQlcyN4yBxv29i67eybkwk+wsVBj6z+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjx61HGqGHosFrHqBFSj4BI9w43ATqKQRoHAdjC+mfntJ1Sax/LBTBL0IzqUPOSMGivdV+lFv1xxa+4cZJXUc1KBHK1++as3iFkaoTRMUK27dTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYZQX355lXiN2nXNvWtUmmd5GkU4gVOoQh0uoQm30AIPGAzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AOzOjP0=</latexit>

(b)
<latexit sha1_base64="odXfI+PK9WDJtizwrm495Lwom+M=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5pgQw4atSOxscToCQlcyN4yBxv29i67eybkwk+wsVBj6z+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjx61HGqGHosFrHqBFSj4BI9w43ATqKQRoHAdjC+mfntJ1Sax/LBTBL0IzqUPOSMGivdV4OLfrni1tw5yCqp56QCOVr98ldvELM0QmmYoFp3625i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg2hvvzyKvEateuae9eoNM/yNIpwAqdQhTpcQhNuoQUeMBjCM7zCmyOcF+fd+Vi0Fpx85hj+wPn8Ae5SjP4=</latexit>

(b)
<latexit sha1_base64="odXfI+PK9WDJtizwrm495Lwom+M=">AAAB6XicbVA9TwJBEJ3DL8Qv1NJmI5pgQw4atSOxscToCQlcyN4yBxv29i67eybkwk+wsVBj6z+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjx61HGqGHosFrHqBFSj4BI9w43ATqKQRoHAdjC+mfntJ1Sax/LBTBL0IzqUPOSMGivdV4OLfrni1tw5yCqp56QCOVr98ldvELM0QmmYoFp3625i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg2hvvzyKvEateuae9eoNM/yNIpwAqdQhTpcQhNuoQUeMBjCM7zCmyOcF+fd+Vi0Fpx85hj+wPn8Ae5SjP4=</latexit>

R3
<latexit sha1_base64="P1fXVCmEEBFuHaCHwreusltguLM=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVUJDMBEJRbGcgmt1EaV4zqtVceJbAepivoILAyAWHkIVh6AiY03YcS9DNDyS5Y+/f858jknSATXxnG+UG5ufmFxKb9cWFldW98obm7d6jhVlHk0FrGqB0QzwSXzDDeC1RPFSBQIVgt658O8dseU5rG8Mf2E+RHpSB5ySoy1rq9aR61iySk7I+FZcCdQOvv+eHsHgGqr+NlsxzSNmDRUEK0brpMYPyPKcCrYoNBMNUsI7ZEOa1iUJGLaz0ajDvC+ddo4jJV90uCR+7sjI5HW/SiwlRExXT2dDc3/skZqwhM/4zJJDZN0/FGYCmxiPNwbt7li1Ii+BUIVt7Ni2iWKUGOvU7BHcKdXngXvsHxadi7dUmUPxsrDDuzCAbhwDBW4gCp4QKED9/AIT0igB/SMXsalOTTp2YY/Qq8/51qQqA==</latexit>

R3
<latexit sha1_base64="P1fXVCmEEBFuHaCHwreusltguLM=">AAAB6XicbZC7TsMwFIaPy62UW4GRxaIgMVUJDMBEJRbGcgmt1EaV4zqtVceJbAepivoILAyAWHkIVh6AiY03YcS9DNDyS5Y+/f858jknSATXxnG+UG5ufmFxKb9cWFldW98obm7d6jhVlHk0FrGqB0QzwSXzDDeC1RPFSBQIVgt658O8dseU5rG8Mf2E+RHpSB5ySoy1rq9aR61iySk7I+FZcCdQOvv+eHsHgGqr+NlsxzSNmDRUEK0brpMYPyPKcCrYoNBMNUsI7ZEOa1iUJGLaz0ajDvC+ddo4jJV90uCR+7sjI5HW/SiwlRExXT2dDc3/skZqwhM/4zJJDZN0/FGYCmxiPNwbt7li1Ii+BUIVt7Ni2iWKUGOvU7BHcKdXngXvsHxadi7dUmUPxsrDDuzCAbhwDBW4gCp4QKED9/AIT0igB/SMXsalOTTp2YY/Qq8/51qQqA==</latexit>

R4
<latexit sha1_base64="TxqNpoIr52CRriCYyW5Uk1RULHw=">AAAB6XicbZC7SgNBFIbPxFuMt6ilzWAUrMKuCGplwMYyXtYEkiXMTmaTIbOzy8ysEJY8go2Fiq0PYesDWNn5JpZOLoUm/jDw8f/nMOecIBFcG8f5Qrm5+YXFpfxyYWV1bX2juLl1q+NUUebRWMSqHhDNBJfMM9wIVk8UI1EgWC3onQ/z2h1TmsfyxvQT5kekI3nIKTHWur5qHbWKJafsjIRnwZ1A6ez74+0dAKqt4mezHdM0YtJQQbRuuE5i/Iwow6lgg0Iz1SwhtEc6rGFRkohpPxuNOsD71mnjMFb2SYNH7u+OjERa96PAVkbEdPV0NjT/yxqpCU/8jMskNUzS8UdhKrCJ8XBv3OaKUSP6FghV3M6KaZcoQo29TsEewZ1eeRa8w/Jp2bl0S5U9GCsPO7ALB+DCMVTgAqrgAYUO3MMjPCGBHtAzehmX5tCkZxv+CL3+AOjdkKk=</latexit>

R4
<latexit sha1_base64="TxqNpoIr52CRriCYyW5Uk1RULHw=">AAAB6XicbZC7SgNBFIbPxFuMt6ilzWAUrMKuCGplwMYyXtYEkiXMTmaTIbOzy8ysEJY8go2Fiq0PYesDWNn5JpZOLoUm/jDw8f/nMOecIBFcG8f5Qrm5+YXFpfxyYWV1bX2juLl1q+NUUebRWMSqHhDNBJfMM9wIVk8UI1EgWC3onQ/z2h1TmsfyxvQT5kekI3nIKTHWur5qHbWKJafsjIRnwZ1A6ez74+0dAKqt4mezHdM0YtJQQbRuuE5i/Iwow6lgg0Iz1SwhtEc6rGFRkohpPxuNOsD71mnjMFb2SYNH7u+OjERa96PAVkbEdPV0NjT/yxqpCU/8jMskNUzS8UdhKrCJ8XBv3OaKUSP6FghV3M6KaZcoQo29TsEewZ1eeRa8w/Jp2bl0S5U9GCsPO7ALB+DCMVTgAqrgAYUO3MMjPCGBHtAzehmX5tCkZxv+CL3+AOjdkKk=</latexit>

Vx
<latexit sha1_base64="WdG/Vf6PjF6LkLEYcUzUQ6qtVi4=">AAACEHicbVDLSgMxFL1T3/VVdelmsAoupMwUfK0U3LhUcFphZiiZNK2hmQfJHWkZ+hWCW/0LcaVuxR/wL1y6NDPtwteFkMM5JznJCRLBFVrWu1GamJyanpmdK88vLC4tV1ZWGypOJWUOjUUsLwOimOARc5CjYJeJZCQMBGsGvZNcb14zqXgcXeAgYX5IuhHvcEpQU16j5SHrY5pk/WGrUrVqVjGmVdu17MO9HIwZewyqR59vD88AcNaqfHjtmKYhi5AKopRrWwn6GZHIqWDDspcqlhDaI13mahiRkCk/K9489IrNld3Az4qMnTyyvlPgobml/W2zE0u9IjQL8/f7MhIqNQgD7QwJXqnfWk7+p7kpdg78jEdJiiyio6BOKkyMzbwes80loygGGhAquf6JSa+IJBR1iWVdkf27kL/AqdcOa9a5XT3ehNHMwjpswDbYsA/HcApn4ACFBG7hDu6NG+PReDJeRtaSMT6zBj/GeP0CwNieoQ==</latexit>

Vx
<latexit sha1_base64="WdG/Vf6PjF6LkLEYcUzUQ6qtVi4=">AAACEHicbVDLSgMxFL1T3/VVdelmsAoupMwUfK0U3LhUcFphZiiZNK2hmQfJHWkZ+hWCW/0LcaVuxR/wL1y6NDPtwteFkMM5JznJCRLBFVrWu1GamJyanpmdK88vLC4tV1ZWGypOJWUOjUUsLwOimOARc5CjYJeJZCQMBGsGvZNcb14zqXgcXeAgYX5IuhHvcEpQU16j5SHrY5pk/WGrUrVqVjGmVdu17MO9HIwZewyqR59vD88AcNaqfHjtmKYhi5AKopRrWwn6GZHIqWDDspcqlhDaI13mahiRkCk/K9489IrNld3Az4qMnTyyvlPgobml/W2zE0u9IjQL8/f7MhIqNQgD7QwJXqnfWk7+p7kpdg78jEdJiiyio6BOKkyMzbwes80loygGGhAquf6JSa+IJBR1iWVdkf27kL/AqdcOa9a5XT3ehNHMwjpswDbYsA/HcApn4ACFBG7hDu6NG+PReDJeRtaSMT6zBj/GeP0CwNieoQ==</latexit>

Vin
<latexit sha1_base64="ev4bYR1DNhR+6WqPdNccTc4wCBk=">AAAB83icbVBNS8NAEJ34WeNX1aOXYBU8lcSLeiuI4LGCaQttKJvtpl262cTdSbGE/g4vHqp49c9484d4d/tx0NYHA4/3ZpiZF6aCa3TdL2tldW19Y7OwZW/v7O7tFw8OazrJFGU+TUSiGiHRTHDJfOQoWCNVjMShYPWwfzPx6wOmNE/kAw5TFsSkK3nEKUEjBbV2C9kTZmnO5ahdLLlldwpnmXhzUqrYt99jAKi2i5+tTkKzmEmkgmjd9NwUg5wo5FSwkd3KNEsJ7ZMuaxoqScx0kE+PHjlnRuk4UaJMSXSm6u+JnMRaD+PQdMYEe3rRm4j/ec0Mo6vA/JNmyCSdLYoy4WDiTBJwOlwximJoCKGKm1sd2iOKUDQ52SYEb/HlZeJflK/L7r1XqpzCDAU4hhM4Bw8uoQJ3UAUfKDzCM4zh1RpYL9ab9T5rXbHmM0fwB9bHD7DtlFw=</latexit>

Vin
<latexit sha1_base64="ev4bYR1DNhR+6WqPdNccTc4wCBk=">AAAB83icbVBNS8NAEJ34WeNX1aOXYBU8lcSLeiuI4LGCaQttKJvtpl262cTdSbGE/g4vHqp49c9484d4d/tx0NYHA4/3ZpiZF6aCa3TdL2tldW19Y7OwZW/v7O7tFw8OazrJFGU+TUSiGiHRTHDJfOQoWCNVjMShYPWwfzPx6wOmNE/kAw5TFsSkK3nEKUEjBbV2C9kTZmnO5ahdLLlldwpnmXhzUqrYt99jAKi2i5+tTkKzmEmkgmjd9NwUg5wo5FSwkd3KNEsJ7ZMuaxoqScx0kE+PHjlnRuk4UaJMSXSm6u+JnMRaD+PQdMYEe3rRm4j/ec0Mo6vA/JNmyCSdLYoy4WDiTBJwOlwximJoCKGKm1sd2iOKUDQ52SYEb/HlZeJflK/L7r1XqpzCDAU4hhM4Bw8uoQJ3UAUfKDzCM4zh1RpYL9ab9T5rXbHmM0fwB9bHD7DtlFw=</latexit>

220k
<latexit sha1_base64="pYgkPvsbXLcepL0KlLx9SLtE0q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lyqd4KXjxWMLbQhrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8KOVMG9f9diobm1vbO9Xd2t7+weFR/fjkUSeZIjQgCU9UL8KaciZpYJjhtJcqikXEaTea3hZ+94kqzRL5YGYpDQUeSxYzgk0h+b47HdYbbtNdAK0TryQNKNEZ1r8Go4RkgkpDONa677mpCXOsDCOczmuDTNMUkyke076lEguqw3xx6xxdWmWE4kTZkgYt1N8TORZaz0RkOwU2E73qFeJ/Xj8z8XWYM5lmhkqyXBRnHJkEFY+jEVOUGD6zBBPF7K2ITLDCxNh4ajYEb/XldRL4zZume+832hdlGlU4g3O4Ag9a0IY76EAABCbwDK/w5gjnxXl3PpatFaecOYU/cD5/AIakjVQ=</latexit>

220k
<latexit sha1_base64="pYgkPvsbXLcepL0KlLx9SLtE0q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lyqd4KXjxWMLbQhrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8KOVMG9f9diobm1vbO9Xd2t7+weFR/fjkUSeZIjQgCU9UL8KaciZpYJjhtJcqikXEaTea3hZ+94kqzRL5YGYpDQUeSxYzgk0h+b47HdYbbtNdAK0TryQNKNEZ1r8Go4RkgkpDONa677mpCXOsDCOczmuDTNMUkyke076lEguqw3xx6xxdWmWE4kTZkgYt1N8TORZaz0RkOwU2E73qFeJ/Xj8z8XWYM5lmhkqyXBRnHJkEFY+jEVOUGD6zBBPF7K2ITLDCxNh4ajYEb/XldRL4zZume+832hdlGlU4g3O4Ag9a0IY76EAABCbwDK/w5gjnxXl3PpatFaecOYU/cD5/AIakjVQ=</latexit>

R1
<latexit sha1_base64="iK/Jo8FMAmxTGVn7zXaURPK/FlA=">AAAB6XicbZC7TgMxEEVneYbwClDSWAQkqmiXBqiIREMZHksiJavI6ziJFa93Zc8iRat8Ag0FIFo+gpYPoKLjTyhxHgUkXMnS0b0z8syEiRQGXffLmZtfWFxazq3kV9fWNzYLW9u3Jk414z6LZaxrITVcCsV9FCh5LdGcRqHk1bB3Psyrd1wbEasb7Cc8iGhHibZgFK11fdX0moWiW3JHIrPgTaB49v3x9g4AlWbhs9GKWRpxhUxSY+qem2CQUY2CST7IN1LDE8p6tMPrFhWNuAmy0agDcmCdFmnH2j6FZOT+7shoZEw/Cm1lRLFrprOh+V9WT7F9EmRCJSlyxcYftVNJMCbDvUlLaM5Q9i1QpoWdlbAu1ZShvU7eHsGbXnkW/KPSacm99IrlfRgrB7uwB4fgwTGU4QIq4AODDtzDIzw50nlwnp2XcemcM+nZgT9yXn8A5FSQpg==</latexit>

R1
<latexit sha1_base64="iK/Jo8FMAmxTGVn7zXaURPK/FlA=">AAAB6XicbZC7TgMxEEVneYbwClDSWAQkqmiXBqiIREMZHksiJavI6ziJFa93Zc8iRat8Ag0FIFo+gpYPoKLjTyhxHgUkXMnS0b0z8syEiRQGXffLmZtfWFxazq3kV9fWNzYLW9u3Jk414z6LZaxrITVcCsV9FCh5LdGcRqHk1bB3Psyrd1wbEasb7Cc8iGhHibZgFK11fdX0moWiW3JHIrPgTaB49v3x9g4AlWbhs9GKWRpxhUxSY+qem2CQUY2CST7IN1LDE8p6tMPrFhWNuAmy0agDcmCdFmnH2j6FZOT+7shoZEw/Cm1lRLFrprOh+V9WT7F9EmRCJSlyxcYftVNJMCbDvUlLaM5Q9i1QpoWdlbAu1ZShvU7eHsGbXnkW/KPSacm99IrlfRgrB7uwB4fgwTGU4QIq4AODDtzDIzw50nlwnp2XcemcM+nZgT9yXn8A5FSQpg==</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

I1
<latexit sha1_base64="jeaHUEbWDyT8D5FMClCUiiUiEUw=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GYyCVdi1USsDNtpFNCaQLGF2cjYZMju7zMwKYckj2Fio2PoQtj6AlZ1vYunkUmjiDwMf/38Oc84JEsG1cd0vZ25+YXFpObeSX11b39gsbG3f6jhVDKssFrGqB1Sj4BKrhhuB9UQhjQKBtaB3Psxrd6g0j+WN6SfoR7QjecgZNda6vmx5rULRLbkjkVnwJlA8+/54eweASqvw2WzHLI1QGiao1g3PTYyfUWU4EzjIN1ONCWU92sGGRUkj1H42GnVADqzTJmGs7JOGjNzfHRmNtO5Hga2MqOnq6Wxo/pc1UhOe+BmXSWpQsvFHYSqIiclwb9LmCpkRfQuUKW5nJaxLFWXGXidvj+BNrzwL1aPSacm98orlfRgrB7uwB4fgwTGU4QIqUAUGHbiHR3hyhPPgPDsv49I5Z9KzA3/kvP4A1qeQnQ==</latexit>

If
<latexit sha1_base64="6PMKXcz3+jCJSaQodV+ZtFig5Wo=">AAAB8nicbVA9SwNBEJ2LXzFGjVraHEbBKtzZqF3ARrsIngkkR9jb7CVL9vaW3TkxHPkbNhYqtv4aOzt/ipuPQhMfDDzem2FmXqQEN+h5X05hZXVtfaO4Wdoqb+/sVvb2702aacoCmopUtyJimOCSBchRsJbSjCSRYM1oeDXxmw9MG57KOxwpFiakL3nMKUErdW66HWSPmKk8HncrVa/mTeEuE39OqvVyrL4BoNGtfHZ6Kc0SJpEKYkzb9xSGOdHIqWDjUiczTBE6JH3WtlSShJkwn948dk+s0nPjVNuS6E7V3xM5SYwZJZHtTAgOzKI3Ef/z2hnGF2HOpcqQSTpbFGfCxdSdBOD2uGYUxcgSQjW3t7p0QDShaGMq2RD8xZeXSXBWu6x5t361fgwzFOEQjuAUfDiHOlxDAwKgoOAJXuDVyZxn5815n7UWnPnMAfyB8/EDmgGTsg==</latexit>

If
<latexit sha1_base64="6PMKXcz3+jCJSaQodV+ZtFig5Wo=">AAAB8nicbVA9SwNBEJ2LXzFGjVraHEbBKtzZqF3ARrsIngkkR9jb7CVL9vaW3TkxHPkbNhYqtv4aOzt/ipuPQhMfDDzem2FmXqQEN+h5X05hZXVtfaO4Wdoqb+/sVvb2702aacoCmopUtyJimOCSBchRsJbSjCSRYM1oeDXxmw9MG57KOxwpFiakL3nMKUErdW66HWSPmKk8HncrVa/mTeEuE39OqvVyrL4BoNGtfHZ6Kc0SJpEKYkzb9xSGOdHIqWDjUiczTBE6JH3WtlSShJkwn948dk+s0nPjVNuS6E7V3xM5SYwZJZHtTAgOzKI3Ef/z2hnGF2HOpcqQSTpbFGfCxdSdBOD2uGYUxcgSQjW3t7p0QDShaGMq2RD8xZeXSXBWu6x5t361fgwzFOEQjuAUfDiHOlxDAwKgoOAJXuDVyZxn5815n7UWnPnMAfyB8/EDmgGTsg==</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

IA
<latexit sha1_base64="6Qp5sjleAYszPHXLp0VH7Gsuvlw=">AAAB8nicbVC7TsNAEFzzDAmPACXNiYBEFdk0QBdEA12QMIkUW9H5ck5OOT90t0ZEVho+goYCEC0fwTdQwd9weRSQMNJKo5ld7e4EqRQabfvbWlhcWl5ZLawVS+sbm1vl7Z1bnWSKcZclMlHNgGouRcxdFCh5M1WcRoHkjaB/MfIbd1xpkcQ3OEi5H9FuLELBKBrJu2p7yO8xS/PzYbtcsav2GGSeOFNSqZUevj4AoN4uf3qdhGURj5FJqnXLsVP0c6pQMMmHRS/TPKWsT7u8ZWhMI679fHzzkBwapUPCRJmKkYzV3xM5jbQeRIHpjCj29Kw3Ev/zWhmGp34u4jRDHrPJojCTBBMyCoB0hOIM5cAQypQwtxLWo4oyNDEVTQjO7MvzxD2unlXta6dSO4AJCrAH+3AEDpxADS6hDi4wSOERnuHFyqwn69V6m7QuWNOZXfgD6/0H5y+T8A==</latexit>

VDC
<latexit sha1_base64="KhKSZA8jAAt2J81rjBB7iQdrgcY=">AAAB83icbVA9TwJBEJ3DLwQ/UEubi2hiRe5s1I4EC0tMPCCBC9lbFtiwt3fuzhHJhcY/YWOhxtb/4G+w0n/j8lEo+JJJXt6bycy8IBZco+N8W5mV1bX1jexmLr+1vbNb2Nuv6ShRlHk0EpFqBEQzwSXzkKNgjVgxEgaC1YNBZeLXh0xpHslbHMXMD0lP8i6nBI3k19otZPeYxOlVZdwuFJ2SM4W9TNw5KZbzD18fAFBtFz5bnYgmIZNIBdG66Tox+ilRyKlg41wr0SwmdEB6rGmoJCHTfjo9emyfGKVjdyNlSqI9VX9PpCTUehQGpjMk2NeL3kT8z2sm2L3wUy7jBJmks0XdRNgY2ZME7A5XjKIYGUKo4uZWm/aJIhRNTjkTgrv48jLxzkqXJefGLZaPYYYsHMIRnIIL51CGa6iCBxTu4BGe4cUaWk/Wq/U2a81Y85kD+APr/QeO/5RN</latexit>

VDC
<latexit sha1_base64="KhKSZA8jAAt2J81rjBB7iQdrgcY=">AAAB83icbVA9TwJBEJ3DLwQ/UEubi2hiRe5s1I4EC0tMPCCBC9lbFtiwt3fuzhHJhcY/YWOhxtb/4G+w0n/j8lEo+JJJXt6bycy8IBZco+N8W5mV1bX1jexmLr+1vbNb2Nuv6ShRlHk0EpFqBEQzwSXzkKNgjVgxEgaC1YNBZeLXh0xpHslbHMXMD0lP8i6nBI3k19otZPeYxOlVZdwuFJ2SM4W9TNw5KZbzD18fAFBtFz5bnYgmIZNIBdG66Tox+ilRyKlg41wr0SwmdEB6rGmoJCHTfjo9emyfGKVjdyNlSqI9VX9PpCTUehQGpjMk2NeL3kT8z2sm2L3wUy7jBJmks0XdRNgY2ZME7A5XjKIYGUKo4uZWm/aJIhRNTjkTgrv48jLxzkqXJefGLZaPYYYsHMIRnIIL51CGa6iCBxTu4BGe4cUaWk/Wq/U2a81Y85kD+APr/QeO/5RN</latexit>

VDP,1
<latexit sha1_base64="F7X669EYfYydAUH/2cBdxu8wwYQ=">AAAB93icbVC7TsNAEFyHVwiPGBAVjUVAokCRTQN0kaCgDBJOIiWWdb5cklPOD92tEcFKDf9AQwGIlj/gG+j4Gy6PAhJGWmk0s6vdnSARXKFtfxu5hcWl5ZX8amFtfWOzaG5t11ScSspcGotYNgKimOARc5GjYI1EMhIGgtWD/sXIr98yqXgc3eAgYV5IuhHvcEpQS75ZrPktZHeYJtll9dgZ+mbJLttjWPPEmZJSZffx4RMAqr751WrHNA1ZhFQQpZqOnaCXEYmcCjYstFLFEkL7pMuamkYkZMrLxocPrUOttK1OLHVFaI3V3xMZCZUahIHuDAn21Kw3Ev/zmil2zryMR0mKLKKTRZ1UWBhboxSsNpeMohhoQqjk+laL9ogkFHVWBR2CM/vyPHFPyudl+9opVQ5ggjzswT4cgQOnUIErqIILFFJ4ghd4Ne6NZ+PNeJ+05ozpzA78gfHxA6PGlLs=</latexit>

VDP,1
<latexit sha1_base64="F7X669EYfYydAUH/2cBdxu8wwYQ=">AAAB93icbVC7TsNAEFyHVwiPGBAVjUVAokCRTQN0kaCgDBJOIiWWdb5cklPOD92tEcFKDf9AQwGIlj/gG+j4Gy6PAhJGWmk0s6vdnSARXKFtfxu5hcWl5ZX8amFtfWOzaG5t11ScSspcGotYNgKimOARc5GjYI1EMhIGgtWD/sXIr98yqXgc3eAgYV5IuhHvcEpQS75ZrPktZHeYJtll9dgZ+mbJLttjWPPEmZJSZffx4RMAqr751WrHNA1ZhFQQpZqOnaCXEYmcCjYstFLFEkL7pMuamkYkZMrLxocPrUOttK1OLHVFaI3V3xMZCZUahIHuDAn21Kw3Ev/zmil2zryMR0mKLKKTRZ1UWBhboxSsNpeMohhoQqjk+laL9ogkFHVWBR2CM/vyPHFPyudl+9opVQ5ggjzswT4cgQOnUIErqIILFFJ4ghd4Ne6NZ+PNeJ+05ozpzA78gfHxA6PGlLs=</latexit>

VDP,2
<latexit sha1_base64="jnwwQqe2tWSzZKcjyo+zoyLY3yo=">AAAB93icbVC7TsNAEFyHVwiPGBAVjUVAokCRnQboIkFBGSScREos63y5JKecH7pbI4KVGv6BhgIQLX/AN9DxN1weBQRGWmk0s6vdnSARXKFtfxm5hcWl5ZX8amFtfWOzaG5t11WcSspcGotYNgOimOARc5GjYM1EMhIGgjWCwfnYb9wwqXgcXeMwYV5IehHvckpQS75ZrPttZLeYJtlF7bgy8s2SXbYnsP4SZ0ZK1d2H+w8AqPnmZ7sT0zRkEVJBlGo5doJeRiRyKtio0E4VSwgdkB5raRqRkCkvmxw+sg610rG6sdQVoTVRf05kJFRqGAa6MyTYV/PeWPzPa6XYPfUyHiUpsohOF3VTYWFsjVOwOlwyimKoCaGS61st2ieSUNRZFXQIzvzLf4lbKZ+V7SunVD2AKfKwB/twBA6cQBUuoQYuUEjhEZ7hxbgznoxX423amjNmMzvwC8b7N6VKlLw=</latexit>

VDP,2
<latexit sha1_base64="jnwwQqe2tWSzZKcjyo+zoyLY3yo=">AAAB93icbVC7TsNAEFyHVwiPGBAVjUVAokCRnQboIkFBGSScREos63y5JKecH7pbI4KVGv6BhgIQLX/AN9DxN1weBQRGWmk0s6vdnSARXKFtfxm5hcWl5ZX8amFtfWOzaG5t11WcSspcGotYNgOimOARc5GjYM1EMhIGgjWCwfnYb9wwqXgcXeMwYV5IehHvckpQS75ZrPttZLeYJtlF7bgy8s2SXbYnsP4SZ0ZK1d2H+w8AqPnmZ7sT0zRkEVJBlGo5doJeRiRyKtio0E4VSwgdkB5raRqRkCkvmxw+sg610rG6sdQVoTVRf05kJFRqGAa6MyTYV/PeWPzPa6XYPfUyHiUpsohOF3VTYWFsjVOwOlwyimKoCaGS61st2ieSUNRZFXQIzvzLf4lbKZ+V7SunVD2AKfKwB/twBA6cQBUuoQYuUEjhEZ7hxbgznoxX423amjNmMzvwC8b7N6VKlLw=</latexit>

16.5k
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Figure 3: Circuit diagram for (a) the large signal model of a single
stage of the Serge TWS and (b)–(c) the two subcircuits at the neg-
ative and positive terminals of the LM3900 amplifier, respectively.
Blue and red diodes represent BJT base–emitter junction diodes
and 1N4148 silicon diodes, respectively.

3.1. Input Section

We begin our analysis by computing the value of currents Ip and
If. By applying Kirchhoff’s current law (KCL) at the node labeled
VDP in Fig. 3(a) we can establish that

I1 = Ip � If � IA. (1)

Next, we make the assumption that when either of the two
diodes in the input section conducts, the contribution of the other
one to the total value of I1 will be close to zero. Therefore, we can
analyze the two subcircuits shown in Figs. 3(b) and 3(c) indepen-
dently. This approach will allow us to explicitly calculate Ip and
If separately at each input sample without introducing discontinu-
ities or significant errors in the model. As discussed in the previous
section, we assume that the internal biasing in the Norton amplifier
together with the application of negative feedback ensures that the
diode inside the negative terminal is always forward-biased. This
means that we can treat it as a fixed voltage node that we define to
be clamped at VDC = 516 mV based on SPICE simulations.

For the subcircuit in Fig. 3(b), we apply Kirchhoff’s voltage

Table 1: Component/parameter values.

Name Value Name Value
R1 220 k� Is,2 2.52 nA
R2 1.5 M� �1 1
R3 16.5 k� �2 1.752
R4 3.5 k� VT 25.864 mV
R5 1 k� VDC 516 mV
Is,1 10�14 A Ibias 30 nA

law (KVL) and KCL to establish that

Vin = R1I1 + VDP,1 (2)
I1 = IP � IA, (3)

where Ip can be written using Shockley’s diode equation as

Ip = Is,1

�
exp

�
VDP,1

�1VT

�
� 1

�
, (4)

where parameters Is,1, �1 and VT represent the reverse bias satura-
tion current, ideality factor and thermal voltage (at room tempera-
ture) of an ideal base–emitter p–n junction, respectively. All of the
parameters required to implement the proposed model are given in
Table 1. The tabulated semiconductor parameters were obtained
from the LM3900 datasheet [22] and SPICE component models.
By combining (2) and (3) with (4), we arrive at the implicit rela-
tionship

VDP,1 = Vin + R1IA � R1Is,1

�
exp

�
VDP,1

�1VT

�
� 1

�
, (5)

which has the explicit solution

VDP,1 = Vin + R1IA + R1Is,1

� �1VTW
�

R1Is,1

�1VT
exp

�
Vin + R1IA + R1Is,1

�1VT

��
,

(6)

where W ( ) is the Lambert-W function. The use of the Lambert-W
function to solve the implicit current-voltage relationship of diodes
was first proposed in [30], and extended in [31] and [32].

This same procedure can be followed for the subcircuit in
Fig. 3(c), which gives us the explicit formulation

VDP,2 = Vin + R1IA � R1Is,2

+ �2VTW
�

R1Is,2

�2VT
exp

�
VDC + R1Is,2 � Vin � R1IA

�2VT

��
,

(7)

where Is,2 and �2 are the reverse bias saturation current and ideality
factor of the 1N4148 silicon diode, respectively. Once the value of
VDP,2 is known, the current If can be evaluated as

If = Is,2

�
exp

�
VDC � VDP,2

�2VT

�
� 1

�
. (8)

Figure 4 shows the value of currents Ip and If computed using
(4) and (8), respectively. Both currents are plotted against mea-
surements obtained from a SPICE simulation (gray lines) of the
large-signal model in Fig. 3(a). These results indicate our previ-
ous assumptions do not alter the overall general behavior of the
model.
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Figure 4: Value of Ip and If as a function of Vin computed using the
proposed model and plotted against SPICE measurements (light
gray lines).

3.2. Feedback Section

Having computed currents Ip and If we can analyze the feedback
section of the circuit and derive a closed-form expression for Vout.
As before, we apply KVL and KCL at the node labeled VDC to
derive the relationships

Vout = R2I2 + VDC (9)

I2 = If + Ip + Ibias � IB � I3, (10)

where Ibias = 30 nA [22] and

I3 = Is,2

�
exp

�
Vx � VDC

�2VT

�
� 1

�
. (11)

Here, Vx (highlighted in green in Fig. 3(a)) represents the voltage
at the wiper node of the potentiometer in Fig. 2. Combining (11)
with (9) and (10) gives us

Vout = VDC + R2IG � R2Is,2

�
exp

�
Vx � VDC

�2VT

�
� 1

�
, (12)

where the substitution IG = (If + Ip + Ibias � IB) has been used
for clarity. Similarly, applying KVL and KCL at Vx we arrive at
the expression

Vout = R3Is,2

�
exp

�
Vx � VDC

�2VT

�
� 1

�
+ GVx, (13)

where G = (R3/R4 + 1). If we then equate (12) and (13), and
solve for Vx, we arrive at the implicit expression for the wiper volt-
age

Vx =
VDC + R2IG

G
� R2 + R3

G

�
exp

�
Vx � VDC

�2VT

�
� 1

�
,

(14)
which can be solved using the Lambert-W function as

Vx =
VDC + R2IG + (R2 + R3)Is,2

G
� �2VTW

�
(R2 + R3)Is,2

G�2VT

� exp

�
�VDC

�2VT

�
exp

�
VDC + R2IG + (R2 + R3)Is,2

G�2VT

� �
.

(15)

This expression can be used to compute the value of Vx which can
then be used to compute the value of Vout by evaluating either (12)
or (13).

3.3. Output Clipping

As explained in Section 2, the LM3900 operates on a single power
supply and is unable to generate voltages below approximately
90 mV. Therefore, this behavior must be accounted for in the pro-
posed model. For the sake of simplicity, we propose an ad hoc ap-
proach that involves emulating the clipping behavior with a piece-
wise nonlinear function. We introduce a new voltage variable �Vout
which represents the value of the output voltage after clipping. The
expression for the proposed clipper can be written as

�Vout =

�
Vclip Vout � Vclip

Vclip

�
1 + ( Vout

Vclip
� 1)2 otherwise

(16)

where Vclip = 90 mV.

3.4. Model Summary

Having derived all the necessary expressions, in this section we
provide a summary of the steps required to emulate the circuit in
the digital domain. Since the circuit is static, we can compute the
output directly by assuming a discrete-domain input signal Vin[n],
where n is the sample index. The steps required to compute �Vout[n]
are:

1. Evaluate voltages VDP,1[n] and VDP,2[n] using (6) and (7),
respectively.

2. Compute currents Ip[n] and If[n] using (4) and (8).
3. Evaluate voltage Vx[n] using (15).
4. Evaluate Vout[n] using either (12) or (13).
5. Apply the clipping function (16).
Figures 5(a) and 5(b) show the input–output relationship of

the circuit for different values of IA evaluated using the proposed
model and with SPICE, respectively. This comparison indicates
a good match between the proposed model and its corresponding
SPICE simulation, with a maximum difference of approximately
22 mV, as shown in Fig. 5(c). As shown in these figures, the system
exhibits a highly nonlinear behavior which resembles that of a soft
clipper cascaded with a full-wave rectifier. Adjusting the value of
IA changes the x-axis symmetry of the circuit.

Similarly, the plots in Figures (6)(a) and (6)(b) show the effect
of increasing control current IB from 0 to 3 µA. This parameter ap-
pears to “open” or “widen” the shape of the nonlinearity. The clip-
ping behavior of the LM3900 is evident in these plots. Once again,
the proposed model shows a good match with its corresponding
SPICE simulation, with a maximum difference of approximately
70 mV (cf. Fig. (6)(c)). This increased difference can be attributed
to the ad hoc modeling of the clipping stage.

Finally, the curves in Figures 7(a) and 7(b) shows the mea-
sured input–output relationship of a real Serge TWS built accord-
ing to the schematic given in Fig. 2. The behavior of the circuit
was measured for different values of control voltages VC1 and VC2.
When compared with Figs. 5(b) and 6(b), these results further
demonstrate the proposed model preserves the salient character-
istics of the circuit.

3.5. AC Coupling

The plots in Figures 5 and 6 show that the output of the Serge
TWS will exhibit a static DC offset. The original circuit solved
this by providing an additional AC-coupled output [29]. This is
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SPICE

Model

Figure 5: Input–output relationship of a single stage in the Serge
TWS for values of IA between 0–3 µA (IB = 0 A) simulated using
(a) SPICE and (b) the proposed model, and (c) the absolute value
of the difference between both sets of curves.

quite typical in Serge modules as they were designed to process
not only audio signals but also control voltages, which must be
DC-coupled. In the digital domain, an AC-coupled version of the
output can be computed, for instance, by using the first-order DC
blocker proposed by Pekonen and Välimäki in [33]. The z-domain
transfer function of this filter is defined as

HDC(z) =
1 + p

2
1 � z�1

1 � pz�1
, (17)

where p = tan(�/4 � �fc/Fs), Fs is the sampling rate of the
system and fc is the cut-off frequency of the filter, set at 2 Hz in
this case.

4. RESULTS

In this section we examine the time- and frequency-domain behav-
ior of the circuit when driven by sawtooth waveforms, as recom-
mended in the original user manual [5]. Figure 8 shows the output
of a single stage of the Serge TWS when driven by an 80-Hz saw-
tooth waveform with peak amplitude of 1 V for different values of
IA when IB = 0. The resulting waveforms have been stacked on
top of each other to help visualize the evolution of the output sig-
nal as a function of IA. To minimize the effects of aliasing, the
original input waveform (shown in blue at the top of the plot) was
synthesized using the first-order differentiated parabolic waveform
(DPW) algorithm at a sampling rate Fs = 352.8 kHz (i.e. 8-times
oversampling w.r.t. standard audio rate) [13]. This sample rate is
used throughout the rest of this study. From this figure we can

SPICE

Model

Figure 6: Input–output relationship of the system for values of IB
between 0–3 µA (IA = 0 A) simulated using (a) the digital model
and (b) SPICE, and (c) the absolute value of their difference.

observe that the circuit does indeed transform the input waveform
into something that resembles a sine wave. The best results are
obtained when IA � 1.5µA, as the circuit exhibits near-perfect
even symmetry (cf. Fig. 5).

This case is presented in greater detail in Figs. 9(c)–(d) which

Figure 7: Measured analog input–output behavior of the circuit in
Fig. 2 for different values of VC1 and VC2.
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Figure 8: Output of the proposed model when driven by an 80-Hz
sawtooth waveform for different values of IA (IB = 0).

show the waveform and magnitude spectrum of a 200-Hz sawtooth
waveform with peak amplitude of 1 V processed by the model for
IA = 1.5 µA. These results show that, as originally advertised,
the circuit can indeed approximate a sinusoidal waveform when
driven by a 1-V sawtooth signal. Although the resulting waveform
shows a strong presence of the second harmonic, nearly all other
partials have been significantly attenuated. However, this behavior
is heavily dependent on the level of the input signal. Figures 9(e)–
(f) show the result of driving the proposed model with a 2.5-V
sawtooth waveform. In this case the resulting waveform no longer
resembles a sine wave, as it exhibits considerably high harmonic
content. As a reference, Figs. 9(a)–(b) present the waveform and
magnitude spectrum of the 200-Hz sawtooth input.

Next, we consider the effect of control current IB on the out-
put. Figure 10 shows the output of the Serge TWS when driven

Figure 9: Waveform and magnitude spectrum of (a)–(b) a 200-Hz
sawtooth, (c)–(d) a 1-V and (e)–(f) a 2.5-V sawtooth processed by
the proposed model. Parameters IA = 1.5 µA and IB = 0 A.

Figure 10: Output of the proposed model when driven by an 80-Hz
sawtooth waveform for different values of IB (IA = 0).

by a 80-Hz sawtooth waveform with peak amplitude of 1 V for
different values of IB when IA = 0. As shown in these plots,
increasing the value of IB increases the amount of clipping intro-
duced by the circuit. These results go in accordance with the the
input–output relationship of the model (cf. Fig 6). Lastly, Fig. 11
shows the recorded analog response of the circuit when driven by
an 80-Hz sawtooth signal under different settings. These results
further validate the accuracy of the proposed model, as they match
the waveforms depicted in Figs. 8–9. The measured waveforms
were normalized during the recording process.

We observe the frequency domain behavior of the system by
considering the spectrograms in Figs. 12 and 13. The first spectro-
gram shows the effect of varying control current IA linearly for a
static 500-Hz sawtooth input (peak amplitude of 1 V). We can once
again observe the region of values of IA for which the waveshaper
approximates a sinusoidal output. Overall, this behavior contrasts

Figure 11: Measured analog time-domain behavior of a single
stage in the Serge TWS when driven by an 80-Hz analog sawtooth
waveform for different values of VC1 and VC2 (cf. Fig. 2).
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Figure 12: Magnitude response of a single stage in the Serge TWS
when driven by a 1-V 500-Hz sawtooth waveform for values of IA
between 0–3 µA and IB = 0 A.

that of other Serge circuits, such as the middle section of the VCM
which is designed to expand the frequency content of sinusoidal
waveforms [4]. The second spectrogram shows the effect of mod-
ulating IB for a static value of IA = 2 µA. This value was chosen
as it displayed interesting and complex harmonic patterns.

Finally, we briefly consider what happens when the three iden-
tical waveshapers in the Serge TWS are connected in series. This
form of usage of the circuit is so popular that some re-issues of
the module (e.g. the Random*Source Serge Triple+ Waveshaper8)
even feature integrated switches to link the stages internally. Fig-
ure 14 shows the output waveforms that result from processing
an 80-Hz sawtooth waveform (peak amplitude 2.5 V) using three
stages in cascade. Control parameters IA and IB where kept con-
stant between stages. The DC blocker (17) was used in between
each stage. As shown in these plots, the cascaded configuration no
longer operates as originally intended. Nevertheless, it can be used
to produce the complex waveforms that characterize West Coast
synthesis.

Overall, the sonic possibilities offered by the Serge TWS are
quite vast. By manipulating all free input parameters, i.e. in-
put level and control currents, different timbral effects can be
achieved. When all three stages are cascaded, the number of com-
binations increases even further, as the parameters of each stage
can be modulated independently. Sound articulation and timbral
variety are then achieved by modulating the control currents in
real-time. It should also be noted that the use of the circuit is not
restricted to sawtooth signals. It can be used to process virtually
any input waveform regardless of its harmonic nature. This makes
the Serge TWS an extremely powerful and versatile synthesis tool.

5. CONCLUSIONS

In this work we examined the underlying structure of the Serge
TWS module. We introduced Norton amplifiers and discussed
the use of a simplified large-signal model for their emulation

8http://randomsource.net/serge_euro
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Figure 13: Magnitude response of a single stage in the Serge TWS
when driven by a 1-V 500-Hz sawtooth waveform for IA = 2 µA
and values of IB between 0–3 µA.

in the digital domain. A digital model of a single waveshap-
ing stage in the module was proposed. The model was vali-
dated against a SPICE simulation of the same circuit. Results
from driving the proposed model with multiple sawtooth wave-
forms show the Serge TWS can be used to transform sawtooth
signals into sinusoidal waveforms, but can also be used to gen-
erate highly complex signals with interesting harmonic patterns.
This study provides an insight into Serge Tcherepnin’s approach
to synthesis and opens the door for further study of his iconic
circuits. Supplementary materials for this paper can be found in
the accompanying website http://research.spa.aalto.
fi/publications/papers/dafx18-serge-tws.

Figure 14: Results of processing an 80-Hz sawtooth waveform
using three waveshapers arranged in series. The values of IA and
IB used for these simulations are indicated on top of each subplot.
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ABSTRACT

This work aims to implement a novel deep learning architec-
ture to perform audio processing in the context of matched equal-
ization. Most existing methods for automatic and matched equal-
ization show effective performance and their goal is to find a re-
spective transfer function given a frequency response. Neverthe-
less, these procedures require a prior knowledge of the type of
filters to be modeled. In addition, fixed filter bank architectures
are required in automatic mixing contexts. Based on end-to-end
convolutional neural networks, we introduce a general purpose ar-
chitecture for equalization matching. Thus, by using an end-to-
end learning approach, the model approximates the equalization
target as a content-based transformation without directly finding
the transfer function. The network learns how to process the au-
dio directly in order to match the equalized target audio. We train
the network through unsupervised and supervised learning proce-
dures. We analyze what the model is actually learning and how
the given task is accomplished. We show the model performing
matched equalization for shelving, peaking, lowpass and highpass
IIR and FIR equalizers.

1. INTRODUCTION

Equalization (EQ) is an audio effect widely used in the production
and consumption of music. It consists of the modification of fre-
quency content through positive or negative gains which change
the harmonic and timbral characteristics of the audio. This is per-
formed for different purposes, such as a corrective/technical filter
to reduce masking or leakage within a mixing task, to modify the
frequency response of a speaker system, or as an artistic or creative
tool when recording a specific audio source.

An equalizer is normally implemented via a filter bank whose
coefficients are obtained from the designed cut-off frequency f0

and quality factor Q. In general, EQ is performed through an arbi-
trary boost or cut at a given f0 and Q, and it can be applied in the
time-domain and frequency-domain [1]. The filters can be classi-
fied into different classes such as lowpass, highpass, peaking, and
shelving.

Taking into account that multiplying the spectrum of signals
is the same as convolving their time-domain representation [2],
filtering can be described by (1).

y(t) = x(t) � h(t) � Y (k) = X(k) · H(k) (1)

Where h is the time-domain representation of the filter and x
and y are the input and filtered signals respectively. H , X , and Y

are the respective frequency-domain representations. In this man-
ner, EQ can be achieved with time-domain convolutions, where
the transfer function of the filter bank can be expressed through
various signals in the time-domain and the equalized audio signal
is obtained through the respective convolutions. Therefore, we in-
vestigate EQ as a time-domain convolution transformation, where
the inherent content of the input and filtered signals can lead a
convolutional neural network (CNN) to match a target frequency
response.

Given an arbitrary EQ configuration, our task is to train a deep
neural network to learn the specific transformation. In this way,
an optimal filter bank decomposition and its latent representation
are learned from the input data, and these are transformed and de-
coded to obtain an audio signal that matches the target. Thus, we
explore whether the model can be used for EQ matching using an
end-to-end architecture, where raw audio is both the input and the
output of the system.

We train a model that matches an EQ objective without explic-
itly obtaining the parameters of the filters (gain, f0 and Q). We
show that a procedure based on convolutional and fully connected
layers, via time-domain convolutions and latent-space modifica-
tions, can lead us to perform EQ matching or modeling. We an-
alyze what the model is actually learning and use a relevant loss
function in the time and frequency domains in order to achieve the
equalizer task.

The rest of the paper is organized as follows. In Section 2 we
summarize the relevant literature related to equalization matching
and end-to-end learning. We formulate our problem in Section
3 and in Section 4 we present the methods. Sections 5, 6 and 7
present the obtained results, their analysis and conclusion respec-
tively.

2. BACKGROUND

2.1. EQ Matching and Automatic Equalization

Several methods have been implemented in order to obtain the pa-
rameters of the filters or to match a specific frequency response.
[3] provides a review of the different state-of-the-art approaches.
These methods apply numerical optimization to find a transfer
function that corresponds a given complex or magnitude frequency
response. Most common techniques are based on the equation
error method [4], the Yule-Walker algorithm [5], the Steiglitz-
McBride method [6] and the frequency warped method [7].

Within an automatic mixing framework, [8, 9] explored mul-
titrack EQ as a cross-adaptive audio effect, where the processing
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of an individual track depends on the content of all the tracks in-
volved, then, the gains of a five filter, first order, filter bank are
obtained based on a perceptual loudness weighing.

Given the raw multitrack recording an the final mixture, [10]
used least-squares optimization to estimate the gains and f0 of FIR
filters. [11] proposed a pitch tracking system to perform automatic
EQ within a mastering task, where the selected pitches are consid-
ered as center frequencies for a set of second order peaking filters.
[12] used least squares fitting to equalize an audio signal by using
IIR filters with arbitrary frequency responses. A cross-adaptive EQ
was implemented in [13], where center and cut-off frequencies of
peaking and shelving filters were obtained through the minimiza-
tion of spectral masking and source separation. Similarly, based
on unmasking, [14] obtained the center frequencies and gains of
peaking filters and [15] attains the gains of a six-band equalizer
based on second-order IIR filters.

Based on an perceptual task, [16] proposed a method where
the model is trained manually by the users and through nearest
neighbor techniques the equalizer gains are obtained in order to
match the training data. In a similar approach, [17, 18] investi-
gated a model that associates the gain of each frequency band with
the user’s training data.

In order to obtain optimal results, most automatic EQ imple-
mentations rely on fixed architectures of filter banks or require
prior knowledge of the type of filters to be modeled. Therefore,
we explore a general architecture capable of performing equaliza-
tion matching given an arbitrary frequency response.

2.2. End-to-end learning

End-to-end learning corresponds to the integration of an entire
problem as a single indivisible task that must be learned from end-
to-end. The desired output is obtained from the input by learn-
ing directly from the data [19]. Deep learning architectures using
this principle have experienced significant growth, since by learn-
ing directly from raw audio signals, the amount of required prior
knowledge is reduced and the engineering effort is minimized [20].

Most audio applications are in the fields of music information
retrieval, music recommendation, and music generation. [20, 21]
explored CNNs to solve automatic tagging tasks. The networks
autonomously learn features related to the frequency and phase of
the raw waveforms, although architectures based on spectrograms
still yielded better results. In [22] an end-to-end neural network
is investigated for the transcription of polyphonic piano music. In
the context of end-to-end supervised source separation, [23] pro-
posed an adaptive autoencoder neural network capable of learning
a latent representation from the raw waveform.

Likewise, [24, 25] proposed models that generate audio sam-
ple by sample without the need handcrafted features and [26] ob-
tained a model capable of performing singing voice synthesis based
on Wavenet [27] autoencoders.

End-to-end learning has not been implemented for audio ef-
fect processing, though recent work demonstrated the usefulness
of deep learning applied to intelligent music production systems.

[28, 29] explored deep neural networks (DNN) to perform source
separation in order to remix the obtained stems and [30] used au-
toencoders to achieve automatic dynamic range compression for
mastering applications. Furthermore, most implementations rely
on the magnitude of different frequency representations (spectro-
gram, melspectogram, etc.), thus omitting the phase information.
This is sometimes not ideal, since the task under study could also
be based on phase transformations, and therefore would not be
learned by the models.

3. PROBLEM FORMULATION

For a specific EQ configuration or arbitrary combination of filters,
consider x and y the raw and equalized audio signals respectively.
We train a CNN autoencoder which operates as a filter bank and
produces a latent representation Z of the given task. One CNN
layer can be described by:

Xk =
N�1�

i=0

Xk�1(n � i) · W k(i) (2)

Where Xk represents the feature map of the kth layer, N rep-
resents the size of the input feature map Xk�1 or input frame x
in the case of the first layer, and W k is the kernel matrix with K
filters. The latent representation Z is obtained after a designated
number of convolutional and subsampling layers.

Thus, in order to obtain a ŷ that matches the EQ target y, we
implement a deep neural network to modify Z based on the EQ
task. Finally, the decoder implements the deconvolution opera-
tion and reconstructs the time-domain signal by inverting the op-
erations of the encoder. We train the whole network within an
end-to-end learning framework and we minimize a suitable metric
between the target and the output of the network.

Based on an EQ matching task, we expect the network to learn
the relevant filters W k, latent representation Z and further manip-
ulation. We attempt to find a general architecture that can serve as
a matching equalizer based on an arbitrary time-invariant EQ tar-
get.

4. METHODS

4.1. Model

In order to implement the network, we followed a similar proce-
dure as [23], although based entirely on the time-domain. The
model can be divided into three parts: adaptive front-end, synthe-
sis back-end and latent-space DNN. The model is depicted in Fig.
1.

4.1.1. Adaptive front-end

The adaptive front-end consist of a convolutional encoder. It con-
tains two CNN layers, one pooling layer and one residual connec-
tion for the back-end. The front-end performs time-domain con-
volutions with the raw waveform in order to map it into a latent-
space. It also generates a residual connection which facilitates the
reconstruction of the audio signal by the back-end. This differs
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Figure 1: Block diagram of the proposed model; adaptive front-end, synthesis back-end and latent-space DNN.

from traditional autoencoders, where the complete input data is en-
coded into a latent-space, which causes each layer in the decoder
to solely generate the complete desired output [31]. Furthermore,
a full encoding approach such as [25, 27] will require very deep
models, large data sets and difficult training procedures.

The input layer has 128 one-dimensional filters of size 64.
Based on (2), the operation performed by the first layer can be
described by (3).

X1 = x � W 1 (3)

R = X1 (4)

Where R is the matrix of the residual connection, X1 is the
feature map or frequency decomposition matrix after the input sig-
nal x is convolved with the kernel matrix W 1. The first layer is
followed by the absolute value as non-linear activation function.

The second layer has 128 one-dimensional filters of size 128
and each filter is locally connected. This means we follow a filter
bank architecture by having unshared weights in the second layer
since each filter is only applied to its corresponding row in |X1|.
The filters in this layer are larger due to convolving |X1| with suit-
able averaging filters W 2 could lead the model to learn smoother
representations [23], such as envelopes. This layer is followed by
the softplus non-linearity.

X2 = softplus(|X1| � W 2) (5)

Where X2 is the second feature map obtained after the local
convolution with W 2, the kernel matrix of the second layer.

The latent-space representation Z is achieved by the max-
pooling operation. This pooling function consists of a moving
window of size 16 applied over X2 and the maximum value within
that window correspond to the output. Also, the positions in time
of the maximum values are stored and used by the decoder.

4.1.2. Synthesis back-end

In order to invert the operations performed by the front-end, the
decoder consists of one CNN layer and one unpooling layer. Since
the max-pooling function is non-invertible, the inverse can be ap-
proximated by recording the locations of the maximum values in
each pooling window [32] and only upsampling Z at these time

indices. Thus the discrete approximation X̂2 is obtained.

The approximation X̂1 of matrix X1 is obtained through the
element-wise multiplication of the residual R and X̂2.

X̂1 = R · X̂2 (6)

Depending on whether Z has been modified or not, (6) can be
seen as a sampling or transformation of X1.

The final layer corresponds to the deconvolution operation,
which can be implemented by transposing the first layer transform.
This layer is not trainable since its kernels are transposed versions
of W 1. In this way, the synthesis layer reconstructs the audio sig-
nal in the same manner the front-end decomposed it.

ŷ(t) = X̂1 � W T
1 (7)

All convolutions are along the time dimension and all strides
are of unit value. This means, during convolution, we move the
filters one sample at a time.

4.1.3. Latent-space deep neural network

The latent-space DNN contains two layers, which are based on
locally connected and fully connected dense layers respectively.
Thus, following the filter bank architecture, the first layer applies
a different dense layer to each row of the matrix Z. Each of the
locally connected dense layers has 64 hidden units and is followed
by the softplus activation function. The second layer consists of
a fully connected neural network of 64 hidden units, which is ap-
plied in each row of the output matrix from the first layer. It is also
followed by the softplus activation function.

The output of the max pooling operation Z corresponds to
an optimal latent representation of the input audio given the EQ
task. The DNN is trained to modify this matrix, thus, a new latent
representation Ẑ is fed into the synthesis back-end in order to re-
construct an audio signal that matches the target task.

4.2. Training

The training of the model is performed in two steps. The first step
is to train both the adaptive front-end and the synthesis back-end
for an unsupervised learning task. This can be considered as a pre-
training of the autoencoder since the model showed better results
than when only trained with the second training step. The second
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step consists of an end-to-end supervised learning task based on a
given EQ target.

During the pretraining only the weights W 1 and W 2 are opti-
mized and both the raw audio x and equalized audio y are used as
input and target functions. This means the model is being prepared
to reconstruct the input and target data in order to have a better
fitting when training for the EQ task. Once the convolutional au-
toencoder is trained, the latent-space DNN is incorporated in the
model. Hence, the second training procedure consists in using as
objectives of the model x and y as input and target respectively.
During the end-to-end learning, all the weights of the convolu-
tional and dense layers are updated. This is done independently
for each EQ task.

The loss function to be minimized is based in time and fre-
quency and described by (8).

loss = kl(Y, Ŷ ) + mse(Y, Ŷ ) + mae(y, ŷ) (8)

Where kl is the normalized Kullback-Leibler divergence, the
mean squared error is mse, and mae is the mean absolute error.
Y and Ŷ are the frequency magnitude of the target and output
respectively, and y and ŷ their respective waveforms. We use a
1024-point Fourier transform (FFT) in order to obtain Y and Ŷ ,
which we extract on the GPU using Kapre [33].

We selected a more specialized loss function since by intro-
ducing spectral terms in a frequency related task, such as EQ,
fewer training iterations were required. In both training procedures
the input and target audio is windowed by a hanning function into
frames of 1024 samples with hop size of 64 samples. The batch
size consisted of the total number of frames per audio sample and
100 iterations were carried out in each training step. Adam is used
as optimizer.

4.3. Dataset

The raw audio x is obtained from the Salamander Grand Piano V3
dataset1, which consists of a Yamaha C5 grand piano sampled in
minor thirds from the lowest A note and with 16 velocity layers for
each note. The dataset is augmented by pitch shifting each note un-
til all the available semitones of the piano are obtained. This gives
us a total of 1440 samples. The piano notes are downsampled to
16 kHz and trimmed to 4 seconds. The test and validation subsets
correspond to 10% of the dataset and contain a musical note (B)
not present in the training subset.

The EQ targets y are obtained by applying the filters described
in Table 1.

Table 1: Filter parameters of the EQ targets.

EQ filter type order gain (dB) f0 (Hz) Q
shelving IIR 2 10 500 0.707
peaking IIR 2 10 500 0.707
lowpass FIR 50 0 500 .
highpass FIR 50 0 500 .

1cb

5. RESULTS

The unsupervised and supervised learning steps were performed
for each type of EQ target. Then, the models were tested with
samples from the test dataset.

Fig. 2 shows various visualizations from the front-end and
back-end of the autoencoder after the unsupervised training pro-
cedure. Fig. 2a displays the waveform and frequency magnitude
of a test frame x of 1024 samples and its respective reconstruction
x̂. The weights of the first convolutional layer W 1 can be seen in
Fig. 2b, where the first 32 filters are shown.

Consequently, in order to obtain x̂, different plots from the
front-end, latent-space and back-end are shown in Figs. 2c-2e.
The results of (3) can be seen in Fig. 2c where the first 32 rows
of X1 are displayed. Fig. 2d presents their latent-space represen-
tation Z, which is obtained through the second convolutional and
subsampling layers. Fig. 2e shows X̂1, which is the result of (6)
and the input to the deconvolution layer, the prior step to obtain
the output frame x̂.

Following the pretraining of the autoencoder, the model is
trained through an end-to-end supervised learning method. For
each EQ task, Fig. 3 shows the results of selected samples from
the test dataset. For a specific frame of 1024 samples, the input,
target and output waveforms as well as their FFT magnitudes are
displayed. The power spectrogram of the respective 4-second sam-
ples is also shown. Finally, together with the input and the target,
the complete reconstructed output waveform of a shelving EQ task
is presented in Fig. 4.

The performance of the models, and their respective losses (8)
in time and frequency can be seen in Table 2.

Table 2: Evaluation of the models with the test datasets. Loss
values for each EQ task.

EQ kl mse mae loss
shelving 0.021845 0.007764 0.002474 0.032083
peaking 0.022038 0.007847 0.002521 0.032406
lowpass 0.025365 0.005345 0.002710 0.033420
highpass 0.021463 0.000951 0.001293 0.023708

6. ANALYSIS

6.1. Adaptive front-end and back-end

From the results of the encoder and decoder, a comparison between
the input and output waveforms, as well as their FFT magnitude
(see Fig. 2a), it can be seen the model manages to reconstruct the
input frame almost perfectly. There are minor differences between
the magnitudes of the lower and higher frequencies, but it is worth
mentioning that the network achieves this by optimizing only two
convolutional layers.

During the first training step, the model learns the W 1 and
W 2 weight matrices with 128 filters each. These filters corre-
spond to the optimal weights of the autoencoder for the decompo-
sition and reconstruction of the training data. As expected, from
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(a)

(b) (c)

(d) (e)

Figure 2: Various plots from the front-end and back-end with the test dataset after the unsupervised learning step. 2a) Input (x) and output
(x̂) frames of 1024 samples and their respective FFT magnitude. 2b) First 32 filters (W 1) of the first convolutional layer. 2c) First 32 rows
of X1, resulting matrix of the convolution between the kernels W 1 and the input frame x. 2d) Latent-space representation that is being
encoded by the front-end. First 32 rows of Z. 2e) Result of the element-wise multiplication between the residual R and the output of the
unpooling layer. This is the input to the deconvolution layer prior to obtaining the output frame x̂(t). Vertical axes in 2b)-2e) are unitless
and horizontal axes correspond to time.

the W 1 kernels shown in Fig. 2b, it can be observed the filters rep-
resent sinusoids and distributions of different frequencies. Also,
upon examination of all the weights, we find some redundancy
between the filters. This can be improved by adding kernel or ac-
tivity regularizations, such as the L1 or L2 norm regularizes. In
addition, some learned weights follow the hanning window shape,
which makes sense given that all the input frames were windowed.

From the feature map matrix X1 (see Fig. 2c), the filters W 1

are actively acting as a filter bank or frequency selectors, since X1

correspond to the decomposition of the input data into different
frequencies. Since this is also the residual matrix R, the resulting
features consist of the required frequencies from the input data in
order to be reconstructed by the back-end and encoded by rest of
the front-end.

The second convolutional layer is acting as a smoothing layer,
since X2 correspond to positive and negatives envelopes from
X1. This is due to the learned averaging filters and the absolute
and softplus activation functions. The subsampled version Z is
presented in Fig. 2d, where different types envelopes are evident.
Therefore, the autoencoder is learning a latent-space representa-
tion based on the envelopes of selected frequencies.

Taking into account that the result of the unpooling layer X̂2

corresponds to the values of Z at the time positions registered by
the max-pooling layer and padded with zeros between each maxi-
mum value. The element-multiplication of X̂2 with R generates
a discrete version of the latter, which indicates the amplitudes and
positions in time that the deconvolution layer should use to recon-
struct the input signal (see Fig. 2e). Thus, convolving X̂1 with

W T
1 generates the output frame presented in Fig. 2a.

The front-end and back-end manage to reconstruct the test pi-
ano notes with a loss value (8) of 0.104. Adding a simple latent-
space neural network or increasing the number of filters in the con-
volutional layers would improve the results significantly. Also,
since the training was performed with a hop size of 64 samples,
an ideal unit sample hop size would decrease the loss value, al-
though the training time will increase notably. Given that the un-
supervised learning task only acts as pretraining step, and that the
autoencoder has a relative small number of trainable parameters
(24832) we consider these results to be satisfactory.

6.2. EQ task

Table 2 shows that the model performed well on each EQ task. To
provide a reference, the mean loss value between the inputs and
targets of the shelving testing samples is 1.21. The kl is fairly
uniform across the four types of equalizers, with a minor increase
for the lowpass EQ. The same can be said about the mse and mae
with the exception of a significant decrease for the highpass EQ.
Therefore, loss function values were minimal and the model is ca-
pable of matching the most common types of EQ, whether these
are based on FIR or IIR filters.

The model achieved the best results during the highpass task,
which could be an indication of the frequency distribution among
the training data. Since only piano notes where used, and most
spectral energy of acoustic pianos is within 250 Hz - 1 kHz with
higher frequencies responsible for the perceived timbral quality of
the notes [34]. Thus, having a 500 Hz cut-off frequency could sig-
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Figure 3: Results with the test dataset for the following EQ tasks: 3a) shelving, 3b) peaking, 3c) lowpass and 3d) highpass. In 3a)-3d),
the input, target and output frames of 1024 samples are shown in waveforms and their respective FFT magnitudes. In addition, for each
EQ task and from top to bottom: input, target and output power spectrograms of the 4-second test samples are displayed. Color intensity
represents higher energy.

nify that the model effectively filters out the lower-end of the piano
notes by efficiently learning the filters for this task. The slightly
worse performance for the lowpass task could be further explored
by adding kernel regularizations on the CNN layers.

Fig. 3 confirms the correct EQ matching for the different types
of equalizers. The spectral and waveform comparison between in-
put, target and output shows how accurate the model is at recon-
structing an audio signal that matches the EQ task. For individual
frames and complete piano notes, the different types of EQ are ev-
ident from the FFT magnitude and power spectogram respectively.

For the shelving EQ in Fig. 3a, the effect of the equalizer can
be seen in the target and output spectral plots. The power spectro-
gram shows how the spectral energy was boosted for frequencies
lower than 500 Hz. From the FFT magnitude it can be noticed
a minor deviation in the lower-end of the target, where there is a
boost increment around 20 Hz. This could indicate a weak gen-
eralization around these frequencies, which could be improved by
using a loss function with higher resolution in the lower-end [7].

The peaking equalizer can be seen in Fig. 3b. The selective
boost at 500 Hz is notorious both in the FFT magnitude and in
the power spectrogram. There is a minor boost in the lower-end
which is a consequence of the reasons discussed above. Overall
the results indicate a significant fitting for the peaking EQ task.
Accordingly, the model is able to match EQ tasks based on peak-
ing and shelving IIR filters.

Likewise, the lowpass and highpass EQ targets were correctly
accomplished. Fig. 3c-3d show the cut of frequencies higher than
500 Hz for the lowpass and the opposite for the highpass. As dis-
cussed, it can be seen the model performs the best for the highpass
EQ task, obtaining a highly accurate matching between target and
output in both time and frequency domains.

The model was trained in a frame-by-frame basis and the input
frames were windowed. So the model learned the windowing pro-
cedure and the output frames followed the hanning shape. There-
fore, in order to reconstruct the complete audio signal (see Fig.
4), no further windowing was needed. The overlapping procedure
was carried out by applying a gain in order to ensure a Constant
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Figure 4: For a test sample of the shelving EQ task, complete
waveform reconstruction of the output and comparison with the
input and target. See Fig. 3a for the power spectogram of these
waveforms.

Overlap-Add [35], which is specific to the type of window and hop
size.

7. CONCLUSION

In this work, we proposed a novel deep learning architecture ca-
pable of performing an audio processing task such as EQ match-
ing. To achieve this, based on the universal approximation capa-
bilities of neural networks, we explored a convolutional adaptive
front-end and back-end together with a latent-space deep neural
network. Thus, we introduced a general purpose architecture for
EQ matching able to model different types of equalizers and filters.

We showed the model matching shelving, peaking, lowpass
and highpass IIR and FIR equalizers. For each EQ task the model
was trained via unsupervised and supervised learning procedures.
The latter corresponded to an end-to-end learning approach, which
presents and advantage towards common methods of automatic
EQ since no prior knowledge of the type of filters nor fixed fil-
ter bank architecture is required. Accordingly, the proposed model
approximated the target as a content-based transformation with-
out using or obtaining filter parameters. Therefore, the model
learned an optimal filter bank decomposition and latent represen-
tation from the training data, and correspondingly, how to modify
it in order to obtain an audio signal that matches the EQ task.

Possible applications for this architecture are within the fields
of automatic mixing and audio effect modeling. For example,
style-learning of a specific sound engineer could be explored, where
the model is trained with several tracks equalized by the engineer
and finds a generalization from the engineer’s EQ practices. Also,
automatic EQ for a specific instrument across one or several gen-
res could be analyzed and implemented by the model.

Our implementation can serve as a baseline model for deep
learning architectures in the context of audio processing. Linear
transformations within a mixing task could be easily achieved. As
future work, the exploration of recurrent or recursive neural net-
works or adaptive activation functions can improve the capabili-
ties of the network to model much more complex audio effects. In
this case, transformations involving temporal dependencies such
as compression or different modulation effects, as well as compli-
cated distortion effects, could be implemented.

A further exploration of the latent-space DNN, or deeper con-
volutional layers within the encoder and decoder could improve
the results of the model. As well as regularizers and loss functions
based on frequency wrappers. Also, since training on piano semi-
tones provides only a sparse sampling of the frequency dimension,
the generalization capability of the model should be extended for
much more complex audio signals, such as noise, human voice or
non-musical sounds. Therefore, a further exploration with a less
homogeneous dataset together with an analysis of the type of filters
learned by the model could benefit the design of a general archi-
tecture for modeling audio effects.

Finally, it is worth noting the immense benefit that generative
music could obtain from deep learning architectures for intelligent
music production. Our implementation could be used in the field
of deep neural networks applied to generative music and automatic
mixing production systems.
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ABSTRACT

This paper proposes a method to filter the output of instrument
contact sensors to approximate the response of a well placed mi-
crophone. A modal approach is proposed in which mode frequen-
cies and damping ratios are fit to the frequency response of the
contact sensor, and the mode gains are then determined for both
the contact sensor and the microphone. The mode frequencies and
damping ratios are presumed to be associated with the resonances
of the instrument. Accordingly, the corresponding contact sensor
and microphone mode gains will account for the instrument radia-
tion. The ratios between the contact sensor and microphone gains
are then used to create a parallel bank of second-order biquad fil-
ters to filter the contact sensor signal to estimate the microphone
signal.

1. INTRODUCTION

Acoustic string instruments often lack the radiated sound power to
compete with louder instruments such as drums or piano in a live
or recording scenario. The most natural way to amplify their sound
is using a well placed microphone, but this can be problematic as
feedback and “bleed” sound from other instruments are common.
To overcome these problems, pickups or contact sensors are used
as they more directly capture the instrument’s vibrations. Electro-
magnetic pickups are used with electric guitars, but they capture
the strings’ vibration and do not capture an authentic sound im-
age of the instrument’s body vibrations. Contact sensors such as
piezoelectric or electret film sensors are more commonly used with
acoustic instruments as they primarily capture the vibrations of the
instrument, not purely of the strings.

In this paper, we focus on the upright bass as a test case. When
used in a live jazz context, the upright bass almost always requires
amplification. The most common method of achieving amplifi-
cation is by using a contact sensor, typically piezoelectric, and
routing the output to an amplifier. The resulting output bares lit-
tle resemblance to the acoustic sound radiated by the instrument,
and typically has a “rubbery” characteristic. In addition to the live
scenario, it is often necessary to record upright bass in the same
room as other instruments which are much louder, such as a pi-
ano or drum set. The sound of these instruments bleeds into the
microphones meant for the upright bass, making it difficult to iso-
late the instrument or apply post-processing. It would be advanta-
geous if the upright bass could be recorded using a contact sensor
to achieve an isolated recording, but this is not often done as the
acoustic response is desired.

Acoustic instrument contact sensors can be equalized, often in
an attempt to make them sound more similar to the instrument’s

acoustically radiated sound. Commercially available acoustic in-
strument equalizers are limited in use and require trial and error
to achieve a desirable sound. If an instrument’s body is approxi-
mated as linear and time-invariant system, a transfer function be-
tween various point of measurement can be defined which will
allow digital signal processing (DSP) techniques to force a signal
captured at one location to sound more similar to a signal captured
at a different location.

Such DSP equalization has been studied previously by Kar-
jalainen et al. [1, 2, 3]. This work focused on the case of an acous-
tic guitar with an electret film pickup, and aimed to find a transfer
function which was the spectral ratio of microphone and contact
sensor transfer functions:

Q(�) =
P (�)
X(�)

, (1)

where Q(�) is an equalizer transfer function, P (�) is the acous-
tic radiation transfer function measured with a microphone, and
X(�) is the transfer function through a contact sensor. They found
transfer functions by first using an impact hammer to excite an im-
pulse, and second by playing musical information through both
sensors and deconvolving the contact sensor signal from the mi-
crophone signal. They constructed filters based on both of these
methods using FIR and IIR structures. It was concluded that the
deconvolution method paired with an FIR filter of order 500 or
higher with an additional digital resonator tuned to the mode of
the guitar’s top plate produced the most desirable sound.

Rather than using a spectral ratio based approach, we propose
a modal architecture which can be constructed where the mode fre-
quencies and damping ratios are fit to the contact sensor frequency
response, and the mode gains are taken as a ratio between the gains
fit to the contact sensor and microphone frequency responses. A
parallel bank of second-order biquad filters can be used to realize
the filter in real time. A modal architecture is chosen because it
is modular and has the potential to be altered in real time. This
provides the option to choose from or mix between different mi-
crophone responses by tuning only the relative mode gains. This
can be extended to the case of producing multiple simultaneous
simulated microphone responses, which can be efficiently com-
puted because the same set of mode filter outputs can be used to
form each microphone’s output according to its set of gains.

Much prior work has been done on modeling instrument trans-
fer functions using a modal architecture [4, 5, 6, 7]. This work is
typically done in the context of sound synthesis, but is equally
valid for the proposed sensor equalization application. The mode
parameters can be fit using traditional mode fitting techniques such
as the Complex Exponential or Peak Picking methods [8, 9, 10].
The modal fits can be improved using a constrained optimization
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algorithm to reduce the error between the experimental and re-
constructed frequency response functions [5, 11]. We follow an
approach similar to these prior methods, calculating initial mode
parameter guesses and using a constrained optimization to improve
the reconstructed model.

This paper is organized as follows. Section 2 introduces the
process for acquiring instrument impulse response data. Section 3
describes the modal parameter fitting and optimization, and Sec-
tion 4 describes the steps needed to realize the model as a digital
filter. Section 5 presents preliminary results, and Section 6 is a
conclusion and discussion of potential improvements and further
areas of study.

2. MEASUREMENTS

The proposed method relies on impulse response measurements
which serve as the basis for a modal model. An upright bass was
used as a case study for measurements and fitting. The upright
bass was suspended from the ceiling with the endpin rested on
foam for stability. Paper was woven between the strings to prevent
them from ringing. An anechoic chamber was not available so
the measurements were taken in a medium sized room with ample
absorption.

Two commercially available contact sensors were attached to
the bass for recording. A piezoelectric sensor was placed under
the treble foot of the bridge, and a dynamic contact microphone
was placed on the top plate, below the bridge. Five studio mi-
crophones were placed in various positions around the bass. The
positions were chosen such that they may be typical starting po-
sitions for a studio recording of the upright bass. While multiple
microphones and contact sensors were used to record the measure-
ments, only one contact sensor and microphone pair is analyzed in
this paper. The contact sensor and microphone placements can be
seen in Figure 1, with the contact sensor and microphone pair of
interest labeled.

A force sensing impact hammer was used to excite an impulse
through the instrument. The hammer was struck on the bass side of
the bridge, perpendicular to the curvature of the bridge at that loca-
tion. The bass side of the bridge was chosen as the impact location
because it is closest to the lowest string which provides the great-
est amount of energy transfer. The hammer was remotely dropped
multiple times, while the sensors and microphones recorded the
impulse responses at their respective locations.

3. MODE FITTING

3.1. Modal Structure

Modal analysis can be used to investigate the vibrational character-
istics of physical structures such as musical instruments [12]. The
measured vibrational characteristics of a structure can be described
by its frequency response function (FRF) which is a measurement
function used to identify the resonant frequencies, damping ratios,
and mode shapes of a physical structure. The frequency response
function between points p and q of a modal structure can be written
as

Hpq(s) =
N�

r=1

�pr�qr

(s2 + 2�r�rs + �2
r)

, (2)

where r is the mode number up to a maximum number of modes,
N . The undamped natural frequency �r is defined as �r =

microphone

impact hammer

contact sensor

Figure 1: Measurement setup.

�
�2

r + �2
r , where �r is the damping factor and �r is the damped

natural frequency. The damping ratio �r is defined as �r = � �r
�r

.
The mode shape coefficients at points p and q are �pr and �qr

[13].

3.2. Measurement Preprocessing

Due to the non-anechoic nature of the room and the low amount of
energy transferred to the instrument from the impact hammer, the
impulse response measurements required preprocessing to allow
reliable transfer function fits.

Roughly 100 impulse measurements were taken. Measure-
ments containing double hits from the hammer were discarded.
Each impulse was windowed using an exponential window to im-
prove the signal-to-noise ratio [14]. Frequency response functions
were calculated for each pair of hammer excitation and sensor sig-
nals. The frequency response function is calculated for each mea-
surement set using Welch’s method and they are averaged in the
frequency domain to reduce random error [13].

3.3. Initial Mode Fitting

An initial pass is made on the mode fitting which uses the Com-
plex Exponential method [9]. The Complex Exponential method
computes the time domain impulse response corresponding to the
given frequency response function, and a set of complex damped
sinusoids is fit using Prony’s method. This is a nonlinear process
which finds a solution iteratively.

The initial mode fitting process is performed over 9 differ-
ent frequency bands ranging from 0 to 6 kHz, and the number
of modes to fit was determined by eye. The Complex Exponen-
tial mode fitting returns estimates of �r , �̂r , and �r , the product
of the complex mode shapes at the impact and measurement lo-
cations. The damping ratios �̂r represent damping ratios fit to the
windowed impulse response measurements. Since an exponential
decay window is used, it introduces additional damping which will
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be corrected for at a later point. The returned undamped natural
frequencies and damping coefficients were reasonably fit, but the
mode shapes were not as reliable so they were recomputed using
the least squares method.

3.4. Choice of Modes

The frequency response function was computed for each sensor lo-
cation, yielding multiple sets of mode parameters. Theoretically,
each set of mode parameters should contain the same undamped
natural frequencies, and damping coefficients, varying only by
mode shape. However, if a measurement sensor is at or near a
relative node location, it is unlikely that an undamped natural fre-
quency will be fit to the frequency response function. Likewise,
if a mode is present at a sensor location, it still may be missed
due to the measurement noise or the windowing process. Even if a
mode is present in multiple sensor measurements, there will likely
be numerical differences between mode fittings.

A method was developed to create a set of mode parameters
which is common between multiple frequency response functions.
A set of common mode parameters is created based on common
undamped natural frequencies, worrying about the damping ratios
at a later point. Let SC be a set of undamped natural frequen-
cies measured through a contact sensor, and let SM1 , ..., SMN be
sets of undamped natural frequencies measured through N micro-
phones at various locations around the instrument. To get the set of
all undamped natural frequencies present, a union of sorts is taken.

To account for numerical differences between undamped nat-
ural frequencies that are common between both sensor sets, a tol-
erance � is set, within which there is deemed to be only one unique
mode. The undamped natural frequencies in SC are taken as the
true undamped natural frequencies, as only direct measurements
from the contact sensor will be used in the final processing. The
modes from SMi which have undamped natural frequencies within
� percent of the undamped natural frequencies in SC are discarded.
This can be summarized as

ŜMi = SMi \ ((1 ± �)SC) , (3)

where \ represents the set difference, and ŜMi is the set of un-
damped natural frequencies only present in SMi within the set tol-
erance �. The set of undamped natural frequencies found in all
sensors of interest can then be represented as

SF = SC �
�
ŜM1 � ... � ŜMN

�
, (4)

where � represents the set union.
The initial guesses for the damping ratios and mode shapes

correspond to the undamped natural frequencies in SF .
This method for choosing the mode shapes is general to any

number of microphone frequency response functions, but for the
rest of the paper, a setup consisting of one contact sensor and one
microphone is assumed.

3.5. Optimized Mode Fitting

To further refine the modal fitting, a constrained optimization
scheme is formed to minimize the error between the measured and
reconstructed frequency response function pairs. The optimization
problem is posed as

minimize
�r, �̂r, �r

�(ĤC , HC , ĤM , HM ) , (5)
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Figure 2: Contact sensor frequency response function (FRF) and
fits with N = 88 modes.

where HC and ĤC are the measured and reconstructed frequency
response functions for the contact sensor, HM and ĤM are the
measured and reconstructed frequency response functions for the
microphone, and �(ĤC , HC , ĤM , HM ) is an error measure to be
minimized. The initial mode fits calculated using the Complex Ex-
ponentials method are used as initial guesses for the optimization.
The optimization constrains the values of �r and �̂r to be within
± 50 % of the initial guess values.

During each iteration of the optimization, there is a guess for
the values of �r and �̂r . These parameters are held constant for
both contact sensor and microphone frequency response function
reconstructions. Least squares is used to calculate the mode shapes
�C

r and �M
r for the contact sensor and microphone modes respec-

tively. The frequency response functions are reconstructed and the
following error function is used:

�(ĤC , HC , ĤM , HM ) = ||HC �ĤC ||1+||HM �ĤM ||1 , (6)

where ĤC and ĤM are the reconstructed frequency response func-
tions using the same sets of undamped natural frequencies �r and
damping ratios �̂r , but with their own sets of mode shapes �C

r and
�M

r , and || · ||1 is the L1-norm.
Example frequency response functions are shown for a dy-

namic contact sensor (Figure 2) and a cardioid studio microphone
placed roughly 30 cm away from the the instruments top plate near
the upper bout (Figure 3). The window exponential decay constant
was set to � = 0.07 s�1, and the natural frequency tolerance was
set to � = 2 %. The examples show the measured frequency re-
sponse function as well as the frequency response functions recre-
ated from the initial and optimized mode fits.

4. REALIZATION AS PARALLEL BANK OF
SECOND-ORDER BIQUAD FILTERS

The goal of this study is to scale the contact sensor response such
that it will better approximate that of the microphone. A choice
was made to perform the mode fitting in the continuous domain to
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Figure 3: Microphone frequency response function (FRF) and fits
with N = 88 modes.

maintain the physical parametric structure, and to later convert to
the discrete domain to facilitate the DSP equalization. This equal-
ization can be realized by using the obtained modal parameters to
create a parallel bank of second-order biquad filters which can be
described by their undamped natural frequencies, damping coef-
ficients, and mode shapes or gains. The undamped natural fre-
quencies �r obtained using the previously described method can
be used, but the damping ratios �̂r and mode shapes �C

r and �M
r

need to be adjusted.

4.1. Mode Shape Scaling

It is assumed that the microphone and contact sensor measure-
ments will contain the same set of undamped natural frequencies
and damping coefficients, and will differ only by their relative
mode shapes. In order to impose the microphone response on the
contact sensor, a scaling needs to be performed between the mode
shapes. This can be obtained by taking the ratio of the mode shapes

Gr =
�M

r

�C
r

, (7)

which gives the scaling gain between the mode shapes Gr .

4.2. Damping Ratio Correction

The use of the exponential decay window adds additional damping
to the measured frequency response which needs to be compen-
sated for when creating the modal scaling filter. The exponential
decay window is defined as

we(t) = e��t , (8)

where � is the exponential decay constant. Figure 4 shows how the
additional damping caused by the window results in a windowed
damping ratio �̂r , which is more negative than the true damping
ratio �r , by the amount of the exponential decay constant used for
the window, �.

�

j�

�̂r = �r

�̂r
�r

�̂r = �r � �

�̂r �r

�

�r�̂r

Figure 4: Effect of the exponential decay window in the complex
plane. � is the exponential decay constant of the window. �r , �r ,
�r , and �r are the eigenvalue, damped natural frequency, damp-
ing factor, and undamped natural frequency for mode r. �̂r , �̂r ,
�̂r , and �̂r have the same meaning except for the windowed sig-
nal.

A common correction approximation for the extra damping
caused by the exponential decay window is given by

��
r = �̂r � �

�̂r

, (9)

where ��
r is an approximation to the true damping ratio �̂r is the

damping ratio after the windowing effects, and �̂r is the undamped
natural frequency of the windowed data [14]. The exact expression
for the true damping ratio �r is given in the Appendix.

4.3. Analog to Digital: Bilinear Transform

Substituting the corrected damping ratios �r , and the gain between
mode shapes Gr into (2) gives

Q(s) =
N�

r=1

Gr

(s2 + 2�r�rs + �2
r)

, (10)

which is the transfer function for the s-domain filter needed to
scale the contact sensor.

The s-domain transfer function is converted to the discrete do-
main using the bilinear transform:

s = cr

�
1 � z�1

1 + z�1

�
. (11)

The natural frequencies are kept constant under the frequency
warping caused by the bilinear transform by setting

cr =
�r

tan
�

�r
2fs

� , (12)

where fs is the sample rate.
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Figure 5: Modal scaling filter frequency response with N = 85
modes.

The resulting discrete transfer function is given by

Qr(z) =
b0 + b2z

�2

1 + a1z�1 + a2z�2
(13)

where

b0 = b2 =
Gr

�2
r + c2

r + 2cr�r�r

a1 =
2�2

r � 2c2
r

�2
r + c2

r + 2cr�r�r

a2 =
�2

r + c2
r � 2cr�r�r

�2
r + c2

r + 2cr�r�r
.

The modal scaling filter frequency response corresponding to
the contact sensor and microphone from Figures 2 and 3 is shown
in Figure 5. The frequency response is shown with and without the
damping ratio correction.

5. RESULTS AND DISCUSSION

The modal architecture yields a parallel bank of second-order bi-
quad filters which can be used to filter the output of an instrument
through a contact sensor, resulting in a signal which should sound
similar to that measured through a microphone.

As a comparison to the modal scaling filter, Figure 6 shows the
equalization filter using the spectral ratio method of Karjalainen et
al., for a 1200 tap FIR filter. The two filters are difficult to com-
pare due to the low spectral resolution of the FIR filter, but some
general comparisons can be made. Both filters exhibit a similar
overall contour, having a higher magnitude in the low and high
frequencies, with a lower magnitude in the mid frequency range of
roughly 300-1000 Hz. However, while the general contours of the
modal and spectral ratio equalization filters are similar, there are
clear differences. Since the spectral ratio filter is implemented as a
relatively short FIR filter, there is a low amount of mode resolution,
making it impossible to accurately model resonant modes with low
damping ratios. While the modal model is able to accurately cap-
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Figure 6: Spectral ratio scaling filter frequency response imple-
mented using a 1200 tap FIR filter.

ture highly resonant modes, it may be incorrectly modeling some
modes resulting in discrepancies between the filters.

Figure 7 shows spectrograms of a hammer impulse measured
through a contact sensor, a microphone, as well as the contact
sensor signal filtered with the modal model. Figure 8 shows the
output of the measured upright bass being played. The contact
sensor, microphone, and filtered contact microphone sensor sig-
nals are shown. Audio examples of the filtered upright bass be-
ing played can be found online1. Qualitative observations suggest
that the contact sensor filtered with the modal architecture is more
acoustic sounding and similar to the microphone signal. The fil-
tered contact sensor signal and microphone signal do not sound
exactly the same, but this is to be expected as the sensor is only
picking up the vibrations present at its location, so it cannot be ex-
pected to contain information about the other sounds produced by
the instrument or performer.

The proposed modal architecture poses several advantages
over the spectral ratio method of Karjalainen et al.. The mode
gains can be altered in real time, allowing for on-line tuning of the
equalization. This could be used to adjust individual modes which
are problematic in a particular playing situation, say if a mode of
the instrument is at the same frequency as a room mode of the
performance space. If multiple microphone frequency response
functions were modeled, this structure allows for simple switch-
ing between or interpolating between microphone responses. The
major drawback of the modal architecture is the sensitivity of the
mode parameter fitting.

The modal fitting is sensitive to the window’s exponential de-
cay constant, the set frequency tolerance, as well as the number
of modes to be fit. As the window’s exponential decay constant
is decreased, the signal-to-noise ratio is improved, but the risk of
missing modes in the fitting is increased. While decreasing the un-
damped natural frequency tolerance, the chance of fitting the same
mode twice is minimized, but the chance of missing closely spaced
modes is increased. Hence, the number of modes to fit is related to
the window’s exponential decay constant as well as the undamped

1https://ccrma.stanford.edu/~mrau/DAFX2018/
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Figure 7: Spectrogram of an impulse recording.

natural frequency tolerance. Some trial and error is required to
obtain the desired results.

The resulting filtered contact sensor sounds more acoustic,
and similar to the the microphone signal; however, it is not per-
fect. There are likely multiple factors contributing to the differ-
ences. The measurements have a low signal-to-noise ratio and
were recorded in a non-ideal location making the mode fitting chal-
lenging and sensitive to the windowing and parameter initializa-
tion. Notably, not all sounds present in the microphone signal will
appear in the contact sensor signal. The contact sensor could be
placed at a vibrational node of the instrument and will predomi-
nantly pick up vibrations in one direction. In this case, using mul-
tiple well placed contact sensors would overcome the problem. As
well, any sounds such as finger motions on the strings are unlikely
to be picked up by the contact sensor. Since these vibrations do not
appear in the contact sensor signal, it will not be possible to recre-
ate their presence in the microphone signal by filtering the contact
sensor alone.

6. CONCLUSIONS

A modal analysis is developed to design filters to make instru-
ment contact sensors sound more like microphones. An upright
bass was used as a case study and impulse response measurements
of the instrument were recorded through multiple contact sensors
and microphones. The modal parameters are initially fit using the
Complex Exponentials method, and are then improved upon us-
ing a constrained optimization scheme. The modal parameters are
used to form a parallel bank of second-order biquad filters which
can be used to equalize a contact sensor signal such that it sounds
more similar to a microphone at a specific location.

Avenues for future study include further optimizing the modal
architecture as well as expanding to and testing with multiple sen-
sors at various locations. If multiple contact sensors are used, the

chance that all sensors will be located at vibrational nodes is small,
so there can be more confidence that all modes will be captured. If
multiple microphones are used, the ability to interpolate between
them to achieve a desirable microphone placement for the output
signal is gained.
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Figure 8: Spectrogram of the bass being played.

APPENDIX: DAMPING RATIO COMPENSATION

The exact representation of the original damping coefficient before windowing using the exponential decay window can be found by solving
the equation:

�r =

�
1 � �2

r�
1 � �̂2

r

�̂r � �
�

1 � �2
r

�r
, (14)

which yields the two solutions:

�r � ±

�

�4�̂r
4 � 2�4�̂r

2
+ �4 + 3�2�2

r �̂r
4 � 4�2�2

r �̂r
2

+ �2�2
r � 2��3

r �̂r

�
1 � �̂r

2
+ 2��3

r �̂r
3
�

1 � �̂r
2

+ �4
r �̂r

2

�
�4�̂r

4 � 2�4�̂r
2

+ �4 + 4�2�2
r �̂r

4 � 6�2�2
r �̂r

2
+ 2�2�2

r + �4
r

. (15)

Two solutions are found, but the damping ratio must be positive for a damped system, so the positive solution must be used.
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ABSTRACT

The presented sample library of violin sounds is designed as
a tool for the research, development and testing of sound analy-
sis/synthesis algorithms. The library features single sounds which
cover the entire frequency range of the instrument in four dynamic
levels, two-note sequences for the study of note transitions and vi-
brato, as well as solo pieces for performance analysis. All parts
come with a hand-labeled segmentation ground truth which mark
attack, release and transition/transient segments. Additional rele-
vant information on the samples’ properties is provided for single
sounds and two-note sequences. Recordings took place in an ane-
choic chamber with a professional violinist and a recording engi-
neer, using two microphone positions. This document describes
the content and the recording setup in detail, alongside basic sta-
tistical properties of the data.

1. INTRODUCTION

Sample libraries for the use in music production are manifold.
Ever since digital recording and storage technology made it possi-
ble, they have been created for most known instruments. Commer-
cial products like the Vienna Symphonic Library1 or The EastWest
Quantum Leap2 offer high quality samples with many additional
techniques for expressive sample based synthesis. For several rea-
sons, these libraries are not best suited for the use in research on
sound analysis and synthesis. Many relevant details are subject to
business secrets and thus not documented. Copyright issues may
prevent a free use as desired in a scientific application. These li-
braries also lack annotation and metadata which is essential for
research applications, if used for machine learning or sound anal-
ysis / synthesis tasks.

The audio research community has released several databases
with single instrument sounds in the past, usually closely related to
a specific aspect. Libraries like the RWC [1] or the MUMS [2] aim
at genre or instrument classification and timbre analysis [3]. Data-
bases for onset and transient detection which include hand labeled
onset segments have been presented by Bello et al. [4] and von
Coler et al. [5].

The presented library of violin sounds is designed as a tool for
the research, development and testing of sound analysis/synthesis
algorithms or machine learning tasks. The contained data is struc-
tured to enable the training of sinusoidal modeling systems which
distinguish between stationary and transient segments. By design,
the library allows the analysis of several performance aspects, such

1www.vsl.co.at/
2http://www.soundsonline.com/

symphonic-orchestra

as different articulation styles, glissando [6] and vibrato. It fea-
tures recordings of a violin in an anechoic chamber and consists of
three parts:

1. single sounds

2. two-note sequences

3. solo (scales and compositions/excerpts)

For single sounds and two-note sequences, hand-labeled seg-
mentation files are delivered with the data set. These files focus
on the distinction between steady state and transient or transitional
segments. The prepared audio files and the segmentation files are
uploaded to a static repository with a DOI [7]3. A Creative Com-
mons BY-ND 4.0 license ensures the unaltered distribution of the
library.

The purpose of this paper is a more thorough introduction of
the library. Section 2 will explain the composition of the content,
followed by details on the recording setup and procedure in Sec-
tion 3. The segmentation data will be introduced in Section 4. Sec-
tion 5 presents selected statistical properties of the sample library.
Final remarks are included in Section 6.

2. CONTENT DESCRIPTION

2.1. Single Sounds

Similar to libraries for sample based instruments, the single sounds
capture the dynamic and frequency range of the violin, using sus-
tained sounds. The violinist was instructed to play the sounds
as long as possible, using just one bow, without any expression.
Steady state segments, respectively the sustain parts, of these notes
are thus as played as steady as possible. This task showed to be
highly demanding and unusual, even for an experienced concert
violinist.

On all of the four strings, the number of semitones listed in
Table 1 was captured, each starting with the open string. This
leads to a total of 84 positions. All positions are captured in four
dynamic levels which were specified as pp - mp - mf - ff result-
ing in a total amount of 336 single sounds. According to Meyer
[8], the dynamic interval interval of a violin covers a range from
58 . . . 99 dB.

3https://depositonce.tu-berlin.de//handle/
11303/7527
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Table 1: Number of positions on each string

String Positions
G 18
D 18
A 18
E 30

Each item was recorded in several takes, until recording engi-
neer, the author and the violinist agreed on success. Although all
sounds were explicitly captured in both up- and down-stroke tech-
niques, these modes have not been considered individually in the
data set and thus appear randomly.

2.2. Two-Note Sequences

0 2 7 12 30

Position

Fifth, two strings

Fourth, low

Fourth, high

Fifth, one string

Figure 1: Violin board with positions for two-note sequences

For the study of basic articulation styles, a set of two-note
sequences was recorded at different intervals, listed in Table 2.
The respective positions on the board are visualized in Figure 1.
All combinations were recorded at two dynamic levels mp and
ff. Three different articulation styles (detached, legato, glissando)
were used and some combinations were captured with additional
vibrato. These combinations lead to a grand total of 344 two-note
items.

5 semitones on one string were captured in 8 pairs with 24
versions (2 dynamic levels, 2 directions, with and without vibrato,
3 articulation styles): 2 · 2 · 3 = 24.

Repeated tones were captured in 4 pairs with 6 versions (2
dynamic levels, legato and detached, the latter with and without
vibrato): 22 + 2 = 6

7 semitones on one string were captured in pairs with 20 ver-
sions (2 dynamic levels, two directions, detached only without vi-
brato, legato and glissando with and without vibrato): 2 · 2+24 =
20

7 semitones on two strings were captured in 3 pairs with 16
versions (2 dynamic levels, two directions, with and without vi-
brato and two articulation styles [legato, detached]):24 = 16

Table 2: All two-note pairs

5 semitones, one string
Two-note Note 1 Note 2
item no. ISO Pos. String ISO Pos. String
01-24 D4 7 G A3 2 1
25-48 A4 7 D E4 2 2
49-72 E5 7 A B4 2 3
73-96 B5 7 E F#5 2 4

97-120 D4 7 G G4 12 1
121-144 A4 7 D D5 12 2
145-168 E5 7 A A5 12 3
169-192 B 7 E E6 13 4

Repeated tones
Two-note Note 1 Note 2
item no. ISO Pos. String ISO Pos. String
193-198 D4 7 G D4 7 G
199-204 A4 7 D A4 7 D
205-210 E5 7 A E5 7 A
211-216 B5 7 E B5 7 E

7 semitones, one string
Two-note Note 1 Note 2
item no. ISO Pos. String ISO Pos. String
217-236 D4 7 G G3 0 G
237-256 A4 7 D D4 0 D
257-276 E5 7 A A4 0 A
277-296 B5 7 E E5 0 E

7 semitones, two strings
Two-note Note 1 Note 2
item no. ISO Pos. String ISO Pos. String
297-312 D4 7 G A4 7 D
313-328 A4 7 D E5 7 A
329-344 E5 7 A B5 7 E

2.3. Solo: Scales and Compositions

Two scales – an ascending major scale and a descending minor
scale – were each played in three interpretation styles, as listed in
Table 3. The first style was plain, without any expressive gestures,
followed by two expressive interpretations. Six solo pieces and
excerpts, listed in Table 4 which mostly contain cantabile legato
passages were recorded. All compositions were proposed by the
violinist, ensuring familiarity with the material.

Table 3: Scales in the solo part

Item Type Interpretation
01 major, ascending plain
02 major, ascending expressive 1
03 major, ascending expressive 2
04 minor, descending plain
05 minor, descending expressive 1
06 minor, descending expressive 2
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Table 4: Solo recordings

Item Composition Composer

07 Sonata in A major for Vio-
lin and Piano

César Franck

08
Violin Concerto in E mi-
nor, Op. 64, 2nd move-
ment

Felix Mendelssohn

09 Méditation (Thaïs) Jules Massenet

10 Chaconne in g minor Tomaso Antonio Vitali

11
Violin Concerto in E mi-
nor, Op. 64, 3rd move-
ment

Felix Mendelssohn

12 Violin Sonata no.5, Op.24,
12s movement

Ludwig van Beethoven

3. RECORDING SETUP

The recordings took place in the anechoic chamber at SIM4, Berlin.
Above a cutoff frequency of 100Hz the room shows an attenua-
tion coefficient of µ > 0.99, hence the recordings are free of re-
verberation in the relevant frequency range. The recordings were
conducted within two days, taking one day for the single sounds
and the second day for two-note sequences and solo pieces. All
material was captured with a sample-rate of of 96 kHz and a depth
of 24Bit.

Microphones

The following microphones were used:

• 1x DPA 4099 cardiod clip microphone

• 1x Brüel & Kjær 4006 omnidirectional small diaphragm
microphone with free-field equalization, henceforth BuK

The DPA microphone was mounted as shown in Figure 2,
above the lower end of the f-hole in 2 cm distance. Due to its
fixed position, movements of the musician do not influence the
recording. The B&K microphone was mounted in 1.5m distance
above the instrument, at an elevation angle of approximately 45�,
as shown in Figure 3.

Figure 2: Position of the DPA microphone

4http://www.sim.spk-berlin.de/refelxionsarmer_
raum_544.html

Figure 3: Position of the B&K microphone

Instructions

For each of the single-sound, two-note and scale items, a mini-
mal score snippet was generated using LilyPond [9]. Examples
for items’ instructions are shown in Fig. 4. The resulting 63 page
score was then used to guide the recordings. Although the isolated
tasks may seem simple and unambiguous, this procedure ensured
smooth recording sessions.

!
2

""""""""""""
#
vib.

ff
!

$ % #2

(a) Two-note example with
vibrato and glissando

3
!"#

mp

"$
% &

mp
#3

(b) Single-sound example
with upbow and downbow

Figure 4: Instruction scores for two-note a and single-sound b

4. SEGMENTATION

The segmentation of a monophonic musical performance into notes,
and even more into a note’s subsegments is not trivial [10, 11].
During the labeling process, the best of the takes for each item
was selected from the raw recordings and the manual segmenta-
tion scheme proposed by by von Coler et al. [5] was applied using
Sonic Visualiser [12].
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(a) Energy trajectory

(b) Peak frequency spectrogram

Figure 5: Sonic Visualiser setup for annotation of single sound 333

4.1. Single Sounds

Each single sound is divided into three segments, which are de-
fined by four location markers in the segmentation files5, as shown
in Table 5. The first time instant (A) marks the beginning of the
attack segment, the second instant (C) marks the end of the attack
segment, respectively the beginning of the sustain part. The end
of the sustain, which is also the beginning of the release segment,
is labeled with the (D). The label (B) marks the end of the release
portion and the complete sound. The left column holds the related
time instants in seconds.

Table 5: Example for a single-sound segmentation file
(SampLib_DPA_01.txt)

0.000000 A

0.940646 C

7.373000 D

8.730500 B

The definition of the attack segment is ambiguous in literature
[13] and shall thus be specified for this context: Attack here refers
to the actual attack-transient, the very first part of a sound with
a significant inharmonic content and rapid fluctuations. In other
contexts, the attack may be regarded the segment of rise in energy
to the local maximum. Often, there is still a significant increase in
energy after the attack-transient is finished. As the attack-transient
is characterized by unsteady, evolving partials and low relative par-
tial amplitudes, the manual segmentation process is performed us-
ing a temporal and a spectral representation. Figure 5 shows a
typical Sonic Visualiser setup for the annotation of a single sound.
The noisiness of the signal during attack and release can be seen in
the spectral representation. How attack transient and rising slope
may differ, is illustrated in Fig. 6. The gray area represents the la-
beled attack segment, which is finished before the end of the rising
slope is reached.

Less ambiguous, the release part is labeled as the segment
from the end of the excitation until the complete disappearance

5The segmentation files are part of the repository [7]
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Figure 6: RMS trajectory of a note beginning with attack segment
(gray) and end of the rising slope (single sound no. 19)
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Figure 7: RMS trajectory of a note end with release segment (gray)
and beginning of the falling slope (SampLib_19)

of the tone. As shown in Fig. 7, there is often a significant de-
crease in signal energy before the actual release starts. For items
with low dynamics, the release is also covering the very last part
of the excitation.

The ease of annotation varies between dynamic levels, as well
as between the fundamental frequency of the items. Notes played
at fortissimo show clear attack and decay segments with a steady
sustain part, whereas pianissimo tones have less prominent bound-
ary segments and a parabolic amplitude envelope. The higher SNR
in fortissimo notes allows a better annotation of the transients.
Tones with a high fundamental frequency have less prominent par-
tials, whereas the bow noise is emphasized. They are thus more
difficult to label, since attack transient are less clear in the spectro-
gram. The segmentation of high pitched notes at low velocities is
hence most complicated.

4.2. Two-Note Sequences

The two-note sequences contain the the segments note, rest and
transition with the labels listed in Table 6. Stationary sustain parts
are labeled as notes, whereas the transition class includes attack
and release segments, as well as note transitions, such as glissando.

All two-note sequences follow the same sequence of segments
(0-2-1-2-1-2). Figure 8 shows a labeling project in Sonic Visu-
aliser for a two-note item with glissando. The transition segment
is placed according to the slope of the glissando transition.
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Table 6: Segments in the two-note labeling scheme

Label Segment
0 rest
2 transition
1 note

(a) Energy trajectory

(b) Peak frequency spectrogram

Figure 8: Sonic Visualiser setup for annotation of two-note item
22

4.3. Solo

Solo items have been annotated using the guidelines proposed by
von Coler et al. [5]. Due to the choice of the compositions, only
few parts violated the restriction to pure monophony. Solo item
10, for example, starts with a chord, which is labeled as a single
transitional segment.

5. STATISTICS

This section reports selected descriptive statistical properties of the
sample library which are potentially useful when considering the
use of the data.

5.1. Single Sounds

Fig. 9 shows the RMS for all single sounds, in box plots for each
dynamic level. The median for the dynamic levels is logarithmi-
cally spaced.

Table 7: Segment length statistics for the single-sounds

l/s µ/s

Attack 0.247 0.206

Sustain 5.296 1.118

Release 0.705 0.802

Statistics for the segment lengths of the single sounds are pre-
sented in Table 7 and Figure 10, respectively. With a mean of
5.296 s, the sustain segments are the longest, followed by release
segments with a mean of 0.705 s. Attack segments have a mean

pp mp mf ff

�6

�4

�2

lo
g(

rm
s)

Figure 9: Boxplot of RMS for the sustain from the BuK micro-
phone

length of 0.247 s. Extreme outliers in the mean attack length are
caused by high pitched notes with low dynamics.

Attack Sustain Release
0

2

4

6

8

l[
s]

Figure 10: Box plots of segment lengths for all single sounds

5.2. Two-Note

The two-note sequences allow a comparison of different articu-
lation styles. Figure 11 shows the lengths for detached, legato
and glissando transitions in a box plot. With a median duration of
0.72 s, glissando transitions tend to be longer than legato (0.38 s)
and detached (0.37 s) transitions.

detached legato glissando

0.5

1

1.5

Transition type

l[
s]

Figure 11: Box plot of transition lengths for all two-note sequences
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5.3. Solo

Table 8: Note statistics for items in the solo category

Solo item Number of notes l/s µ/s

1 8 0.698 0.745
2 8 0.721 0.768
3 8 0.728 0.776
4 8 0.707 0.753
5 8 0.724 0.771
6 8 0.774 0.848
7 104 0.695 0.661
8 75 1.074 0.899
9 89 0.911 0.923

10 63 0.735 0.690
11 76 0.689 0.707
12 56 0.615 0.740

For the solo category, the basic statistics on the note occur-
rences and lengths are listed in Table 8. All scales (items 1 - 6)
contain 8 notes, compositions (items 7-12) have a mean of 77 notes
per item. With a mean note length of 0.614 906 s, item 12 has the
shortest, and with 1.074 361 s, item 8 has the longest notes.

6. CONCLUSION

The presented sample library is already in application within sinu-
soidal modeling projects and for the analysis of expressive musi-
cal content. Overall recording quality proves to be well suited for
most tasks in sound analysis. Since the segmentation ground truth
follows strict rules and has undergone repeated reviews, it may be
considered consistent.
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ABSTRACT

In this paper, a method for separating stereophonic mixtures into
their harmonic constituents is proposed. The method is based on
a harmonic signal model. An observed mixture is decomposed by
first estimating the panning parameters of the sources, and then
estimating the fundamental frequencies and the amplitudes of the
harmonic components. The number of sources and their panning
parameters are estimated using an approach based on clustering
of narrowband interaural level and time differences. The panning
parameter distribution is modelled as a Gaussian mixture and the
generalized variance is used for selecting the number of sources.
The fundamental frequencies of the sources are estimated using an
iterative approach. To enforce spectral smoothness when estimat-
ing the fundamental frequencies, a codebook of magnitude ampli-
tudes is used to limit the amount of energy assigned to each har-
monic. The source models are used to form Wiener filters which
are used to reconstruct the sources. The proposed method can be
used for source re-panning (demonstration given), remixing, and
multi-channel upmixing, e.g. for hi-fi systems with multiple loud-
speakers.

1. INTRODUCTION

Music signals often contain a mixture of multiple instrument record-
ings. To process such a mixture, e.g., with the goal of modifying
the sources independently, it may be beneficial to extract the indi-
vidual sources in the mixture. This task is known as source sepa-
ration, and it has applications in areas such as music information
retrieval [1], sound scene modification [2], and enhancement [3].

The problem of separating sources in a music mixture is in
general very difficult, because of the presence of overlap in both
time and frequency. In such cases, the source separation prob-
lem is in many cases ill-posed, and the single-channel source sep-
aration problem is very difficult to solve, and would rely heavily
on prior information about the sources. When multiple channels
of data are available, it is possible to exploit information about
the mixing process. A method for separating two sources from
a single-channel mixture was proposed in [4], based on a sparse
non-negative decomposition algorithm, whereas in [5] a method
based on single-channel non-negative matrix factorization (NMF)
was proposed for polyphony music transcription. In [6], a method
based on non-negative matrix factorization (NMF) for stereophonic
source separation is presented, while in [7] a framework for incor-
porating prior knowledge in source separation is presented. Sepa-
ration of moving sources is considered in [8] using a method based

� Supported by the Technical Faculty of IT and Design, Aalborg Uni-
versity.

on multi-channel NMF. Time-variation is allowed through the use
of spatial covariance matrices (SCMs) which are generated based
on estimated directions of arrival (DOAs). Separation of sources
from multi-channel reverberant mixtures, although in a semi-blind
fashion, with known mixing filters, was considered in [9]. Re-
panning of stereophonic sources was proposed in [10] for a known
number of sources without delay panning.

Parametric signal models, where the sinusoidal components
of a signal are modelled as a sum of sinusoids, can also be used
for source separation. A method for source separation and audi-
tory scene analysis based on a multi-pitch and periodicity analysis
method is presented in [11], while sinusoidal modelling was used
for separating harmonic sources using a classification method to
group extracted sinusoids in [12]. Spectral overlap often occur in
music signals, and this should be taken into account when esti-
mating the parameters of the sources. A source separation method
based on pitch, amplitude modulation and spatial cues for separa-
tion of harmonic instruments from stereo music recordings is pro-
posed in [13]. In [14], a method for reconstruction of completely
overlapped notes is presented, where the spectral envelope of each
source is learnt in segments without overlap, and then used to ex-
tract the sources. A separation approach based on optimal filtering
is presented in [15], where a linearly constrainted minimum vari-
ance (LCMV) filter is constructed based on a priori knowledge in
the form of score information. Furthermore, the balance between
overlapping harmonics is adjusted using a priori knowledge about
the magnitude of each harmonic.

In this paper, we present a method for extracting harmonic
sources from stereophonic mixtures of music recordings, such as
those made artificially in a studio. First, the panning parameters
and activations of the sources are estimated using a method based
on clustering of narrowband interaural level and time differences
(ILDs and ITDs) (see [16] for further details). Usually, in source
separation algorithms, the number of sources is assumed known a
priori (see, e.g., [6]), however, here the number of sources does
not need to be known. Equipped with the estimated panning pa-
rameters, the fundamental frequencies of the harmonic sources
are estimated, along with the number of harmonics, and the har-
monic amplitudes, using an iterative approach. To enforce spec-
tral smoothness, a codebook of magnitude amplitudes trained on
recordings of harmonic sources is used (see [17] for further de-
tails). The source models are used to form a Wiener filter for ex-
traction of each source from the mixture. It should be noted that
the proposed method is also capable of separating sources from
monophonic, i.e., single-channel mixtures. After the sources have
been extracted, they are combined with new panning parameters,
and the residual, i.e., the parts of the mixture not captured by the
harmonic model of the sources.
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2. SIGNAL MODEL

An observed multichannel mixture is modelled as a sum of M
harmonic sources sm, m = 1, . . . , M , plus a noise term e. The
signal in the kth channel at time n is

xk(n) =
M�

m=1

gk,msm(n � �k,m) + ek(n), (1)

where gk,m and �k,m are the amplitude and delay panning pa-
rameters, respectively. An example of an amplitude panning law,
which could used to calculate the gains applied to each channel of
a stereophonic mixture is [18]

gk,m =

�
cos �m, for k = 1

sin �m, for k = 2
, (2)

where �m � [0, pi/2]. The mth source sm is modelled as a sum
of Lm harmonic components, i.e,

sm(n) =
Lm�

l=1

�m,le
j�0,mln, (3)

where �0,m is the fundamental frequency of the mth source, Lm

is the model order, and �m,l = Am,le
j�m,l is the complex am-

plitude of the lth harmonic, where Am,l is the real amplitude and
�m,l its phase. A complex signal model is used because it may
result in simplified expressions, and a lower computational com-
plexity. The signal model may be used with real signals by ap-
plying the Hilbert transform. It should be noted that although we
focus on the stereophonic case (k = 2), we here present a general
multi-channel signal model, which can be used in scenarios where
k > 2 using a different panning law. Furthermore, according to the
source model (3), an instrument recording may contain multiple
sources, e.g., when a chord is played on a guitar, where the signal
generated by each string is considered to be a source. Furthermore,
we define a submixture as a sum of sources that share panning pa-
rameters. The kth channel of an observed mixture is processed in
segments each containing N consecutive samples, i.e,

xk = [xk(0) xk(1) · · · xk(N � 1)]T , (4)

which can be used to write the signal model in vector form as

xk =
M�

m=1

ZmGk,m�m + ek, (5)

where Zm is a Vandermonde matrix, with the harmonic compo-
nents of source m with fundamental frequency �0,m in the columns,
i.e.,

Zm =

�

����

1 · · · 1
ej�0,m · · · ej�0,mLm

...
. . .

...
ej�0,m(N�1) · · · ej�0,mLm(N�1)

�

����
,

and Gk,m is a diagonal matrix containing the panning parameters
in (2) and �k,m for channel k of source m, i.e.,

Gk,m =

�

��
gk,me�j�0,mfs�k,m · · · 0

...
. . .

...
0 · · · gk,me�jLm�0,mfs�k,m

�

�� .

Figure 1: Overview of the proposed method.

When only amplitude panning is applied, �k,m = 0 � {k, m},
and when only delay panning is used, gk,m = 1 � {k, m}. Also,
we assume that the panning parameters are constant throughout
a segment of the signal. The vector of complex amplitudes for
source m is given by

�m = [�m,1 · · · �m,Lm ]T , (6)

and the noise vector is

ek = [ek(0) ek(1) · · · ek(N � 1)]T . (7)

Since we model the sinusoidal source components, the noise term
contains the non-periodicities that are not captured by the har-
monic model. In the next section, we present the proposed method
for estimating the panning parameters gk,m and �k,m, along with
the number of unique panning parameters, which corresponds to
the number of submixtures.

3. PROPOSED METHOD

The proposed method consist of several sub-systems, as shown
in Figure 1. In the initial step of the proposed method, the pan-
ning parameters of the sources in the mixture are estimated, along
with an active source indication (ASI) of when the corresponding
sources are active. This knowledge is exploited in the harmonic
source analysis, where the parameters of each source sm in the
mixture are estimated, i.e., its fundamental frequency �0,m, the
number of harmonics Lm, and the amplitude vector �m. The
harmonic models of the sources are used to form Wiener filters,
which are used to extract the sources from the mixture. The result-
ing frames are combined using overlap-add, and a graphical user
interface (GUI) is used to re-pan the sources.

3.1. Panning Parameter Estimation and Activity Detection

As shown in Figure 1, the panning parameters of the sources in the
observed multi-channel mixture are required as input for the pro-
posed harmonic signal analysis sub-system. The source panning
parameters are estimated along with the number of unique pan-
ning parameters using the method presented in [16]. The method
is a blind source panning estimation algorithm based on clustering
of narrowband interaural level and time differences (ILDs, ITDs).
For an unknown number of sources, the parameter distribution
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across all segments of the mixture is modelled as a Gaussian mix-
ture. The generalized variance and degree of membership of the
Gaussian components across segments are used as a basis for the
selection of clusters amongst candidates. In the time-frequency
domain we define a vector y for each frame containing the relative
amplitude panning parameters and relative channel delays, i.e.,

y=
�
ĝ(�), �̂(�)

�T
=

�
arctan

� ����
X1(�)
X2(�)

����

�
,
1
�

�X2(�)
X1(�)

�T

, (8)

where �̂(�) = �̂1(�)� �̂2(�), Xk(�) is the discrete Fourier trans-
form of the kth channel of a segment of the mixture, and � denotes
phase. Eq. (8) is constrained on the assumption of W-disjoint or-
thogonality [19] and on the so-called narrowband assumption that
requires the maximum frequency �max and maximum delay �max to
be strictly within the range |�max�max| < �. From (8) we collect P
observations Y = {y(1), . . . ,y(P )} with identical probability dis-
tributions, each being mutually independent. The log-likelihood
function of the P observations is

ln p(Y|�) =
P�

p=1

ln
M�

m=1

�mp(y(p)|�m), (9)

where �m is the unknown and deterministic parameter vector of
the mth source. For the purpose of estimating panning parame-
ters, the distribution of y from Eq. (8) is modelled as a Gaussian
mixture of M sources, with diagonal covariance matrices, i.e.,

p(y|�)=
M�

m=1

�m
exp

�
� 1

2 (y � µm)T C�1
m (y � µm)

�
�

(2�)d det (Cm)
, (10)

where �
�
= {�1, . . . , �M , µ̂1, . . . , µ̂M ,C1, . . . ,CM} is the com-

plete set of parameters, where the set {�m, µ̂m,Cm} denotes the
mixing probability, mean and covariance of the mth Gaussian. In
general, �m � 0,

�M
m=1 �m = 1, for m = 1, . . . , M . The

maximum likelihood (ML) estimate of the parameter vector is

�̂ML = arg max
�

ln p(Y|�) (11)

for a value of M such that the GMM is overfitted, see [16]. The
ML GMM parameter estimates in �̂ML are obtained using an EM-
algorithm. Several GMM EM-methods have been proposed for
estimating the number of sources, using a penalty term such as
the Bayesian information criterion (BIC) or the minimum descrip-
tion length (MDL) [20]. However, the problem is complicated for
audio recordings for two reasons: no unique definition of a "true
cluster" necessarily exists, and the assumption of normality does
not exactly hold, see, e.g., [21]. Therefore, each of the underly-
ing GMM components does not necessarily correspond to a source
cluster.

In the present method clusters are selected among Gaussian
component candidates by fitting a GMM to the observed data with
a large number of components. From the overfitted GMM clusters
are defined as having lowest generalized variance � and as being
well separated from other candidates as described in the following.
The cluster indices are columns of ��s which have low generalized
variance �, and are well separated from all GMM components, and
�̂s is arranged such that �1 < �2 < · · · < �S , where � = det (Ĉ)
and s = {1, 2, · · · , S}. The a posteriori probability ��s that y�

belongs to mixture component s is

��s =
�̂sN (y�|µ̂s, Ĉs)�S

j=1 �̂jN (y�|µ̂j , Ĉj)
. (12)

The sth column does not represent a cluster if 0<��� <1 � 0<
��s<1, where � = {1, 2, · · · , s � 1} � �. After ranking, the M̂
clusters are in the first columns of ��s, as observed in [16]. This
leads to an estimate of the M unique panning parameters and the
statistics �̂M̂ from which the vector µ̂m is the panning parameters
of the mth source, across all segments.

We compute an active source indication (ASI) for each frame
of the observed mixture. Specifically, the input signal is processed
in frames of length 60 ms, with a hop size of 15 ms. In each
frame all possible combinations of the obtained �̂M̂ statistics are
fitted to the observed data y resulting in a new GMM likelihood.
The maximum likelihood combination is chosen for each frame.
The obtained ASI is a binary indication of activity of each panning
parameter in each frame of the mixture, and is used as input to the
harmonic analysis sub system.

3.2. Harmonic Signal Analysis

In this section the method used to analyse the harmonic sources
in a stereophonic mixture is presented. The goal is to estimate
the fundamental frequencies of the harmonic components in the
mixture, along with the number of harmonics for each source,
and the complex amplitudes, provided with information about the
source panning parameters, and source activity indication, as de-
scribed in the previous section. The proposed method is based
on the maximum likelihood principle, and the log-likelihood of
the kth channel of an observed signal is parametrized by �k =
[�k,1 · · · �k,M ]T , where �k,m = [�0,m gk,m �k,m �T

m]T ,
for m = 1, . . . , M . We assume that the deterministic part of the
signal is stationary, and that the noise is independent and identi-
cally distributed over n and k. Furthermore, we assume that the
noise is white Gaussian with different variance in each channel,
�2

k. Defining the error as ek = xk �
�M

m=1 ZmGk,m�m, the
likelihood of the kth channel of the observed signal is defined as

p (xk; �k) =
1

(��2
k)N e

� 1
�2

k
�ek�2

2
, (13)

which across channels becomes

p ({xk}; {�k}) =
K�

k=1

1

(��2
k)N e

� 1
�2

k
�ek�2

2
. (14)

The log-likelihood of a single channel of the observed signal is

ln p (xk; �k) = �N ln � � N ln �2
k �

�ek�2
2

�2
k

(15)

while the log-likelihood for all channels of the observed signal is

ln p ({xk}; {�k})=�KN ln��N
K�

k=1

ln�2
k�

K�

k=1

�ek�2
2

�2
k

. (16)

The fundamental frequencies, complex amplitudes, and noise vari-
ance for each channel are estimated by maximizing (16). Since the
problem of estimating the parameters of all the sources at once is
impractical in terms of computational complexity, the parameters
are estimated iteratively using an EM algorithm. For each iteration
of the method, the log-likelihood of the observed segment of the
mixture is increased. The observed signal is modelled as a sum of
M sources, where the kth channel of source m is modelled as

xk,m = ZmGk,m�m + ek,m, (17)
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where Gk,m is now formed using the estimates {ĝk,m, �̂k,m} for
each source, and where the noise term ek is decomposed into M
sources, i.e.,

ek,m = �mek, (18)

where �m � 0 is chosen such that
�M

m=1 �m = 1. Here, �m

is chosen such that the entire error term is assigned to a single
component in each iteration, i.e., �p=m = 1 and �p �=m = 0, and
p = mod (i � 1, M) + 1, with i being the EM iteration index
[22, 23]. Assuming white Gaussian noise (see [24, 25]), in the E-
step, the kth channel of the mth source in iteration i is modelled
according to (17) based on parameters estimated in the previous
iteration, i.e.,

x̂(i)
k,m = Z(i)

m Gk,m�̂(i)
m +�m

�
xk�

M�

m=1

Z(i)
m Gk,m�̃(i)

m

�
, (19)

where ��m = [ �A1,mej���1,m · · · �ALm,mej���Lm,m ]T is formed
using a scaled codebook entry Ãm from a codebook C of magni-
tude amplitude vectors trained on individual notes played on a va-
riety of instruments, and combined with the phases resulting from
the least squares estimate of the complex amplitude vector, given
�̂(i+1)

m as [26] (see [17] for more information)

�̂(i+1)
m =

�
K�

k=1

GH
k,mZH

mZmGk,m

�̂2(i+1)
k

��1 K�

k=1

GH
k,mZH

mx̂(i)
k,m

�̂2(i+1)
k

. (20)

In the M-step, the fundamental frequency of the mth source is
estimated using the NLS method, based on the estimate of each
source from the previous iteration, i.e.,

�̂(i+1)
m = arg min

�m

K�

k=1

ln
���x̂(i)

k,m � ZmGk,m�̃(i+1)
m

���
2

2
, (21)

The estimate of the variance �2
k in iteration i + 1 is

�̂2(i+1)
k =

1
N

���x̂(i)
k,m � ZmGk,m�̃(i+1)

m

���
2

2
. (22)

The complex amplitude vector and the noise variance are estimated
in an iterative fashion, because they depend on each other. It is not
necessary to iterate between (20) and (22) if the noise variance for
both channels are equal. The E- and M-steps are repeated until
a convergence criterion is met. The method is guaranteed to con-
verge to a local minimum in each step, and increases the likelihood
of the observed data at each step. Initialization of the EM algo-
rithm is not simple, and can result in poor performance, if it is not
done carefully. We here use the harmonic matching pursuit (HMP)
[27, 24], which is based on a residual for channel k in iteration m
at time n, defined as

r(m)
k (n) = r(m�1)

k (n) �
Lm�

l=1

gk,m�m,le
j�0,ml(n��k,m). (23)

The model parameters are estimated iteratively for each modelled
harmonic source m. The method is initialized using the observed
signal, i.e., r(0)

k (n) = xk(n). As previously mentioned, the funda-
mental frequencies of the M sources are estimated jointly with the
model order. The maximum a posteriori (MAP) model selection
criterion [28, 24] is used as a model selection rule, i.e.,

M̂m = arg min
Mm

K�

k=1

�ln p
�
xk; �̂m, Mm

�
+

1
2

ln |Ĥm|,

where M̂m is the model of the mth source, and | · | denotes the
determinant of a matrix. The determinant of the Hessian, Ĥm,
can be approximated using the Fisher information matrix, and a
normalization matrix is introduced (see [28]) such that

ln |Ĥm| = ln |K�2| + ln |KĤmK|, (24)

where the last term, which is of order O(1), is ignored, and the
first term is used as a penalty term (see [17] for more details). We
can now state the joint pitch and model order estimator used to
compute initial estimates for sources m = 1, . . . , M , i.e.,

�
�̂0,m, L̂m

�
= arg min
�m,{�0,m,Lm}

ln |K�2|
2

+N
K�

k=1

ln
���k,m

��2

2
, (25)

where
�k,m = r(m�1)

k � ZmGk,m�̃m, (26)

and r(m)
k = [rm

k (0) rm
k (1) · · · rm

k (N � 1)]T . Since the cost
function is multi-modal, it is minimized with respect to �0,m using
a grid search (grid size selection is discussed in [29]). The funda-
mental frequencies and amplitudes of the M sources are obtained
by iterating between the expectation and maximization steps, i.e.,
(19), and (20)-(22), respectively, until convergence.

3.3. Source Reconstruction and Re-Panning

The harmonic sources in an observed stereophonic mixture are im-
plicitly modelled in the iterative parameter estimation process, i.e.,
the estimate of the mth source is

ŝm(n) = Zm(n)�̂m, (27)

for n = 1, . . . , N . Since the number of entries in the amplitude
codebook C is relatively small, the signals ŝm, for m = 1, . . . , M ,
may sound a bit rough when listened to directly. Instead, we pro-
pose to use the estimated parameters to form a frequency-domain
Wiener filter to extract each source from a segment of the observed
mixture, i.e.,

S̄m(�) =
�Ŝm(�)�2

�Ŝm(�)�2 + �V̂ (�)�
X(�), (28)

where S̄m(�) is the frequency-domain filter output at a certain fre-
quency bin corresponding to �, Ŝm(�) is the DFT of the source
estimate ŝm, V̂ (�) is the DFT of the estimates of the interfering
sources and the noise, i.e., v = x � ŝm, X(�) is the DFT of
a single-channel version of the mixture. Each time-domain seg-
ment of each the M sources is generated as the inverse DFT of the
filtered output above. The segments are combined using overlap-
add.

4. EXPERIMENTS

The experimental evaluation of the proposed method for panning
parameter estimation, source separation and re-panning consists
of multiple experiments. To evaluate the performance of the pro-
posed method for source separation, a multitrack recording from
the MedleyDB database of music recordings [30] is used, i.e.,
Aimee Norwich - Flying. A segment containing 24 seconds (start:
105.5 s, end: 129.5 s) of audio from three instrument recordings
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Table 1: Description of the data used in the experiments.

File name (.wav) Instrument � (degrees) � (samples)

Flying_RAW_14_01 Trombone 30 0
Flying_RAW_03_02 Bass 5 0
Flying_RAW_15_02 Clarinet -30 0

Table 2: Pannning parameter estimates.

Track �̂ (degrees) �̂ (samples)

Trombone 29.99 0.00
Bass 4.99 0.01
Clarinet -29.97 0.00

are amplitude panned to synthetically generate a stereophonic mix-
ture. Descriptions of the tracks used in the mixture and their pan-
ning parameters are presented in Table 1.

The estimation of the number submixtures and their panning
parameters are evaluated on the observed stereo mixture with fs =
44.1 kHz. The input signal is processed in samples of length
N = 2640 samples (60 ms), with a hop size of H = 662 sam-
ples (15 ms). The GMM is overfitted with M = 10 and from the
overfitted GMM components, an estimate of the source clusters are
obtained. To lower the computational complexity and remove part
of the noise floor from the spectrum, we select the frequency bins
in the measurement vector (8) according to an indicator function
b(�) defined for all �, i.e.,

b(�) =

�
1, |X1(�)||X2(�)| > |X1|T |X2|/N
0, otherwise

. (29)

The estimated source clusters are shown in Figure 3. The source
panning clusters are visualized, as overlayed on the data and y,
and the contours of the initial overfitted GMM components. Both
amplitude panning angle and delay were estimated correctly and
the results are shown in table 2. We observe that the panning pa-
rameters are almost equal to the true parameters. The number of
sources has been estimated to the true value of M = 3. Next, we
can evaluate the ASI estimation shown in Figure 2. The Figure
shows the ASI overlayed on the unmixed sources. A black vertical
line indicates activity in the given frame at the estimated panning
angle, while no line means no activity. We observe that the overall
trend is that the binary ASI resembles the activity of the sources,
both in silent periods and when the sources contain significant en-
ergy.

The fundamental frequency estimates of the harmonic sources
are obtained using the estimated panning parameters and the ASI.
The mixture is downsampled to fs = 8 kHz, and processed in
segments of length N = 480 samples (60 ms), with a hop size
of H = 120 samples (15 ms). The fundamental frequencies are
estimated using a grid with 1 Hz spacing, from f0,min = 50 Hz
to f0,min = 1000 Hz. As explained in Section 3.2, a codebook of
magnitude amplitudes is used when estimating the complex am-
plitudes of the sources. The codebook is trained using anechoic
instrument recordings from the IOWA database1, and the signals

1Available at http://theremin.music.uiowa.edu.

Time [sec]

E
st

im
at

ed
 P

an
n
in

g
 A

n
g
le

 [
d
eg

.]

Figure 2: Active source indication (ASI) shown as black lines. For
each frame of 15 ms there is an indicator. The ASI is overlayed on
the original source signals which do not relate to the panning axis.
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Figure 3: Proposed GMM estimation of source panning clusters.

used for training are listed in Table 3. See [17] for further details.
The fundamental frequency estimates of the sources are shown in
Figure 4, along with the ground truth which was obtained using the
joint_anls() function from the Multi-Pitch Estimation Tool-
box [24] on the individual instrument recordings from the dataset
resulting in single-pitch estimates. No smoothing has been applied
to the parameter estimates. The separation of the sources from
the mixture is done using Wiener filtering, as described in Sec-
tion 3.3. A spectrogram of a monophonic version of the observed
mixture, obtained as an average of the stereo channels, is shown
in Figure 6 along with the residual, which is obtained by subtract-
ing the estimated sources from the mixture. We observe that most
of the harmonic components in the mixture have been removed.
The spectrograms of the unmixed and reconstructed bass tracks are
shown in Figure 7. The reconstructed bass track contains most of
the harmonic content in the unmixed source, however, some of the
higher harmonics are missing. In Figure 8 the spectrograms of the
unmixed and reconstructed trombone tracks are presented. The re-
constructed trombone signal again contains most of the harmonic
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Table 3: Data used for generating the amplitude codebook (v:
played with vibrato).

Instrument Instr. type Note ranges Duration (s)

Alto flute Woodwind G3-B3, C4-B4 68.3
Alto sax Woodwind Db3-B3, C4-B4 118.9
Alto sax (v) Woodwind Db3-B3, C4-B4 129.2
Bass flute Woodwind C3-B3, C4-B4 113.3
Bassoon Woodwind C3-B3, C4-B4 55.7
Bb clarinet Woodwind D3-B3, C4-B4 111.4
Eb clarinet Woodwind G3-B3,C4-B4 47.5
French horn Brass C2-B2, C4-B4 68.0
Oboe Woodwind Bb3-B3, C4-B4 46.6
Soprano sax Woodwind Ab3-B3, C4-B4 64.3
Soprano sax (v) Woodwind Ab3-B3, C4-B4 69.2
Tenor trombone Brass C3-B3, C4-B4 106.2
Trumpet Brass E3-B3, C4-B4 170.3
Trumpet (v) Brass E3-B3, C4-B4 182.9

0 500 1000 1500
0

200

400

600

800

1000
Ground truth Proposed method

Figure 4: Fundamental frequency estimates of the sources in the
mixture.

content, however, some segments in the beginning of the signal
contain energy which was not present in the unmixed source; this
is due to errors in the ASI. The spectrograms of the unmixed and
reconstrcuted clarinet tracks are shown in Figure 9. Comparing the
spectrograms of the unmixed and reconstructed tracks, it can be
seen that the main harmonic components of the source have been
captured in the reconstruction. A graphical user interface (GUI)
is written in MATLAB in which the sources can be re-panned, us-
ing either the original panning parameters, or using new parame-
ters2. Figure 5 shows a screenshot of the mixing GUI. An informal
listening test suggests that including the residual ensures that in-
formation not captured by the harmonic model, such as breathing
noises and other non-stationarities greatly improves the perceived
quality of the reconstructed mixture.

2An audiovisual demonstration of the re-panning is available at
https://youtu.be/0HHoMVyOGcU

Figure 5: Screenshot of the GUI for mixture reconstruction.

5. DISCUSSION

In this paper, a method for separating an observed stereophonic
mixture into its harmonic components, is presented. The method
does not require knowledge of the number of sources in the mix-
ture. The sources are extracted using a multi-channel harmonic
signal model, where the panning parameters and the number of
active sources in each frame of the mixture are estimated in an ini-
tial step. The fundamental frequencies, amplitudes and number of
harmonics are estimated using an iterative approach. To enforce
spectral smoothness, the magnitude amplitudes of the harmonics
are mapped to entries in a codebook, which has been trained on in-
dividual notes played on a variation of instruments. The harmonic
components are extracted by modelling the sources using the har-
monic model and the estimated parameters. When the harmonic
sources have been extracted, they are processed individually, i.e,
the panning parameters of the sources are altered. The reconstruc-
tion of the mixture includes the residual, which contains the parts
of the signal that are not captured by the harmonic signal model.
When the residual is added to the mixture of extracted harmonic
components, the resulting mixture is more pleasing to listen to.
Extensions to this work could be the inclusion of inharmonicity in
the signal model, to allow more precise modelling of string instru-
ment signals, such as guitar, bass and piano recordings. Tempo-
ral smoothness could also be imposed in the parameter estimation
steps. Furthermore, the signal model presented here is anechoic,
i.e., the performance of the proposed method will degrade in the
presense of reverberation effects. One option is to use a method
for dereverberation, such as one of the methods presented in [31].
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Figure 6: Spectrogram of the observed mixture (top) and the resid-
ual after subtraction of the harmonic sources (bottom).

Figure 7: Spectrogram of the unmixed bass track (top) and the
reconstructed bass track (bottom).

Figure 8: Spectrogram of the unmixed trombone track (top) and
the reconstructed trombone track (bottom).

Figure 9: Spectrogram of the unmixed clarinet track (top) and the
reconstructed clarinet track (bottom).
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ABSTRACT

This paper proposes a new partial tracking method, based on
linear programming, that can run in real-time, is simple to imple-
ment, and performs well in difficult tracking situations by consid-
ering spurious peaks, crossing partials, and a non-stationary short-
term sinusoidal model. Complex constant parameters of a gener-
alized short-term signal model are explicitly estimated to inform
peak matching decisions. Peak matching is formulated as a vari-
ation of the linear assignment problem. Combinatorially optimal
peak-to-peak assignments are found in polynomial time using the
Hungarian algorithm. Results show that the proposed method cre-
ates high-quality representations of monophonic and polyphonic
sounds.

1. INTRODUCTION

The sinusoidal model proves beneficial for its capacity to repre-
sent non-stationary sounds. The sinusoidal model represents a
sound signal as a sum of P time-varying sinusoids, called par-
tials, with instantaneous log-amplitude ap(t), phase �p(t), and
frequency fp(t),

s(t) =
P�

p=1

exp
�
ap(t) + i�p(t)

�
(1)

�p(t) = �p(0) + 2�

� t

0

fp(u)du (2)

Decomposing a sound signal into a set of partials, or partial track-
ing, is useful for a variety of applications, including sound syn-
thesis [1], sound source separation [2] [3], audio coding [4], audio
effects [5] [6], and automatic music transcription [7] [8].

Partial tracking consists of two operations that are performed
either sequentially or jointly. First, instantaneous sinusoidal model
parameters are estimated from a short-term analysis of the sound
signal. Second, the instantaneous parameters are linked according
to their expected temporal progressions, forming partial trajecto-
ries. The parameter estimates are interpolated between each short-
term analysis frame so that ap(t) and �p(t) can be evaluated at the
sampling rate.

Despite practical applications of partial tracking and its wide
use in the field, aspects of the process complicate the potential for
a flawless outcome. A complex sound often has hundreds of par-
tials, plus a stochastic component, sculpting its time-varying spec-
tral envelope [9]. Sinusoidal model parameters must be estimated

� Sound Processing and Control Laboratory
† Centre for Interdisciplinary Research in Music Media and Technology

accurately from short-term estimates to ensure appropriate track-
ing decisions. Polyphonic sounds further complicate the analysis
because the frequency trajectories of two partials might cross [10].
Peak matching poses a large combinatorial problem that must be
repeated for many, typically thousands, of time frames. Thus, there
are not only difficulties associated with the quality of tracking, but
also with speed and tractability [11]. Many partial tracking meth-
ods have been proposed over the last several decades, as summa-
rized in Section 1.1.

This paper presents a new partial tracking method, based on
linear programming, that improves the state of the art of sinu-
soidal modeling. The proposed method can operate in real-time,
is simpler to implement than the McAulay and Quatieri (MCQ)
method [12], and creates sinusoidal model representations com-
parable to the leading hidden Markov model (HMM)-based meth-
ods [10] [11]. For parameter estimation, the method considers a
generalized non-stationary short-term sinusoidal model. The peak
matching procedure is formulated as a variation of the linear as-
signment problem [13], a fundamental combinatorial optimization
problem, allowing for an optimal peak-to-peak assignment solu-
tion in polynomial time.

This paper is organized as follows. Section 2 overviews the as-
signment problem. Section 3 establishes the new method of partial
tracking, first by describing short-term analysis additive model pa-
rameter estimation, then by deriving the assignment problem costs.
Section 4 details the results from experiments that demonstrate the
ability of the new partial tracker. Section 5 concludes the paper
and proposes future research on the applications of the assignment
problem in audio.

1.1. Overview of Previous Work

McAulay and Quatieri (MCQ) [12] developed the first partial track-
ing algorithm for sinusoidal modeling of speech. The MCQ method
connects peaks that have minimum frequency difference between
consecutive analysis frames. The MCQ method uses a non-optimal
greedy algorithm, does not consider spurious peaks, and assumes
a stationary short-term signal model. Modifications of the MCQ
method include using a reassigned bandwidth enhanced model [14]
and considering an intermediate “sleep” state for every trajectory
[15]. A linear prediction coding-based method was proposed in
[16] [17] that determines the most probable match using the tra-
jectory’s previous samples and can interpolate missing data. A
non-causal strategy was proposed in [18] that builds each trajec-
tory starting from a reliable two-point connection then growing it
in every direction by appending smaller pieces to it. The adaptive
method from [19] uses B-splines to estimate the parameters of the
additive model. Adaptive oscillators were used to track partials in
[20], and a Kalman filtering approach was described in [21]. The
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hidden Markov model (HMM) partial tracker [10] optimizes the
combination of trajectories within an analysis window, considers
spurious peaks, and performs well in several difficult tracking situ-
ations. The HMM tracker was improved in [11] for non-stationary
and noisy signals by formulating a new peak matching criterion
that incorporates explicitly measured frequency slope information.

The assignment problem [22], presented in Section 2, is a fun-
damental combinatorial optimization problem that describes a va-
riety of real-world problems. Variations of the assignment prob-
lem, especially the multidimensional assignment problem [23],
have been used to describe the problem of multi-target tracking
[24], jointly estimating the number of targets and their trajectories
from sensor measurements. Although the assignment problem has
been successfully applied to such problems for over a half century,
to the extent of our knowledge, it has not been applied to tracking
problems in audio.

2. THE ASSIGNMENT PROBLEM

2.1. Problem statement

The assignment problem is a fundamental combinatorial optimiza-
tion problem in the field of operations research [13].

The problem involves assigning R members of one set, agents,
to another, tasks. Any agent can perform any task. An agent-task
assignment incurs a cost that may vary depending on the assign-
ment. The goal is to assign an agent to perform one task, and
assign a task to one agent, such that the sum of individual costs is
minimized.

The assignment problem is formally expressed as a linear pro-
gramming problem with the following mathematical model:

minimize
R�

i=1

R�

j=1

CijXij (3a)

subject to
R�

i=1

Xij = 1 j = 1, . . . , R (3b)

R�

j=1

Xij = 1 i = 1, . . . , R (3c)

where Cij is the cost of assigning agent i to task j, and Xij is a
binary variable that equals 1 if agent i is assigned to task j and
0 otherwise. The first constraint (3b) ensures that every agent is
assigned to one task, while the second constraint (3c) ensures that
every task is assigned to one agent.

In terms of graph theory, this is equivalent to finding the min-
imum cost assignment in a weighted bipartite graph [22]. Figure
1 represents the assignment of agents to tasks as a graph and as an
annotated cost matrix.

Linear programming problems can be solved by the simplex
algorithm [25], however, more efficient algorithms have been de-
veloped that take advantage of the assignment problem’s specific
structure.

2.2. Hungarian algorithm

The Hungarian algorithm is a combinatorial algorithm that can
solve the assignment problem in polynomial time [26]. The algo-
rithm takes as an input the cost matrix C and outputs the optimal
assignments matrix X. If the number of agents does not equal the

1

2

3

1

2

3 �

�
C11 C12 C13

C21 C22 C23

C31 C32 C33

�

�

Figure 1: Assignments represented as bold lines in a bipartite
graph (left) and as bold elements in a cost matrix (right).

number of tasks, dummy variables are appended to the cost ma-
trix to make it square. The Hungarian algorithm consists of the
following three steps.

1. For each row, subtract the row’s minimum value from every
value in that row. For each column, subtract the column’s
minimum value from every value in that column.

2. Cover the zeros in the resulting matrix with the minimum
number of vertical and horizontal lines. If R lines are re-
quired, an optimal assignment of zeros exists and the algo-
rithm stops. If less than R lines are required, proceed to
Step 3.

3. Find the minimum value in the matrix that is not covered by
the lines from Step 2. Subtract the value from every uncov-
ered element and add the value to every covered element.
Return to Step 2.

This popular algorithm’s implementation is freely available on-
line (commonly as a single function) in several software languages
[27].

2.3. Variations of the Assignment Problem

Variations of the assignment problem use different objectives, con-
straints, or dimensions. A survey of such variations is in [13].
For example, a one-to-many assignment problem has a looser con-
straint that allows an agent to perform more than one task. A vari-
ation that is particularly applicable to multi-target tracking is the
multidimensional assignment problem.

2.4. Multidimensional Assignment Problem

Multidimensional assignment problems consist of assigning the
members of three or more sets [28]. A type of multidimensional
problem that has been applied to multi-target tracking is the axial
three-dimensional assignment problem. This type of problem in-
volves assigning members over three sets, where each assignment
incurs a cost Chij , such that the total cost is minimized.

Multidimensional assignment problems are NP-hard [23]. The
simplest way to solve a multidimensional assignment problem is to
enumerate every possible combination of assignments then choose
the one with the lowest cost [28], however, this solves the problem
in factorial time. Research has led to algorithms that either solve
or approximately solve the problem with improved tractability. For
example, [29] details a branch and bound algorithm that approxi-
mately solves the axial three-dimensional case. Alternatively, [23]
shows that an axial three-dimensional problem can be solved in
polynomial time if the cost Chij can be split into the sum of two
sub-costs, Chij = Chi + Cij .
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3. PROPOSED METHOD

3.1. Overview

The proposed partial tracking method sequentially performs two
processes. First, short-term sinusoidal model parameters are esti-
mated for each peak j in frame k. Second, the short-term parame-
ter estimates are connected over consecutive analysis frames, k�1
and k, by solving an assignment problem, forming trajectories.

This paper considers a trajectory to be a time-sequence of
spectral peaks with short-term sinusoidal model parameters, de-
fined in Section 3.2, that satisfy continuity constraints at the mid-
point of consecutive analysis frames. Accordingly, useful assign-
ments satisfy those continuity constraints while spurious assign-
ments do not. Section 3.3 defines a cost for both assignment types.
The assignment type with the lowest cost is the most probable. The
optimal combination of assignments is found using the Hungarian
algorithm.

3.2. Short-Term Additive Parameter Estimation

Parameters are estimated over short-term analysis frame k at time
tk = kH/fs, where H is the hop size and fs is the sampling
frequency. The frame’s time index n ranges from �N/2 to N/2,
where N + 1 is the frame’s duration. The center of the frame is at
n = 0 and aligned with tk.

The short-term signal model over frame k is a sum of Rk gen-
eralized sinusoids

s(n) =
Rk�

j

exp

�
Q�

i=0

�ijn
i

�
(4)

where �ij are the complex constants of sinusoid j and Q is the
order of the polynomial [30]. The instantaneous log-amplitude
and phase of sinusoid j are

ak
j (n) = �

�
Q�

i=0

�ijn
i

�
(5)

�k
j (n) = �

�
Q�

i=0

�ijn
i

�
(6)

Since the sinusoid’s normalized angular frequency is the time deriva-
tive of the phase,

fk
j (n) =

fs

2�
�

�
Q�

i=0

�ijin
i�1

�
(7)

There are several options for estimating �ij . A comparison of
sinusoidal model parameter estimators is in [31]. Using the distri-
bution derivative method (DDM) [30] allows for the estimation of
�ij up to an arbitrary polynomial order Q.

3.3. Costs of Useful and Spurious Assignments

An assignment cost is quantified by a multivariate Gaussian, sim-
ilarly to the “matching criterion” defined in [10]. The cost of as-
signing peak i in frame k � 1 to peak j in frame k is

Aij = 1 � exp

�
�

�f2
ij

2�2
f

�
�a2

ij

2�2
a

�
(8)
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Figure 2: Illustration of equation (10) (left) and (11) (right) for
different settings of polynomial order Q.

for useful assignments and

Bij = 1 � (1 � �)Aij (9)

for spurious assignments, where

�aij = ak�1
i (H/2) � ak

j (�H/2) (10)

�fij = fk�1
i (H/2) � fk

j (�H/2) (11)
Figure 2 illustrates that equations (10) and (11) evaluate the mid-
point continuity over peak i and j by extending their short-term
sinusoidal model amplitude and frequency trajectories.

Standard deviations �f and �a are defined by the formulas

�2
f = �2

f/
�
2 ln(� � 2) � 2 ln(� � 1)

�
(12)

�2
a = �2

a/
�
2 ln(� � 2) � 2 ln(� � 1)

�
(13)

The parameter � changes the relative preference towards spurious
or useful assignments: smaller values promote spurious ones and
larger values promote useful ones. Parameters �f and �a are val-
ues of �f and �a, respectively, that mark the point of transition
between a useful or spurious assignment. Figure 3 shows how the
cost functions change with respect to these parameters.
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Figure 3: Illustration of how the parameters �f and � change the
useful cost Aij , spurious cost Bij , and cost Cij defined in equation
(14).

3.4. Cost Matrix

This is a multi-criteria assignment problem [13] because it consists
of minimizing an objective function that has two decision criteria.
There is not only a cost Aij of connecting two peaks as a useful
trajectory, but also a cost Bij of not connecting them. We can
recognize this decision model’s multiple criteria simply by con-
structing a single cost matrix whose values are

Cij = min{Aij , Bij} (14)

3.5. Solving the Assignment Problem

The optimal assignments matrix X is retrieved by inputting the cost
matrix C into the Hungarian algorithm. Following equation (14),
an assignment Xij = 1 is useful if Aij is less than Bij .

3.6. Partial Labeling

A trajectory is an unbroken (continuous) path from a peak in some
frame to a peak in a future frame. Therefore, a useful assignment
that continues an existing trajectory from the previous observation
is labeled with that trajectory’s index. On the other hand, if a use-
ful assignment does not continue a path but rather starts one, it is
labeled with a new index. Figure 4 illustrates the labeling of useful
assignments over time.

1

2 1

3 3

4

Figure 4: Illustration of labeling useful assignments (solid lines)
over a sequence of frames. Dashed lines show spurious assign-
ments.

3.7. Computation Cost & Implementation

True real-time operation is possible not only because the peak
matching method has a low computational cost, but also because
peak assignment and labeling only depends on the current frame

k and previous frame k � 1. Solving the assignment problem is a
polynomial time operation, O(R3), where R is the largest of the
two number of peaks Rk�1 and Rk. The proposed method can run
in real-time in many practical situations, depending on R, the hop
size H , and the speed of the parameter estimator.

Implementing this partial tracker is simpler than other ones,
including the MCQ method. Peak matching only consists of defin-
ing a cost matrix with equation (14) and running the Hungarian
algorithm.

3.8. Recasting Previous Partial Tracking Methods

The McAulay and Quatieri (MCQ) method matches peaks over
consecutive frames based on a minimum frequency difference cri-
terion. In terms of an assignment problem, the cost is simply

Cij = |fi � fj | (15)

Rather than use the MCQ method’s non-optimal greedy algorithm,
optimal assignments can be found using the Hungarian algorithm.
This approach avoids all the heuristics associated with the MCQ
method. The MCQ method recast as an assignment problem is a
simple case of the proposed method with Q = 1 that does not
consider amplitude information or spurious assignments.

The hidden Markov model (HMM)-based method considers
the peak connections over two frames as a hidden state. State
transition probabilities are the product of matching criteria. Each
matching criterion �hij quantifies how well peaks h, i, and j, over
frames k � 2, k � 1, and k (two states), satisfy parameter slope
continuity constraints,

�hij = exp

�
� (�fhi � �fij)

2

�2
f

� (�ahi � �aij)
2

�2
a

�
(16)

where �fij = fi � fj and �aij = ai � aj .
The HMM-based method can be recast as a multidimensional

assignment problem. The peak connections that admit the largest
product of matching criteria (state transition probability) are the
same ones that admit the smallest sum of assignment costs.

More specifically, the recast HMM method involves a three-
dimensional assignment problem because the cost depends on peak
parameters (members) over three frames (sets). Recall from Sec-
tion 2.4 that such a problem is NP-hard. Making the HMM method
tractable involves constraining the number of potential states.

Alternatively, if the matching criterion can be expressed as
a product of two sub-criteria, �hij = �hi�ij , then a polynomial
time solution is possible through an assignment problem with cost
Chij = Chi + Cij . In [11] frequency slope � is explicitly esti-
mated and the matching criterion is

�hij = exp

�
� �f2

hi

�2
f

�
�f2

ij

�2
f

� (�ahi � �aij)
2

�2
a

�
(17)

where �fij = (fi +�iH/2fs)�(fj ��jH/2fs). While the fre-
quency slope calculation depends on only two frames, the calcula-
tion of amplitude slope depends on parameters over three frames,
so the problem is still NP-hard.

The cost function developed in Section 3.3 is expressed in
terms of parameters across only two frames, k and k � 1, by ex-
plicitly estimating both the amplitude and the frequency slope, en-
abling a linear assignment problem formulation and polynomial
time solution.
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Figure 5: Detected partials (lines) from simulated data (dots) that
resemble overlapping chirp sinusoids plus noise.
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Figure 6: Detected partials (lines) from simulated data (dots) that
resemble overlapping frequency modulated sinusoids plus noise.

4. RESULTS

4.1. Simulated Data

In these examples, peak parameters are simulated (set “by hand”).
Circumventing the short-term analysis highlights the ability of the
proposed peak matching method. Useful peaks are simulated by
sampling parameter values from analytic expressions of partial tra-
jectories, while spurious peaks are simulated by setting parameter
values randomly. Each peak’s amplitude-related values are set to
zero, which further complicates tracking. Figures 5 and 6 show
that the tracker perfectly classifies useful and spurious peaks and
resolves overlapping partials that have similar frequency slopes.

4.2. Audio Signals

In the following examples, peak parameters are estimated from a
short-term analysis of an audio signal, s(n), using the distribution
derivative method (DDM) [30]. The first group of examples in-
volve audio signals that are synthesized from partial trajectories
with constant amplitude and corrupted with -40 dB of white noise.
The second group of examples involve real speech and musical au-
dio signals. The signal is reconstructed as ŝ(n) using the synthesis
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(a) Q = 1. 12 dB R-SNR.
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(b) Q = 2. 52 dB R-SNR.

Figure 7: Detected partials from a synthesized audio signal con-
sisting of harmonically-related logarithmic chirp sinusoids plus
noise for different settings of polynomial order Q.

method described in [12]. The reconstruction signal-to-noise ratio
(R-SNR) is used to help quantify the results, given by

R-SNR = 10 log10

� �N�1
n=0 s(n)2

�N�1
n=0

�
s(n) � ŝ(n)

�2

�
(18)

Figure 7 shows the results of tracking a synthetic harmonic
signal whose fundamental frequency quickly increases on a log-
arithmic scale. If frequency slope is not estimated, as shown in
Figure 7a, then �f must be large enough to ensure useful peaks are
connected over large frequency differences. This results in many
false detections of useful assignments from spurious data. Figure
7b shows how the results improve dramatically when frequency
slope is estimated.

Figure 8 shows the results of tracking a harmonic signal with
strong vibrato (±5 semitones). A further challenge is posed at 0.5
seconds where the fundamental frequency smoothly steps up by 5
semitones, resulting in close partials with steep slopes.

Figure 9 shows the results of tracking synthetic polyphonic
audio that resembles a violin sound with unnaturally strong and
fast vibrato superimposed with a trombone sound performing a
fast upward glissando.
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Figure 8: Detected partials from synthesized harmonic audio with
vibrato plus noise. The fundamental frequency smoothly steps up
by 5 semitones, from 330 Hz to 440 Hz. 26 dB R-SNR.
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Figure 9: Detected partials from synthesized polyphonic audio
plus noise. 19 dB R-SNR.

Formant tracking is another time-frequency tracking process
that is especially suitable for vocal sounds. The proposed method
can be used without modification for formant tracking applica-
tions. Figure 10a shows the partials detected from a real male voice
sound while Figure 10b shows the results of tracking the formants
of the same sound. Linear predictive coding (LPC) with 24 coeffi-
cients was used instead of DDM to estimate each formant’s short-
term amplitude and frequency, corresponding to an order Q = 1
polynomial.

Finally, the results of tracking a tango excerpt by Piazolla are
shown in Figure 11. This multi-instrumental composition admit-
ted dense short-term spectra with several frames having greater
than 150 peaks. For this 14-second long signal over 12,000 par-
tials were detected in a total computational time of 13 seconds
on a 2.8 GHz quad-core processor: parameter estimation took 9
seconds and tracking took 4 seconds. The reconstructed sound is
perceptually close to the original with a 15 dB R-SNR.

All test signals and reconstructed sounds are available for lis-
tening at http://www.music.mcgill.ca/~julian/dafx18.
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(a) Detected partials. 22 dB R-SNR.
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(b) Detected formants.

Figure 10: Male voice signal tracking results (/kara/).

5. CONCLUSIONS AND FUTURE WORK

This paper developed a new partial tracking method that matches
sinusoidal model parameters over consecutive analysis frames by
solving a linear assignment problem with the Hungarian algorithm.
Results show that the proposed method easily handles exception-
ally difficult partial tracking scenarios, involving strongly modu-
lated partials embedded in noise and crossing partials that are com-
mon in polyphonic recordings. Moreover, the proposed tracker
can operate in real-time and is simple to implement. Other pop-
ular methods were recast under the assignment problem frame-
work, revealing them as specific cases of the proposed method.
Future work may examine the results of tracking without slope
information by solving a multidimensional assignment problem.
More generally, other audio applications may be advantageously
described as assignment problems.
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ABSTRACT

This paper describes a modification of the ESPRIT algorithm
which can be used to determine the parameters (frequency, de-
cay time, initial magnitude and initial phase) of a modal rever-
berator that best match a provided room impulse response. By
applying perceptual criteria we are able to match room impulse
responses using a variable number of modes, with an emphasis
on high quality for lower mode counts; this allows the synthesis
algorithm to scale to different computational environments. A hy-
brid FIR/modal reverb architecture is also presented which allows
for the efficient modeling of room impulse responses that con-
tain sparse early reflections and dense late reverb. MUSHRA tests
comparing the analysis/synthesis using various mode numbers for
our algorithms, and for another state of the art algorithm, are in-
cluded as well.

1. INTRODUCTION

Artificial reverberation is a now ubiquitous effect that is often used
to add a sense of space and color to a live performance or record-
ing. The acoustics of a reverberant space depend on several fac-
tors including a building’s architecture, wall materials, furniture,
and so on. These factors affect the intensity and directionality of
echoes arriving at a listener over time. Artificial reverberation al-
gorithms aim to model these echoes, either directly or indirectly,
and often with different goals in mind as explained below.

Digital signal processing algorithms for artificial reverberation
have a long history. A comprehensive examination of this history
is given by the review article of Välimäki et al. [1]. A brief taxon-
omy of reverb algorithms includes:

• purely algorithmic and parametric approaches, e.g.,
Schroeder’s allpass chains [2], feedback delay networks
[3][4], sparse FIR filters [5], and modal filter banks [6] [7]
[8],

• convolutional reverbs [9], and

• physical modelling [10].

The wide-variety of techniques for artificial reverberation is a
testament to the importance of this effect. We may also conjecture
that the development of different reverb algorithms has been led
by different design goals. To illustrate, convolutional reverbs are
capable of very accurate modelling1 but are relatively inflexible.
On the other hand, feedback delay networks are computationally

� For Eventide Inc.
1For a fixed source-listener positioning.

efficient and easily modulated. The latter properties are important
considerations when designing a reverb effect meant to act as an
instrument in its own right [11].

An important concern of ours is the musicality/playability of
the reverb, especially with respect to real-time manipulation of
perceptually relevant qualities. At the same time, we desire a
model that can accurately simulate real spaces2. These require-
ments led us to eschew the traditional convolution-based reverb in
favor of a fully parametric approach. In particular, we have cho-
sen to adopt a modal reverb architecture [6] because the mapping
of modes to perceptually important parameters (room size, decay
time), is relatively straightforward, and because the parameters of
a modal filter bank can be stably modulated at audio-rate. Recent
work has also demonstrated a variety of interesting techniques that
can be used with modal filter banks for pitch processing, time-
scaling, and distortion [12].

1.1. Previous work

Although modal architectures for reverb processing are relatively
recent [6], similar techniques have been used in other contexts for
quite some time. See for example: Laroche’s model of heavily
damped percussive sounds [13]; The source-filter piano model of
Meillier et al [14]; Bank’s instrument body model [8]; Paatero et
al.’s modelling of loudspeaker responses [15]; and, Sirdey et al’s
modal analysis of impact sounds [16];

Within the realm of reverb effects several works address
the estimation of modal parameters, including: the frequency
zooming-ARMA model of Karjalainen et al. [7][17]; Abel
et al.’s modal reverberator [6]; Maestre et al.’s pole optimiza-
tion algorithm [18]; the Gabor ESPRIT model of Sirdey et
al. [19]; Schoenle et al.’s model of room responses [20]; and
Hashemgeloogerdi et al.’s work on subband Kautz-filter modelling
[21].

1.2. Contributions

A particular problem with modal modeling of reverb is the high
density of modes exemplary of real room responses. After a short
duration, and above the Schroeder frequency, both the echo and
modal density become so dense as to make estimation of explicit
modes very difficult [22]. Even if we had access to these param-
eters, running a modal filter bank with more than a few thousand
modes would unreasonably tax a typical CPU.

In order to confront the problem of modal estimation for very
dense impulse responses we have chosen to use a high-resolution,

2In the same sense as a convolutional reverb.
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parametric estimator: the ESPRIT algorithm [23] [24]. Due to its
parametric nature, ESPRIT, does not suffer from the same resolu-
tion limitations encountered with Fourier transform-based estima-
tors, e.g., [6]. Other works applying ESPRIT to estimate modal
parameters include [25] [26] [19].

A difficulty with ESPRIT is that it becomes computationally
intractable for very dense and very long responses, like those typi-
cally encountered for real rooms. For this reason, we have chosen
to use a subband approach, which has several critical benefits as
discussed in section 4.

In order to prune mode counts down to a realizable number for
synthesis with a modal filter bank, our work presents an approach
to reduce the model order using the K-means algorithm.

We also discuss a technique for managing early reflections,
which are not always easy to model using a small number of
modes.

1.3. Outline

The remainder of this paper is laid out as follows. Section 2 de-
scribes the synthesis model of the modal reverberator. Section 3
gives an overview and derivation of the ESPRIT algorithm. Sec-
tion 4 gives an explanation of the subband modifications we’ve
made to make ESPRIT tractable for such a large problem. Section
5 is a brief word on estimating the model order. Section 6 in-
troduces our algorithm for fitting the initial magnitude and phase
parameters of the modal reverberator. Section 7 shows how we
reduce the number of modes while maintaining perceptual accu-
racy, while Section 8 describes an extension to handle early reflec-
tions. Section 9 describes 3 experiments we ran comparing this
method to a ground truth, another algorithm, and with and with-
out the special early reflection handling. Finally Section 10 shares
conclusions and Section 11 contains references.

2. THE MODAL MODEL

A starting point for this work is the assumption that a measured
room response, h[n], can be perfectly modeled using a linear dig-
ital filter with a rational z-transform

H(z) =
B(z)
A(z)

=

�N
k=0 bkz�k

�M
k=0 akz�k

(1)

the poles of which correspond to roots of the polynomial A(z).
Using long division, followed by partial fraction expansion, we
can re-write H(z) as [27]:

H(z) =
N�M�

k=0

Bkz�k

� �� �
HF IR(z)

+
M�

k=1

Ak

1 � zkz�1

� �� �
HModal(z)

(2)

which represents an FIR filter in parallel with a bank of 1-pole
filters that define the resonant modes of the system. In the special
case N < M , the FIR part disappears and H(z) = HModal(z).
We will assume this is the case for the time-being, and revisit the
estimation of HFIR(z) in section 8.

Taking the inverse z-transform of H(z) = HModal(z) gives

h[n] =
M�

k=1

hk[n] =
M�

k=1

Akzn
k (3)

assuming the impulse response is stable and causal. When the
poles occur in complex conjugate pairs, the time-domain view of
the modal filter bank represents an exponentially damped sinu-
soidal (EDS) model. The complex amplitudes Ak = e�k+j�k

define the initial magnitude and phase of each damped sinusoid
zn

k = e(dk+jwk)n.
Given this model two goals remain: i) estimate the model or-

der, M ; ii) estimate the model parameters: initial magnitude, ini-
tial phase, frequency, and damping. The model order should be as
small as possible, while still maintaining perceptual transparency
of the impulse response.

3. ESPRIT

The ESPRIT algorithm can be used to find the frequency and
damping parameters for the EDS model in equation (3). The sem-
inal ESPRIT reference is [23], however it focuses on direction-
of-arrival estimation for antenna arrays. A more recent reference
that focuses specifically on audio signal processing is [24]. The
ESPRIT algorithm is briefly described below.

First, we collect L samples of the impulse response h[n] into
a vector h. We can then re-write the EDS model from (3) using
vector matrix notation as follows

h = Ea (4)

where Enk and ak correspond to zn
k and Ak, respectively. Using

the delay property:
zn+R

k = zR
k zn

k (5)
we can write the EDS model for the Hankel matrix
Hnk = h[n + k] (consisting of delayed copies of h) as

H = EAET (6)

where Akk = Ak is a diagonal matrix containing the complex am-
plitudes. The superscripts T and H indicate the matrix transpose
and Hermitian transpose, respectively. The columns of H lie in the
M -dimensional signal space, spanned by the modal vectors, i.e.,
the columns of E. Although these are unknown, we can find an-
other set of vectors that span the signal space via a singular value
decomposition (SVD) of H

H = U�VT (7)

The column vectors of U are, in general, different from the signal
vectors, however, they are related by an unknown linear transform
T (a rotation and scaling)

E = UT (8)

The rotational invariance property of complex exponentials can
now be invoked to determine the modal frequencies and dampings.
Mathematically, the rotational invariance property states that

E� = E�D (9)

where E� signifies deleting the first row of E, E� signifies deleting
the last row of E, and D = diag(z0, z1, . . . , zM ). Substituting (8)
into (9) and performing some algebra gives

(UT)� = (UT)�D (10)
U�T = U�TD (11)

U� = U� TDT�1

� �� �
�

(12)

� = (UH
� U�)

�1UH
� U� (13)
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The matrix � is computed using the Moore-Penrose pseudo in-
verse, since the matrix U is not typically square. The eigenvalues
of � are the complex modes (z1, z2, . . . , zM ), which can be re-
covered from an eigenvalue decomposition (EVD). Summarizing,
the steps in the ESPRIT algorithm are:

1. Compute the signal space U [equation (7)]

2. Compute � using the pseudo inverse [equation (13)]

3. Compute the complex modes from an EVD of �

4. SUBBAND PROCESSING

As alluded to previously, it is difficult to apply ESPRIT on long
signals with high model orders because its complexity scales like
O(LM(M + log(L))) [24].

One way to make ESPRIT tractable is to apply a divide and
conquer approach. This can be done by passing the input through a
filter bank to divide the input into a set of narrow subbands. There
are four main benefits to this approach:

1. Since each subband has a narrow passband, we can safely
assume that each subband contains a small number of sig-
nificant modes. This in turn reduces the ESPRIT model
order, M ;

2. Using a suitable filter bank, we can downsample each sub-
band without significant aliasing, which greatly reduces the
amount of data, L, we need to consider when computing
the SVD of the Hankel matrix;

3. Downsampling increases the distance between closely
spaced modes, making them potentially easier to identify
[7];

4. When using complex filters we can reduce the ESPRIT
model order by a factor of 2 when analyzing real signals.
During synthesis the complex conjugate modes can be re-
stored to create a real impulse response.

Taken together, these aspects make it possible to apply ESPRIT
to long IRs with potentially tens of thousands of modes. This ap-
proach was demonstrated in [19] using the Gabor transform and
a similar idea was presented earlier by Laroche (using Prony’s
method instead of ESPRIT) [13].

We have experimented with three different filter bank archi-
tectures: the Gabor transform [19], the alias-free pyramidal filter
bank described in [28], and the Audio FFT filter bank described
in [29]. We currently use the Audio FFT filter bank in our analy-
sis algorithm because it can be used to specify an arbitrary set of
non-uniformly spaced subbands.

The rth subband is produced by filtering the input with a
causal N-tap FIR filter gr[n]:

yr[n] = h[n]�gr[n] =

��M
k=1 �k

�n
l=0 gr[l]z

n�l
k , if n < N � 1�M

k=1 �̂krz
n
k , if n � N � 1

(14)
where

�̂kr = �kskr (15)

skr =
N�1�

l=0

gr[l]z
�l
k (constant w.r.t. n) (16)

The first N � 1 samples of the output yr[n] represent a start-up
transient, which does not exhibit an EDS behavior. After the start-
up transient dies out, however, each subband once again follows
an EDS model, with the addition of a scaling factor skr that can be
subsumed into the magnitude and phase for the current subband.
For this reason, we ignore the first N � 1 samples from each filter
bank channel when applying ESPRIT on subbands. In our expe-
rience, this operation reduces the bias in the ESPRIT frequency
and damping estimates. On the other hand, modes that have decay
times comparable to the subband filter lengths cannot be accurately
estimated.

For modes with center frequencies lying in the stopband of the
rth channel filter skr

3 should be negligibly small, allowing us to
effectively ignore these modes in the current subband.

The Audio FFT filter bank’s channel filters have been designed
using the window method. It was demonstrated by [30] how the
window method can be used to design perfect non-uniform recon-
struction filter banks. We first choose R brickwall filters such that
the sum of channel responses is unity

R�

r=1

Gr(e
j�) = 1 (17)

where Gr is the frequency response of the rth subband. This re-
quirement is easily met by partitioning the frequency domain into
a set of non-overlapping bands. Taking the inverse DTFT shows
that

R�

r=1

Gr(e
j�) = 1 ��

R�

r=1

gr[n] = �[n] (18)

This set of filters is perfect reconstruction since we can recover the
input signal x[n] by adding together the subband responses, i.e.,

R�

r=1

yr[n] =
R�

r=1

x[n] � gr[n] (19)

= x[n] �
�

R�

r=1

gr[n]

�
= x[n] � �[n] = x[n]. (20)

However, due to the brickwall response of the channel filters each
impulse response, gr , is an IIR filter. Using the window method
each channel IR is truncated via multiplication with a short win-
dow, creating an FIR filter. Using an N-tap window, w[n], the rth

channel IR becomes ĝr[n] = w[n]gr[n]. This set of filters is still
a perfect reconstruction, if w[0] is normalized to 1 since

R�

r=1

w[n]gr[n] = w[n]
R�

r=1

gr[n] = w[n]�[n] = w[0]�[n] (21)

Time-domain multiplication by w[n] results in a convolution be-
tween the ideal channel filter and the window in the frequency-
domain: Gr(e

j�) � W (ej�). This results in a frequency-domain
spreading of the filters, causing the filter responses to overlap in
frequency. Figure 1 illustrates an example of this type of filter
bank. The region marked as partition indicates the original bound-
aries of the ideal brickwall filter, and the region marked as pass-
band shows the widened filter response due to the windowing.
This particular filter bank was designed using a Chebychev win-
dow as suggested in [29].

3We recognize skr as the z-transform of the rth subband filter evalu-
ated at the kth pole location.
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Partition Width

Passband Width

Figure 1: Filter bank design

When performing ESPRIT on subbands we can leverage the
design of our filter bank in order to automatically prune out ir-
relevant modes. We first estimate how many modes are in each
subband’s passband as described in section 5 below. We then run
ESPRIT using this model order. After ESPRIT returns we can
safely discard any modes with center frequencies outside of the
partition. We can do this because the partition perfectly divides
the frequency spectrum into non-overlapping bands. Modes that
do not lie in the current partition must belong to a neighboring
partition (and therefore they should be estimated in the subband
they lie closest to).

5. ORDER ESTIMATION

An inherent difficulty with parametric estimators lies in the spec-
ification of the model order—in our case the number of modes
to estimate in each subband. There exist a few techniques that at-
tempt to automatically estimate the model order based on informa-
tion theoretic criteria, namely [31] and [32]. We have implemented
these techniques, but found they did not perform particularly well
for high model orders, e.g., more than 20 or so modes. Therefore,
we have resorted to a simple model order selection algorithm based
on peak picking from the discrete Fourier spectrum. We multiply
the number of peaks detected by a relaxation factor greater than or
equal to 1, recognizing the fact that some modes may not lead to a
distinct peak in the sampled spectrum, or may be replicated (e.g.,
in the cases of two-stage and non-exponential decay). In practice,
overestimating the model order does not usually pose a problem,
because modes selected from the noise subspace generally have
very small magnitudes.

6. MAGNITUDE AND PHASE ESTIMATION

After the modes zn
k in each subband have been estimated using

ESPRIT we must estimate the the complex amplitudes Ak. This
can be done by minimizing the approximation error

arg min
a

||h � Ea||22 (22)

A closed form solution to equation (22) is

a = (EHE)�1EHh (23)

However, this requires the inversion of a matrix with M2 entries,
which becomes very slow once the number of modes M exceeds a

few thousand or so. We have experimented with conjugate gradient
decent (which does not require a matrix inversion) to iteratively
solve equation (22). This works well, but is still fairly slow once
the number of modes exceeds several thousand.

Owing to Parseval’s theorem, equation (22) can also be tackled
in the frequency domain:

arg min
a

||h � Ea||22 = arg min
a

||ȟ � Ěa||22 (24)

where ȟ and Ě are the discrete Fourier transforms of h and the
columns of E, respectively. Note that each column of Ě can be
computed analytically using the geometric series

Ěk[l] =
N�1�

n=0

zn
k e�j2�nl/N (25)

=
1 � zN

k

1 � zke�j2�nl/N
(26)

In order to speed up the magnitude and phase estimation we
once again resort to a divide and conquer approach. In particular,
given a spectral filter Fk we can estimate the complex amplitudes
of a subset of modes

arg min
ai,i�Ik

||Fkȟ � FkĚa||22 (27)

Modes that have minimal overlap with the filter Fk can be effec-
tively ignored by removing columns from Ě. Furthermore, we
only need to minimize the norm in equation (27) over frequencies
that fall in the passband of Fk.

Using the DTFT we can calculate the 3dB bandwidth of the
mth mode to be

bm = arccos(2 � 0.5 � (edm + e�dm))N/(2�) (28)

where dm is the damping factor and N is the DFT length. For the
kth subband we estimate the magnitude and phase of any modes
for which the range [�m � bm/2, �m + bm/2] intersects with the
passband of the kth spectral filter.

This procedure is applied repeatedly using a set of spectral
filters {Fk} designed to completely cover the audible spectrum.
This algorithm is much faster than any of the above techniques,
and can be performed in parallel on architectures with multiple
cores.

7. MODEL COMPRESSION

As mentioned in the introduction, in order to limit the CPU usage
of a real-time modal reverberator we must restrict the total number
of modes to no more than a few thousand. Subband ESPRIT rou-
tinely estimates upwards of 5000-10000 modes for real and dense
IRs, meaning we require a strategy to reduce the overall number
of modes used, ideally without sacrificing sound quality.

Luckily, it is possible to heavily compress our model by tak-
ing advantage of limitations in the human auditory perception sys-
tem. In particular, it has been found that dramatically lower modal
densities (compared to physically reality) can be used to generate
perceptually accurate late reverberation. Therefore, we have de-
veloped a number of ad-hoc strategies to reduce the size of our
modal filter bank

Following [18] we first partition the frequency spectrum into
uniform bands on a Bark scale. We then divide our fixed modal
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budget evenly across these bands. If some bands have fewer modes
than they were allocated, the extra modes are reallocated among
the remaining bands until no modes remain.

After the allocation step we have 2 numbers for each band
i) Ma: the actual number of modes in each band (estimated us-
ing ESPRIT); and ii) Md the desired number of modes in each
band. While we could simply prune the extra modes Ma � Md,
this would change the distribution of modal frequencies in each
band. Instead, we use the K-means algorithm to find a new set
of Md modes whose average distance from the estimated modes
is minimized. An advantage of K-means is that is has the abil-
ity to ‘average’ the contributions of several modes by picking a
new modal location that represents the center-of-gravity in a local
neighborhood.

Empirically, we have found that the decay time estimates from
ESPRIT exhibit a high degree of variance for real impulse re-
sponses. This in turn has a negative affect on the results of the
K-means algorithm for small values of K (i.e., heavy model com-
pression). In order to counteract this effect we smooth the decay
time estimates from ESPRIT prior to running K-means. First, we
apply a median filter to the decay times (after sorting them by fre-
quency), which helps to eliminate outliers. Our median filter win-
dow starts with a length of 1 (at the boundaries) and grows until it
reaches its maximum length (which is an algorithmic parameter in
the range of 10 to several 100 modes). We have also experimented
with weighted median filtering but no real benefit was noted. The
median filtered decay times are then smoothed using a FIR low-
pass filter to reduce the variance between nearby frequencies. It
has been found that these three aspects: i) median filtering; ii) de-
cay time smoothing; and, iii) K-means clustering are crucial for
synthesizing perceptually good sounding IRs using a very small
number of modes.

Once the model size is reduced the magnitude and phase of
each mode (as discussed in section 6) must be re-estimated. In
actuality, we always run the magnitude and phase estimation last,
and hence only once.

We have applied a few additional ad-hoc strategies that should
be noted. Immediately after running ESPRIT on each subband:

1. we discard any modes with a very low amplitude (estimated
using least squares)

2. we discard any underdamped modes (which occur very
rarely, and are unstable)

8. HANDLING EARLY REFLECTIONS

Recall that our factorization of the rational transfer function in
equation (2) included a parallel FIR path, HFIR(z). We can think
HFIR(z) as modelling the early reflection portion of the reverb re-
sponse. Fixing HModal(z), the least squares solution for the FIR
filter is hFIR[n] = h[n] � hModal[n] for n � [0, N). It is also
possible to estimate the modal response from a delayed copy of the
measured IR, i.e., h[n � Nd]. In this case

hFIR[n] =

�
h[n] for n � [0, Nd � 1]

h[n] � hModal[n] for n � [Nd, N)
(29)

This later approach allows us to control the overlap between the
responses which can lead to improved numerical performance as
discussed in [33].

Before we can estimate the FIR part, however, we require
some way to determine the tap-length of the FIR filter, N . In some

(a) Zoomed-in view of found modes.

(b) Synthesized and Estimated Irs.

Figure 2: Generated and found modes of a modally generated IR
with 1000 modes.

cases, we have found that excluding the FIR part completely is
a viable option, in which case we take N = 0. However, when
an impulse response has prominent early reflections the modal
synthesis algorithm may require an unreasonably large number
of modes, M , to produce a good reconstruction on its own. We
believe these unreasonably high mode counts originate from the
EDS model’s inability to efficiently model time sparsity4. A sig-
nificant number of modes is required to build up the construc-
tive/destructive interference pattern needed to model the sparsity
between distinct echoes. In these situations we have implemented
the early reflections using an FIR filter whose length, N , is esti-
mated using Abel and Huang’s echo density estimator [34].

4Indeed, the density of a Dirac comb in the time-domain is inversely
proportional to its density in the frequency-domain.
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9. EXPERIMENTS AND RESULTS

To validate the methods presented in this paper we conducted ex-
periments with synthetic impulse responses having known modes,
and performed several MUSHRA style listening tests. The record-
ings used in all of the listening tests are available online5.

9.1. Synthetic Modal Impulse Response

In order to verify that the subband ESPIRIT analysis algorithm
correctly identifies the true modes of an impulse response, we ran
it on synthetically generated modal impulse responses with known
sets of modes. The synthetic impulse responses were generated by
adjusting the distribution of modes over frequency, the number of
modes, and the decay times and magnitudes of the modes.

Figure 2 shows a plot of the known mode frequencies, ob-
tained by spacing 1000 modes with a decay time of 0.5 seconds
and magnitude of 1.0 linearly across the frequency spectrum up
to 20kHz, as well as the modal frequencies detected by our sub-
band ESPRIT analysis. Figure 2 aslo shows a plot of the original
impulse response, and the one generated with modes found by sub-
band ESPRIT. We can make the following observations: subband
ESPRIT does indeed find the true modes of the impulse response,
and it also finds a variety of spurious, or non-existent, modes. Note
that even though the algorithm has added an extra mode at mode
number 26, the subsequent mode frequencies are still correct. The
addition of these spurious modes is, in part, due to the purpose-
ful over-estimation of mode counts in the algorithm as previously
discussed.

We can calculate the error between the known and estimated
modal parameters by pairing the known and detected modes that
are closest in frequency.

lk = arg min
j

(||f [k] � fest[j]||2) (30)

ef [k] = f [k] � fest[lk] (31)
ed[k] = d[k] � dest[lk] (32)

Where lk is the index of the detected mode that is closest to
the kth known mode in frequency. The mean and standard devi-
ation of the error in the decay time estimates, ed, are 0.000858
and 0.008301 seconds respectively. Similarly, we can calculate
the mean and standard deviation of the errors between the known
and found mode frequencies, ef . These are 0.002329Hz and
0.015249Hz, respectively. As a result of the close match between
the modal parameters, the impulse response synthesized using the
found modes is nearly identical to the one synthesized using the
known modes. Comparing the two IRs, we find that the Mean
Squared Error (MSE) between the two is �120.8147dB.

9.2. Monophonic Real Room Impulse Response

In order to compare our system with another state-of-the-art
method, we chose to process the same impulse response presented
in Maestre et al. [18] using mode counts of 400, 800, and 1800.
In an effort to make the comparison fair, we did not include an
FIR model of the early reflections in our model. We used the web-
MUSHRA software [35] to administer a standard listening test in
which users were asked to rate the quality of the modeled IRs with

5http://dgillespie.github.io/Corey/

respect to a reference. A total of 12 users participated and there
was no time-limit for the task. Figure 3 shows a box plot of the col-
lected data, from which we may draw several conclusions. Firstly,
the two algorithms perform quite similarly to one another. At low
mode counts, our model was ranked slightly higher on average,
whereas at high mode counts, Maestre et al.’s model was ranked
higher. In our view, both models seem to impart very subtle arti-
facts to the impulse responses, however, test participants seemed
to judge these artifacts differently depending on the model order.

Figure 3: Listening test results I

Because the artifacts present in the synthesized impulse re-
sponses might manifest themselves differently when convolved
with a source, we chose to perform a second test comparing our
results with the results of Maestre et al. Using the same mode
counts as before, listeners were asked to compare impulse re-
sponses which had been convolved with a source. The results of
Maestre et al., and the dry source material, were obtained from
their supplemental website6. Figure 4 shows the results of this test
based on 9 users. Comparing Figures 3 and 4, two important ob-
servations stand out. Firstly, the scores of each individual response
are, on average, higher than in the previous test and second, while
our model was rated higher for a mode count of 800 in the previous
test, the models of Maestre et al. were rated higher in this test.

9.3. Early Reflection Improvement with Parallel Synthesis
Model

Figure 5 shows MUSHRA listening test results where 12 expert
listeners rated the quality of differing subband ESPIRIT syntheses
(and a hidden reference) with respect to a reference IR. The syn-
theses vary by model type, either pure modal or the FIR+modal
model from Section 8, and the number of modes. In this experi-
ment the reference is an IR from the Hall algorithm on a Lexicon
PCM 90 digital reverb unit. This particular IR has a rather long
early reflection field measuring 482 ms, measured using the Abel
and Huang echo density estimator from [34]. The RT60 of this IR
was also comparably long, measuring around 3 secs.

Listeners overwhelmingly favored the parallel FIR+modal
model over the pure modal model. This trend held at very high

6https://ccrma.stanford.edu/ esteban/modrev/dafx2017/
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Figure 4: Listening test results II

mode counts for the pure modal model (12000). Even in this case,
the parallel FIR+modal model using only 1500 modes rates sig-
nificantly more similar to the reference. 12000 modes is taxing
even on modern CPUs, while 1500 modes plus a fast convolution
remains reasonably attainable.

We conclude that our hypothesis from Section 8 holds: it’s
difficult to guarantee accurate synthesis of significant early reflec-
tions in any efficient manner using a pure modal approach. Given
that the early field is important in the perception and accurate syn-
thesis of any given IR, the parallel model described in Section 8
can alleviate this particular issue. However, the parallel model is
not without its drawbacks. The parallel model presents its own
challenges for realtime audio effects like morphing, decay scaling,
and size scaling because now the two parallel synthesis models
must be parameterized in two differing domains and modulated in
tandem to achieve perceptually pleasing and relevant results.

Figure 5: Listening test results III

10. CONCLUSION AND FUTURE WORK

In this paper we presented an end-to-end system for the modal
analysis of real room impulse responses. Using the high-resolution
ESPRIT estimator, we were are able to very accurately identify
the frequency and damping parameters of impulse responses. Fur-
thermore, we presented a number of strategies to i) make ESPRIT
tractable on real-recordings; and, ii) yield models that can operate
with fixed modal budgets. While our use of a subbband approach
is not new, we have described several important considerations for
practitioners of this method. This includes: trimming of the start-
up transient, our approach to filter bank design, and our strategy
for handling out-of-band modes. In order to reduce mode counts
in the final model we presented a novel model compression algo-
rithm based around K-means.

As mentioned previously, one interesting result of our listen-
ing tests was that, when convolved with a source, the results of
Maestre et al. performed better than the method presented here.
We have shown that the subband ESPRIT analysis method will
find the correct modes of a system, given the correct model or-
der, so it is likely that this error is introduced in our method of
pruning excess modes. Because K-means is a clustering algortihm
based on averages, the resulting set of modes after pruning may no
longer be modes that were present in the original signal, but rather
a new set of modes representing the average of several modes. Fu-
ture work will surely focus on finding the best possible pruning
method for reducing mode counts. This could include exploration
of psychoacoustic-based methods, such as in [6]. In addition, it
is worth noting that the rating of the generated impulse responses
increased when they were convolved with a source. Presumably
this is because some of the artifacts are masked. It would be of
great value to know what artifacts are masked more heavily and
vice versa. One could see the advantage in tuning the algorithm to
be more accepting of artifacts that are more easily masked when
used with source material.
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ABSTRACT

Noise subspace methods are popular for estimating the parame-
ters of complex sinusoids in the presence of uncorrelated noise
and have applications in musical instrument modeling and micro-
phone array processing. One such algorithm, MUSIC (Multiple
Signal Classification) has been popular for its ability to resolve
closely spaced sinusoids. However, the computational efficiency
of MUSIC is relatively low, since it requires an explicit eigenvalue
decomposition of an autocorrelation matrix, followed by a linear
search over a large space. In this paper, we discuss methods for
and the benefits of converting the Toeplitz structure of the autocor-
relation matrix to circulant form, so that eigenvalue decomposi-
tion can be replaced by a Fast Fourier Transform (FFT) of one row
of the matrix. This transformation requires modeling the signal
as at least approximately periodic over some duration. For these
periodic signals, the pseudospectrum calculation becomes trivial
and the accuracy of the frequency estimates only depends on how
well periodicity detection works. We derive a closed-form expres-
sion for the pseudospectrum, yielding large savings in computa-
tion time. We test our algorithm to resolve closely spaced piano
partials.

1. INTRODUCTION

Sinusoidal parameter estimation is a classical problem with appli-
cations in radar, sonar, music, and speech, among others. When
the frequencies of sinusoids are well resolved, looking for spectral
peaks is adequate. It is shown in [1] that the maximum likelihood
(ML) frequency estimate for a single sinusoid in Gaussian white
noise is given by the frequency of the magnitude peak in the peri-
odogram. The ML approach is extended and Cramer-Rao bounds
are derived for multiple sinusoids in noise in a follow-on paper by
the same authors [2]. Some other estimators are covered in [3].

For closely spaced sinusoidal frequencies, however, other ap-
proaches have been developed. Noise subspace methods are a
class of sinusoidal parameter estimators that utilize the fact that
the noise subspace of the measured signal is orthogonal to the sig-
nal subspace. Pisarenko Harmonic Decomposition [4] makes use
of the eigenvector associated with the minimum eigenvalue of the
estimated autocorrelation matrix to find frequencies. However, it
has been found to exhibit relatively poor accuracy [3]. Schmidt
[5] improved over Pisarenko with the MUSIC (MUltiple SIgnal
Classification) algorithm which could estimate the frequencies of
multiple closely spaced signals more accurately in the presence of
noise. In MUSIC, a pseudospectrum is generated by projecting
a complex sinusoid onto all of the noise subspace eigenvectors,
defining peaks where this projection magnitude is minimum. This

method is shown to be asymptotically unbiased. An enhancement
to MUSIC, root-MUSIC, was proposed in [6]. It uses the proper-
ties of the signal-space eigenvectors to define a rational spectrum
with poles and zeros. It is said to have better resolution than MU-
SIC at low SNRs. Similarly, another popular algorithm, ESPRIT
[7], was invented by Roy et al. which makes use of the underly-
ing rotational invariance of the signal subspace. The generalized
eigenvalues of the matrix pencil formed by an auto-covariance ma-
trix and a cross-covariance matrix gives the unknown frequencies.
ESPRIT performs better than MUSIC, especially when the sig-
nal is sampled nonuniformly. More recently, another enhancement
to MUSIC, gold-MUSIC [8] has been proposed which uses two
stages for coarse and fine search, respectively.

One of the disadvantages of the MUSIC algorithm is its com-
putational complexity. Typical eigenvalue decomposition algo-
rithms are of the order O(N3) [9]. In this paper, we use the fact
that, for periodic signals, the autocorrelation matrix is circulant
when it spans an integer multiple of the signal’s period. In this
case, looking for the eigenvalues with largest magnitude is equiv-
alent to looking for peaks in the power spectrum. We know in the
circulant case that all noise eigenvectors are DFT sinusoids [10],
and hence we can derive a closed-form solution when we project
our search space onto the noise subspace, thereby reducing further
the calculations required to find the pseudospectrum. Replacing
eigenvalue decomposition in MUSIC with efficient Fourier trans-
form based methods has been previously studied in [11] where the
eigenvectors are derived to be some linear combinations of the data
vectors, while maintaining the orthonormality constraint. In this
paper, we take a different approach and show that for periodic sig-
nals, the MUSIC pseudospectrum can be exactly calculated using a
sum of aliased sinc functions and its accuracy only depends on the
accuracy with which the periodicity of the autocorrelation function
is detected. We also propose speeding up MUSIC for non-periodic
signals by initializing QR factorization for eigenvalue decomposi-
tion with the DFT matrix.

We test our algorithm to resolve closely spaced partials of the
A3 note played on a piano. It is a well known fact that the strings
corresponding to a particular piano key are slightly mistuned. Cou-
pled motion of piano strings has been studied in detail by Weinre-
ich in [12, 13]. There is a slight difference in frequency of the
individual strings, giving rise to closely spaced peaks in the spec-
tra. We show that FAST MUSIC can resolve two closely spaced
peaks much faster than MUSIC.

The rest of this paper is organized as follows : Section 2 gives
an outline of the MUSIC algorithm, Section 3 derives the FAST
MUSIC algorithm, Section 4 describes the experimental results on
a) an artificially synthesized signal containing two sinusoids with
additive white noise and b) a partial of the A3 note played on the
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piano which contains beating frequencies. We conclude the paper
in Section 5 and delineate the scope for future work. Estimation of
real-valued sine wave frequencies with MUSIC has been studied
in [14]. For all derivations in this paper, we work with real signals,
because we are interested in audio applications. This saves some
time in computing the pseudospectrum since we know it will be
symmetric. Our derivations can be easily extended to complex
signals.

2. MUSIC

2.1. Model

We wish to estimate the parameters of a signal composed of ad-
ditive sinusoids from noisy observations. Let y(n) be the noisy
signal, composed of a deterministic part, x(n), made of r real sinu-
soids and random noise, w(n). We assume that w(n) � N(0, �2),
and that w(n) and x(n) are uncorrelated. The sinusoidal phases
�i’s are assumed to be i.i.d. and uniformly distributed �i � U(��,
�).

y(n) =
r�

i=1

Ai cos (�in + �i) + w(n)

y(n) = s(n) + w(n)

In vector notation, the signal y � RM can be characterized
by the M � M autocorrelation matrix Ky = E(yyT ). For a
zero-mean signal, the autocorrelation matrix coincides with the
covariance matrix. Since this matrix is Toeplitz and symmetric
positive-definite, its eigenvalues are real and nonnegative (and pos-
itive when � > 0). We can perform an eigenvalue decomposition
on this matrix to get a diagonal matrix � consisting of the eigen-
values, and an eigenvector matrix Q. The 2r eigenvectors cor-
responding to the 2r largest eigenvalues, Qs, contain signal plus
noise information, whereas the remaining M-2r eigenvectors, Qw,
only represent the noise subspace. Thus, we have the following
relationships:

Ky = Ks + Kw = Ks + �2I

Ky = Q�QH

Ky =
�
Qs Qw

� �
�� 0
0 �2IM�2r

� �
QH

s

QH
w

� (1)

2.2. Pseudospectrum Estimation

Let a vector of M harmonic frequencies be denoted as b(�) =
[1, ej�, e2j� · · · e(M�1)j�]T . We project this vector onto Qw, i.e.,
the subspace occupied by the noise (where there is no signal com-
ponent). MUSIC defines the following pseudospectrum as a func-
tion of a set of �’s:

P (�) =
1

b(�)HQwQH
w b(�)

P (�) =
1

||QH
w b(�)||2

(2)

For a particular value of � that is actually present in the sig-
nal, the sum of projections of b onto the eigenvectors spanning the
noise subspace will be zero. This is because the subspace occupied
by the signal is orthogonal to that occupied by noise since they are
uncorrelated. Thus, we see that P (�) will take on a very high

value in such cases (theoretically infinite). In conclusion, we can
find peaks in the function P (�) and those will correspond to our
estimated frequencies. Since the search space can consist of any
number of densely packed frequencies, very closely spaced peaks
can show up in the pseudospectrum. However, as the search-space
grows, so does computational complexity.

3. FAST MUSIC

3.1. Deriving the autocorrelation matrix

In vector form, y � RM can be written as:

y = Sa + w

w � N(0, �2I)
(3)

�

����

y(n)
y(n � 1)

...
y(n � M + 1)

�

����
=

�

����

1 0 · · ·
cos(�1) sin(�1) · · ·

...
... . . .

cos[(M � 1)�1] sin[(M � 1)�1] · · ·

�

����

�

�

����

A1 cos(�1n + �1)
A1 sin(�1n + �2)

...
Ar sin(�rn + �r)

�

����
+

�

����

w(n)
w(n � 1)

...
w(n � M + 1)

�

����

(4)

Since y is zero-mean, its covariance matrix is

Ky = E(yyT ) = SKaST + �2I. (5)

We now want to get Ky in terms of Ka. We have assumed �i �
U(��, �) (uniformly identically distributed random phase). We
observe that every term of Ka is of the form Ka(i, j) = E[Ai cos(�i

n + �i) Aj cos(�jn + �j)], or E[Ai sin(�in + �i)Aj sin(�jn +
�j)], or E[Ai sin(�in+�i)Aj cos(�jn+�j)], or E[Ai cos(�in+
�i)Aj sin(�jn + �j)]. All of these terms are zero, except the first
two when i = j, i.e. E[A2

i cos (�in + �i)
2] = E[A2

i sin(�in +

�i)
2] =

A2
i

2 , which makes it a diagonal matrix:

Ka =

�

������

A2
1

2 0 · · · 0 0

0
A2

1
2 · · · 0 0

...
... . . .

...
...

0 0 · · · 0
A2

r
2

�

������
(6)

The autocorrelation matrix of the observed signal is given in (7).
This is an M � M real, symmetric Toeplitz matrix.

3.2. For periodic signals

Under conditions to be specified, it is possible to replace the eigen-
value decomposition required in MUSIC by a Fast Fourier Trans-
form (FFT). In this subsection, we derive the order of the autocor-
relation matrix for which it is circulant instead of only Toeplitz.
We also derive a closed-form expression for finding the pseudospec-
trum.
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SKaST + �2I =

�

������

�
i

A2
i

2 + �2 �
i

A2
i

2 cos �i
�

i
A2

i
2 cos 2�i · · ·

�
i

A2
i

2 cos (M � 1)�i�
i

A2
i

2 cos �i
�

i
A2

i
2 + �2 �

i
A2

i
2 cos �i · · ·

�
i

A2
i

2 cos (M � 2)�i

...
...

...
. . .

...
�

i
A2

i
2 cos (M � 1)�i

�
i

A2
i

2 cos (M � 2)�i · · · · · ·
�

i
A2

i
2 + �2

�

������
(7)

3.2.1. Circulancy of the autocorrelation matrix

We have seen that the autocorrelation matrix Ky is symmetric Toeplitz.
However it is to be noted that for k = 1, 2, ..., if M is an integer
such that M = 2�n/�i, n � Z+, then

r�

i=1

A2
i

2
cos (M � k)�i =

r�
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A2
i

2
cos k�i (8)

If we choose M carefully, then the autocorrelation matrix may be
written as :
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(9)
This matrix is circulant! Hence, its eigenvectors are given by

the DFT sinusoids and its eigenvalues are the DFT coefficients
of the first row [10]. The eigenvalues can be computed using an
FFT algorithm when M is a power of 2 or highly composite. The
relationship between eigenvalues of Toeplitz matrices and those of
asymptotically equivalent circulant matrices have been studied in
[15].

For example, if the signal consists of 3 sinusoids with frequen-
cies �

2 , �
4 and �

5 then the minimum order of M which will make
the autocorrelation matrix circulant is given by 2�LCM(2, 4, 5) =
40. However, if any of the denominators is irrational, then the
LCM does not exist, and hence no value of M will make the auto-
correlation matrix circulant. Of course, in reality we do not know
the frequencies and cannot determine M this way. However, we
can instead detect when the autocorrelation corresponds to a sig-
nal that is periodic. If we can find the periodicity of the estimated
autocorrelation function and set M to be that period, then the re-
sulting autocorrelation matrix will be circulant. Since no signal
is truly precisely periodic, this procedure can be viewed as intro-
ducing an approximation based on assuming the signal is periodic.
Such a periodic/harmonic approximation is common when the un-
derlying signal source is known to be a quasi periodic oscillator
such in voiced speech, bowed strings, woodwinds, flutes, brasses,
organs, and so on.

In this paper, we use the Average Magnitude Difference Func-
tion [16] to detect the period. We find all local minima in the
AMDF and pick the period as the lowest minimum index which
is smaller than its adjacent neighbors. We set M to be an integer
multiple of the detected period. This gives us more data points for
the FFT, thus increasing accuracy. It also comes at a higher cost,
but the FFT is still orders of magnitude faster than eigenvalue de-
composition, hence the trade-off is justified.

3.2.2. Searching over a large range of frequencies

Suppose we want to calculate the pseudospectrum for N � M
distinct frequencies �k = 2� k

N for k = �N
2 , . . . , N

2 �1 covering
the range [��, �), i.e, the search space has N points. Each search
space vector is

b(k) = [1, e
2�jk

N , e
4�jk

N . . . , e
2�(M�1)jk

N ]T . (10)

The noise subspace consists of M �2r vectors. Instead of project-
ing on to the noise subspace, Qw, we can make the computation
easier by using the signal subspace, Qs instead, which only has 2r
vectors. This is because the noise subspace and the signal subspace
are orthogonal complements and hence the following holds

QsQ
H
s + QwQH

w = I (11)

The projection onto the noise subspace can be simplified as

||QH
w b||2 = bHQwQH

w b

= bH(I � QsQ
H
s )b

= bHb � bHQsQ
H
s b

= ||b||2 � ||QH
s b||2

(12)

Since b(k) is a vector of length M consisting of complex exponen-
tials of unit magnitude, ||b(k)||2 = M . The matrix Qs � CM�2r

is composed of columns of signal eigenvectors, such that each col-
umn is denoted as

qs =
1�
M

[1, e
2�jmi

M , e
4�jmi

M , · · · , e
2�(M�1)jmi

M ]T (13)

where mi are the complex frequencies associated with the signal
eigenvectors [10], i.e, the indices of the top 2r FFT magnitudes.
The projection of b(k) onto the signal subspace can be written as :
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The pseudospectrum can be approximated as:

P (k) =
1

||b(k)||2 � ||QH
s b(k)||2

=
1

M � 1
M

�2r
i=1

� sin[�( k
N � mi

M )M ]

sin[�( k
N � mi

M )]

�2

=
1

M �
�2r

i=1

�
asincM ( k

N � mi
M )

�2

(15)

where asinc stands for the aliased sinc function1. The pseudospec-
trum is independent of the data and only depends on the calculated
period, M . At signal frequencies, when k

N = mi
M , one aliased

sinc term in the summation dominates and we can evaluate it us-
ing L’Hospital’s rule.

lim
x�0

asincM (x) = M (16)

Therefore, at signal frequencies, the pseudospectrum is theoreti-
cally infinite.

P (k) � � if
k
N

=
mi

M
(17)

For the special case of periodic signals, MUSIC is essentially equiv-
alent to looking for the top 2r peaks in the power spectrum and
using the positions of those peaks to form the signal space.

3.2.3. Algorithm Summary

1. Estimate the autocorrelation function (ACF) of the given
signal.

2. Find the periodicity M of the ACF and take the FFT of its
first M samples. This is equivalent to computing the power
spectrum.

3. Sort the FFT magnitudes in descending order. The indices
corresponding to the largest 2r magnitudes are the signal
eigenvector frequencies.

4. Form search space vectors according to (10) with k = �N
2 ,

. . . , N
2 � 1.

5. Calculate the pseudospectrum according to (15) and find 2r
peaks in it.

6. Do parabolic interpolation on the peaks to get more accu-
rate frequency estimates [17].

3.3. For non-periodic signals

Most signals in practical applications are non-periodic. In that
case, these derivations do not hold exactly. However, we can still
speed up the eigenvalue decomposition process. From (1), we can
write the diagonal eigenvalue matrix as

� = QHKyQ (18)

The eigenvectors Q are usually estimated with QR factorization
[9]. We can use the DFT matrix W as an initial value for QR
factorization, which will ensure its convergence in fewer steps.

1https://ccrma.stanford.edu/~jos/sasp/
Rectangular_Window.html

� + � = W HKyW (19)
For exactly periodic signals � is a null matrix. For approximately
periodic signals, � is a non-diagonal matrix with small entries. We
can see that within some iterations W will converge to Q. The
speed of convergence will depend on how close to being periodic
the signal is.

4. EXPERIMENTS AND RESULTS

4.1. Synthesized signal

To compare FAST MUSIC with MUSIC, we tested a signal com-
posed of cosines at frequencies 0.004 Hz and 0.005 Hz at fs = 1
Hz and added normally distributed noise w(n) at an SNR of 10dB.

y(n) = cos (0.01�n) + 0.5 cos (0.008�n + �) + w(n) (20)

To detect periodicity of the autocorrelation function, we need
at least two periods of the signal. This signal has a periodicity of
M = 1000 samples. Thus, we made the signal 2500 samples long.
It is to be noted that the closer the frequencies in the signal, the
larger will be its periodicity, and hence we will need more samples
of data to accurately determine it.

To measure computation time, we compared various eigen-
value decomposition algorithms with Fast Fourier Transform al-
gorithms for increasing orders of the autocorrelation matrix. The
results can be seen in Figure 1. QR factorization is used to find
eigenvalues and eigenvectors for MUSIC. QR factorization with
Gram Schmidt orthogonalization is slow, symmetric tridiagonal
QR with implicit Wilkinson shift is slightly faster whereas reduc-
tion to the Hessenberg form is fastest. More details about these
algorithms can be found in [9]. The Fourier transform algorithms
are orders of magnitude faster, with the DFT dominating at lower
orders and self-sorting mixed radix FFT [18] and resampled split
radix FFT [19] giving faster speeds at higher orders. It is to be
noted that the order of the autocorrelation matrix for which circu-
lancy is achieved is not likely to be a power of 2, and hence we
cannot use the well-known radix-2 FFT algorithm. However, we
can first resample the data to a power of 2 [20] and then apply a
radix-2/split radix FFT algorithm or use a mixed-radix FFT algo-
rithm on any composite order. All of these functions have been
implemented in MATLAB. More efficient implementations can be
done in C, where the FFT functions should overtake the DFT at
much lower orders.

We also conducted 1000 Monte-Carlo simulations on the above
example, with uniformly distributed random phase. We plotted the
mean-squared errors vs SNR for MUSIC and FAST MUSIC, along
with the Cramer-Rao bounds (CRB) as given in [21] in Figure 2.
The order of the autocorrelation matrix for MUSIC is set to 200.
For FAST MUSIC, the period is calculated for each simulation
and found to be 1000 samples. The number of points in the search
space is 2000. The poor performance of FAST MUSIC at low
SNRs is due to the inaccuracy in periodicity detection. In Figure
2a, FAST MUSIC overtakes the CRB at high SNRs, where period-
icity is detected accurately, hence MSE = 0. At high SNRs, FAST
MUSIC also outperforms MUSIC. Increasing the order of the au-
tocorrelation matrix would have improved the accuracy of MUSIC
at a cost of high computational time, so we decided to work with
a reasonable order of 200, while FAST MUSIC used 2000 sam-
ples in the autocorrelation function (an integer multiple of the pe-
riod). As seen in Figure 2b, both methods have significant bias.
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Figure 1: Computation time in log seconds versus matrix order

Bias can be reduced arbitrarily in FFT based peak finding methods
[17] by increasing the amount of zero-padding, as well as by other
methods [22]. We expect it to reduce similarly in FAST-MUSIC
and MUSIC when the number of points in the search space is in-
creased.
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Figure 2: MSE vs SNR plots
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Figure 3: Spectrogram of piano note

4.2. Piano data

We tested our algorithm on the A3 note played on the piano. The
spectrogram of the steady state portion of the note is given in Fig-
ure 3. We can observe beating in some of the partials. We decided
to work with the 11th partial, located close to 2600 Hz, where a
beating of roughly 1 Hz is observed. We bandpass-filtered the sig-
nal using a 4th-order Butterworth filter with cut-off frequencies at
2400 Hz and 2900 Hz. We ran FFTs with the rectangular win-
dow and FAST MUSIC on different data lengths, as shown in Fig-
ure 4, where the vertical lines indicate the frequencies detected by
FAST MUSIC. One disadvantage of using the rectangular window
is high side lobe height as seen in Figure 4, but we compromise
side lobe height for the narrowest main lobe width for the sake
of best resolution. We see that for window size of 214, the FFT
magnitude does not exhibit two separately discernible peaks at all,
whereas FAST MUSIC provides two peak frequencies with some
error. This is because we specify the number of sinusoids to be 2 in
FAST MUSIC, whereas the FFT has no prior information about the
number of peaks expected in the magnitude spectrum. For longer
window sizes, both FFT and FAST MUSIC are able to resolve the
two peaks with greater accuracy. One potential application is in pi-
ano tuning, where FAST MUSIC could be used to quickly resolve
closely spaced peaks caused by the coupled motion of the piano
strings.

5. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a computationally efficient inter-
pretation of the MUSIC algorithm for periodic signals that makes
use of the peaks in the power spectrum. The autocorrelation ma-
trix has been derived and approximated by a circulant matrix. This
approximation has allowed us to replace computationally inten-
sive eigenvalue decomposition algorithms with an FFT. We have
subsequently derived a closed-form expression for searching over
a range of frequencies. These modifications have yielded a sig-
nificant improvement in computational speed. For non-periodic
signals, we have proposed initialization of QR factorization with
the DFT matrix to speed up eigenvalue decomposition.2

2The code and the simulations can be found at https://github.
com/orchidas/fast_MUSIC
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Figure 4: FFT magnitude plots and FAST MUSIC frequency estimates (vertical lines)

A key factor in the accuracy of FAST MUSIC is the precision
in periodicity detection. If the period is off by a significant number
of samples, the autocorrelation matrix is no longer circulant and
FAST MUSIC falls apart. AMDF based periodicity detector is
simple but time consuming, not foolproof and often yields wrong
results if the number of lags in the autocorrelation function is very

high. Ideally, a better method for periodicity detection should be
used.

Another issue is finding the number of sinusoids present in a
given signal, when not known a priori. To do so, one can look at
the relative magnitude of the eigenvalues (power spectrum peak
values in our case). This works well if the signal to noise ratio is

DAFX-6

DAFx-347
DAFx-347



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

sufficiently high and the peak separation sufficient. More robust
partitioning schemes have been used in [8]. Once the signal fre-
quencies are known, the estimation of amplitudes is simple and
can be done using linear least squares.

We found that the estimator mean squared errors for both FAST-
MUSIC and MUSIC were dominated by bias at high SNRs. Future
work should reduce or eliminate the bias so that the relative perfor-
mance can be observed at high SNRs. FAST MUSIC also needs to
be better evaluated with non-periodic signals. We have not tested
its performance with non-periodic signals in this paper.
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ABSTRACT

To date, the most successful onset detectors are those based on
frequency representation of the signal. However, for such methods
the time between the physical onset and the reported one is unpre-
dictable and may largely vary according to the type of sound being
analyzed. Such variability and unpredictability of spectrum-based
onset detectors may not be convenient in some real-time applica-
tions. This paper proposes a real-time method to improve the tem-
poral accuracy of state-of-the-art onset detectors. The method is
grounded on the theory of hard real-time operating systems where
the result of a task must be reported at a certain deadline. It con-
sists of the combination of a time-base technique (which has a high
degree of accuracy in detecting the physical onset time but is more
prone to false positives and false negatives) with a spectrum-based
technique (which has a high detection accuracy but a low tempo-
ral accuracy). The developed hard real-time onset detector was
tested on a dataset of single non-pitched percussive sounds using
the high frequency content detector as spectral technique. Experi-
mental validation showed that the proposed approach was effective
in better retrieving the physical onset time of about 50% of the hits
detected by the spectral technique, with an average improvement
of about 3 ms and maximum one of about 12 ms. The results also
revealed that the use of a longer deadline may capture better the
variability of the spectral technique, but at the cost of a bigger la-
tency.

1. INTRODUCTION

The research field of Music Information Retrieval (MIR) focuses
on the automatic extraction of different types of information from
musical signals. One of the most common application domains
of such a field is that of automatic music transcription [1]. An-
other domain is represented by the identification of timbral aspects
[2], which might be associated to different expressive intents of a
musician [3] or to a particular playing technique that generated a
sound [4]. The retrieval of the instant in which a pitched or un-
pitched musical sound begins, generally referred to as onset de-
tection, is a crucial step in a MIR process. Numerous time- and
spectrum-based techniques have been proposed for this purpose
(see e.g., [5, 6]), some of which are based on the fusion of various
methods [7].

Up to now, the majority of MIR research on onset detection
has focused on offline methods based on the analysis of large da-
tasets of audio files. Nevertheless, different techniques have also

� This work was supported by a Marie-Curie Individual fellowship from
the European Union’s Horizon 2020 research and innovation programme
(749561).

been developed for real-time contexts [8, 9, 10], especially for re-
trieving information from the audio signal of a single musical in-
strument [11, 12]. Real-time implementations of some onset detec-
tion techniques have been made available in open source libraries
(e.g., aubio1 [13]). Typically, the performance of an onset detec-
tor is assessed against annotated datasets. Such annotations may
define onset times in line with human perception [14] or with the
actual physics (which are generally referred to as perceptual and
physical onset times respectively [6]).

Once an onset has been detected, it is possible to apply, to
the adjacent part of the signal, algorithms capable of extracting
different types of information (e.g., spectral, cepstral, or temporal
features [15, 16]). For instance, such information may be used to
identify the timbre of the musical event associated to the detected
onset. In turn, the identified timbre may be utilized for classifica-
tion tasks by means of machine learning techniques [17]. A chal-
lenging timbral classification concerns the identification of differ-
ent gestures performed on a same instrument. For this purpose, it
is crucial to understand the exact moment in which an onset be-
gins. Indeed lot of the timbral information is contained in the very
first part of the signal of a musical event.

However, to date, the onset detection methods available in the
literature are little sensitive to the challenge of retrieving the exact
initial moment of a musical event (i.e., the physical onset time).
For instance, the Onset Detection Task specifications of the Music
Information Retrieval Evaluation eXchange (MIREX)2, and most
of the papers in the area of onset detection, consider detected on-
sets as true positives if they fall within a window of 50 ms around
the onset time reported in an annotated dataset. Furthermore, the
vast majority of freely available datasets for MIR research are not
accurate at millisecond or sub-millisecond level, which would be
useful to designers of real-time MIR systems.

Currently, the most successful onset detectors are those based
on frequency representation of the signal [5, 6, 18] (as shown by
the results of MIREX context between 2005 and 20173). Typically,
detecting efficiently and effectively an onset using spectral meth-
ods requires at least 5.8 milliseconds after the occurrence of the
peak of the involved onset detection function (ODF), considering
a window size of 256 samples for the Short Time Fourier Trans-
form and a sampling rate of 44.1 kHz. However, for such methods
the time between the actual onset and the reported onset is un-
predictable and may largely vary according to the type of sound in
question. This is due to the fact that spectral methods are not based
on the actual initial moment of the hit but on the identification of
the ODF’s peak (or its beginning), which may occur some millisec-

1Available at www.aubio.org
2http://www.music-ir.org/mirex/wiki/2017:

Audio_Onset_Detection
3http://www.music-ir.org/mirex/wiki/MIREX_HOME
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onds after the physical onset. Such variability and unpredictability
of spectrum-based onset detectors may not be convenient in some
real-time applications. An example of such applications is rep-
resented by those hybrid acoustic-electronic musical instruments
that must react with minimal latency to a performer’s action, in-
volving a response (such as the triggering of a sound sample) that
accounts for the correct classification of the timbre of the sound
acoustically produced (see e.g., [4]).

This paper addresses the improvement of existing onset de-
tectors to achieve a less variable and more predictable time accu-
racy in real-time contexts. Specifically, we limit our investigation
to sounds of single non-pitched percussive instruments (therefore
implementing a “context-dependent” method, not a “blind” one).
In more detail, we do not consider instruments capable of produc-
ing radically different sounds, such as those of a full drum kit, but
rather all the possible gamut of sounds resulting from hits on a
same instrument (which may be produced by the player using dif-
ferent gestures). This research originated while developing an im-
proved version of the smart cajón reported in [19], which belongs
to the family of smart musical instruments [20]. For that applica-
tion it was fundamental to retrieve with a higher degree of tempo-
ral accuracy the onsets corresponding to each hit produced on the
smartified acoustic cajón, since the portion of signal subsequent to
each onset was utilized for gesture classification (using audio fea-
ture extraction methods and machine learning algorithms based on
the extracted features). The classified gesture was then repurposed
into a triggered sound sample concurrent with the acoustic sound.

Notably, the real-time repurposing of a hit in hybrid acoustic-
electronic percussive instruments such as the smart cajón, poses
very strict constraints in terms of accuracy of detection and tempo-
ral reporting: the system not only must guarantee that a produced
hit is always detected, but also that the onset is reported within a
certain latency as well as that such latency is constant. Any suc-
cess rate of onset detection different from 100% or with a too high
latency is simply not an option for professional musicians, who re-
quire a perfectly responsive instrument and feel that they can truly
rely on it. This imposes that the latency between their action on the
instrument and the digital sound produced in response to it must
be imperceivable.

Such strict requirements parallel those of hard real-time ope-
rating systems where a task must be accomplished at the end of
a defined temporal window (deadline), otherwise the system per-
formance will fail [21]. Therefore, for the terminology’s sake, to
distinguish our method from other real-time algorithms less sensi-
tive to temporal accuracy we introduce the notion of hard real-time
onset detector (HRTOD) and soft real-time onset detector (SR-
TOD)4. The latter are those methods that have more tolerant con-
straints in terms of the accurate onset time identification as well
as in the variability of such time. Examples of methods belong-
ing to the SRTOD category are the implementations reported in
[11] and [12], which present a real-time drum transcription sys-
tem available for the real-time programming languages Pure Data
and Max/MSP. Another example is represented by the study re-
ported in [22], where a recurrent neural network is employed for
the onset detection task. Notably, our proposed method does not
intend to reduce the actual latency of state-of-the art methods. In-
stead it aims at guaranteeing that the time of an onset is reported
more accurately at the end of a set time window computed from

4This terminology should not be confused with that used to discrim-
inate onsets as hard (usually by percussive instruments, pitched and un-
pitched) or soft (e.g., produced by bowed string instruments).

the physical onset, in the same way as it happens for tasks in a
hard real-time operating system.

The remainder of the paper is organized as follows. Section 2
describes the proposed onset detector that meets the requirements
mentioned above as well as an implementation for it in Pure Data.
Section 3 presents the results of the technical evaluation performed
on various datasets of single percussive non-pitched instruments,
while Section 4 discusses them. Section 5 concludes the paper.

2. PROPOSED HARD REAL-TIME ONSET DETECTOR

The proposed onset detection algorithm relies on the combination
of time- and spectrum-based techniques. This choice was moti-
vated by our initial experimentations, which suggested that meth-
ods based on temporal features may have a higher degree of accu-
racy in detecting the physical onset time. On the other hand, onset
detection methods based on the spectral content may be less prone
to false positives and false negatives compared to methods based
on temporal features if their parameters are appropriately tuned,
although they may suffer from unpredictability and variability is-
sues in timing accuracy.

The proposed onset detector aims to take advantage of the
strengths of the two approaches. Specifically, a time-based tech-
nique capable of detecting more reliably the very initial moment
of a hit, but also more sensitive to false positives and false nega-
tives, was used in parallel with a spectrum-based technique that
was tuned to optimize the performance in terms of F-measure.
Moreover, our goal was not only to detect an onset with minimal
delay after the initial moment of contact of the exciter (e.g., hand,
stick, etc.) and the resonator (e.g., skin of a drum, wood of a cajón
panel), but also to ensure a high temporal resolution in tracking
two subsequent hits. We set such resolution to 30 ms since this
is approximatively the temporal resolution of the human hearing
system to distinguish two sequential sound events [23]. Such a
resolution is also adopted by the real-time onset detector proposed
in [22].

The implementation of the proposed onset detector was ac-
complished in Pure Data, considering as input a mono live audio
signal sampled at 44.1 kHz. The implementation was devised to
achieve high computational efficiency, and more specifically, to
run on low-latency embedded audio systems with low computa-
tional power (e.g., the Bela board [24]), which may be involved in
the prototypization of smart instruments. The next three sections
detail the utilized time- and spectrum-based techniques as well as
the adopted fusion policy.

2.1. Time-based method

The time-based method (TBM) here proposed is inspired by the
approaches to onset detection described in [5] and [8]. It must
be specified that this technique only provides as output an onset
timing, not the associated peak. Notably, the time-based method
proposed in [25], which employs the logarithm of the input signal’s
energy to model human perception, was not utilized. This was due
to the fact that we were interested in the physical onset not in the
perceptual one. Figure 1 illustrates the various steps in the onset
detection process.

We generated an ODF as follows. Firstly, we filtered the input
signal with a high pass filter whose cutoff frequency was tuned on
the basis of the type of percussive instrument being analyzed. This
is the main difference with the time-based methods reported in [5],
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Figure 1: Block diagram of the various steps involved in the time-
based onset detector.

which do not follow this initial step. Performing such a step allows
one to drastically reduce the number of false positives while at the
same time preserving (or only marginally affecting) the true posi-
tives. Secondly, we computed the energy by squaring the filtered
signal. Subsequently, the energy signal underwent a smoothing
process accomplished by a lowpass filter. This was followed by
the calculation of the first derivative and again the application of
a lowpass filter. The cutoff frequencies of the lowpass filters are
configurable parameters.

Subsequently, a dynamic threshold (which is capable of com-
pensating for pronounced amplitude changes in the signal profile)
was subtracted from the signal. We utilized a threshold consist-
ing of the weighted median and mean of a section of the signal
centered around the current sample n:

�(n) = � · median(D[nm]) + � · mean(D[nm]) (1)

with nm � [m � a, m + b] where the section D[nm] contains
a samples before m and b after, and where � and � are positive
weighting factors. For the purpose of correctly calculating the me-
dian and the mean around the current sample, the pre-thresholded
signal must be delayed of b samples before being subtracted from
the threshold. The parameters a, b, � and � are configurable. The
real-time implementation of the median was accomplished by a
Pure Data object performing the technique reported in [26].

The detection of an onset was finally accomplished by consid-
ering the first sample n of the ODF satisfying the condition:

n > �(n) & n > � (2)

where � is a positive constant, which is configurable. To pre-
vent repeated reporting of an onset (and thus producing false pos-
itive detections), an onset was only reported if no onsets had been
detected in the previous 30 ms.

2.2. Spectrum-based onset detection technique

Various algorithms for onset detection available as external objects
for Pure Data were assessed, all of which implemented techniques
based on the spectral content. Specifically, we compared the ob-
jects i) bonk� [27], which is based on the analysis of the spectral
growth of 11 spectral bands; ii) bark�, from the timbreID library5,
which consists of a variation of bonk� relying on the Bark scale;
iii) aubioonset� from the aubio library [13], which makes availa-
ble different techniques, i.e., broadband energy rise ODF [5], high
frequency content ODF (HFC) [28], complex domain ODF [29],
phase-based ODF [30], spectral difference ODF [31], Kulback-
Liebler ODF [32], modified Kulback-Liebler ODF [13], and spec-
tral flux-based ODF [6]. Several combinations of parameters were
used in order to find the best performances for each method.

All these spectral methods shared in common a variable de-
lay between the actual onset time and the time in which the onset
was detected. In the end aubioonset�, configured to implement
the HFC was selected because it was empirically found to be ca-
pable of providing the best detection accuracy. This in line with
Brossier’s observations reported in [13]. A refractory period of 30
ms was applied after a detection to eliminate possible false posi-
tives within that window.

2.3. Fusion policy

Our strategy for combining the two onset detectors calculated in
parallel consists in considering an onset as true positive if detected
by HFC, and subsequently retrieving the initial moment by looking
at the onset time of the corresponding onset (possibly) detected by
TBM. The policy to fuse these two types of information highly
depends on the deadline for reporting the onset after the physical
one. In our HRTOD such a deadline is a configurable parameter,
which must be greater than the duration of the window size chosen
for HFC. On a separate note, we specify that while the time based
method acts on a high-pass filtered version of the input signal, HFC
uses the original signal.

The fusion policy is presented in the pseudocode of algorithm
1. For clarity’s sake, the reader is referred to Figure 2. If HFC
produces an onset and TBM has not yet, then the onset time is
computed by subtracting the duration of HFC’s window size from
the time of the onset detected by HFC, and such an onset is re-
ported after the difference between the deadline and the duration
of HFC’s window size. Any onset candidate deriving from TBM
produced in the 30 ms subsequent to the reporting of HFC gets
discarded.

Conversely, if TBM produces an onset and HFC has not yet,
then the algorithms checks whether an onset is produced by HFC
in the next amount of time corresponding to the duration of HFC’s
window size minus the temporal error that is estimated affecting
TBM (i.e., the delay between the time of the physical onset and
the time of the onset reported by TBM). If this happens, then such

5Available at www.williambrent.com
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onset is reported after the amount of time corresponding to the
deadline minus the duration of HFC’s window size, and the onset
time is computed by subtracting the duration of HFC’s window
size from the time of the onset detected by HFC. The error that
affects TBM is a configurable parameter for the algorithm, whose
value must be less than the duration of HFC’s window size. Such
an error is estimated on the basis of analyses performed on the
input signal of the percussive instrument in question.

If HFC has not produced an onset in the time corresponding
to the duration of HFC’s window size minus the estimated error
after the reporting of the onset by TBM, then the algorithm checks
whether HFC has produced an onset in the next amount of time
corresponding to deadline minus the duration of HFC’s window
size plus the estimated error. If this happens, then such onset is re-
ported immediately and the onset time is computed by subtracting
the estimated error from the time of the onset detected by TBM.

Critical to this fusion policy is the choice of the parameters
governing the behavior of TBM. Indeed, if TBM produces too
many false positives there is the risk of erroneous associations of
onsets detected by TBM to onsets detected by HFC, as these might
happen just before the actual physical onset. Conversely, if TBM
produces too many false negatives, then HFC will be much less
improved in terms of accuracy.

To estimate the TBM error while designing a real-time au-
dio system, one could record the live audio produced by the sys-
tem, apply the TBM configured to optimize the F-measure, and
calculate the temporal distance between the time of the onset re-
ported by TBM and the time of the physical onset (which can be
determined by annotating the recorded dataset). Subsequently, the
found minimum value could be used as the TBM error estimate.
This guarantees that all onset times marked as improved with re-
spect to the corresponding ones of the HFC, are effectively im-
proved. Nevertheless, this would also limit the amount of improve-
ment, as some onsets detected by HFC could be improved using a
slightly greater TBM error estimate.

A less conservative strategy here recommended, consists in
tolerating a small error on the time reporting of few onsets, such
that the temporal accuracy for those onsets would be worsen only
marginally, while at the same time increasing the temporal accu-
racy of a much greater number of HFC onsets. Specifically, our
criterium adopted to determine an estimation of the TBM error is
to select the minimum between the value of the first quartile and
the result of the sum of 1 ms to the minimum delay found between
the beginning of the sinusoid and the annotated physical onset:

TBM_estimated_error = min

�
1stquartile

1 + min(error)
(3)

This allows one to tolerate in the worst case a maximum error
of 1 ms for some of the hits (whose amount is lower or equal than
the 25% of the total hits of the dataset). Therefore, the calculated
onset times deriving from TBM can be effectively considered as
an improvement compared to HFC in the majority of the cases.

3. EVALUATION

The temporal accuracy of the developed HRTOD was assessed on
a dataset of recordings of four single percussive non-pitched in-
struments: conga, djembe, cajón, and bongo. In this evaluation
we were not interested in assessing the detection accuracy of our

HRTOD in terms of F-measure as this is fully determined by HFC
(whose performance is well documented in the literature [28, 13]).
Our focus was exclusively on the assessment of the actual im-
provement offered by HRTOD in terms of temporal accuracy com-
pared to HFC. For this purpose, we carefully selected the param-
eters of TBM in order to maximize the F-measure and avoid any
error in the fusion policy, likewise for HFC (see Table 1). In this
investigation we were also interested in assessing whether the per-
formance of HRTOD differed between the instruments and for two
deadlines.

3.1. Procedure

In absence of accurate annotations of datasets of single percussive
non-pitched instruments among those normally used by the MIR
community, which could have served as a ground truth, we opted
for using two freely available online libraries6. Such libraries were
selected for the high quality recordings and the involvement of a
large variety of playing styles and percussive techniques on the
four investigated instruments. Those libraries contain 81 short
recordings of hits on conga, 38 for djembe, 85 for cajon, and 31
for bongo.

To annotate the datasets we visually inspected the waveforms
of the files and considered the first clear change in the waveform
as an actual physical onset. Specifically, in this manual process
we aimed at achieving an error tolerance of 0.5 ms. We did not
annotate the whole database but only 100 hits per each instrument.
Such annotated hits were those utilized to determine the estimated
error of TBM. They were selected as follows. We recorded along
with the file waveform, two additional tracks containing short si-
nusoidal waves beginning at the instants in which the onset were
detected respectively by HFC and TBM (see Figure 2). Subse-
quently, for each sinusoid in the TBM track that was related to a
true positive detected by HFC but happening before it, we calcu-
lated the time difference between the annotated physical onset and
the beginning of the sinusoid. In this calculations one needs to add
the time corresponding to b samples of which the waveform was
delayed (in our case this corresponds to 0.045 ms as 2 samples
were used for b).

For each instrument we randomly chose a subset of files and
considered the first 100 hits satisfying the mentioned condition.
For our purpose, an amount of 100 hits gives a reasonably accu-
rate measurement in statistical sense and could be considered as
the number that a designer of a real-time system would use to get
the estimate of TBM error from analyzing live recordings of the
system. Table 2 shows for each instrument the results of the anal-
ysis conducted on the 400 annotated hits to determine the estimate
of TBM error, as well as the corresponding average and maximum
error one would still get using it.

We configured HRTOD with two deadlines, at 11.6 and 18 ms,
to compare its performance in the case of a short and long dead-
line. Indeed a longer deadline would have been able to capture
those onsets detected by HFC after the short deadline is elapsed,
given the HFC variability. The deadline of 11.6 ms was selected
because it is equivalent to the time needed to compute analyses on
512 samples at 44.1 kHz sampling rate, therefore, the first 11.6 ms
of the signal can be utilized without involving in the analysis any

6http://cdn.mos.musicradar.com/audio/samples/
musicradar-percussion-samples.zip and http:
//www.stayonbeat.com/wp-content/uploads/2013/
07/Bongo-Loops_StayOnBeat.com_.zip
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Figure 2: Waveforms of the input signal of a hit on cajón and of three short sine waves triggered at the times of detecting the onsets using
TBM, HFC, and HRTOD, with indications of the temporal events relevant to the HRTOD.

pre-onset portion of the signal. The deadline at 18 ms was selected
by considering a maximum reporting time of 20 ms for possible
operations computed on such portion of the signal, which could
take up to 2 ms (considering for instance real-time feature extrac-
tion, application of machine learning techniques, and repurposing
of the analyzed sound). Specifically, this amount was justified by
the results of the evaluation of the smart cajón prototype presented
in [19]. These showed that a measured average latency of 20 ms
between action and electronically generated sounds was deemed
to be imperceivable by four professional cajón players. This was
likely due to a masking effect in the attack of the acoustic sound
that superimposes over the digital one.

3.2. Results

Table 3 presents the results of the application of the developed
HRTOD to the dataset using the parameters for TBM reported in
Table 2, and the two deadlines of 11.6 and 18 ms. For each in-
strument and for the whole dataset, we computed the number of
hits detected by HFC, the number of hits affected by the tempo-
ral accuracy improvement of TBM, along with their percentage,
their average improvement, and the maximum improvement. It is
worth noticing that in calculating the improved performances of
HRTOD compared to HFC we compared each onset time reported
by HRTOD against the time reported by HFC minus 5.8 ms (this
would be indeed the minimum time employed by HFC to report an
onset after its actual occurrence given the 256-point window).

Table 3 also offers a comparison of the performances of HRTOD

for the two deadlines by calculating their difference along the in-
vestigated metrics.

4. DISCUSSION

The first noticeable result emerging from Table 3 is that HRTOD
effectively improved the temporal accuracy of HFC for all instru-
ments and for both the investigated deadlines. The variability of
HFC was drastically reduced since about 50% of the hits of the
dataset were effectively improved for both the deadlines involved,
with an average improvement of about 3 ms and maximum one of
about 12 ms. Bongo was found to be the instrument most improved
in terms of percentage of improved hits, although the average im-
provement was the lowest compared to the other instruments. Con-
sidering both the number of improved hits and the amount of ave-
rage and maximum improvement, the cajón was found the instru-
ment most positively affected by our HRTOD.

Furthermore, the results show that the use of a longer dead-
line generally improves all the considered metrics. Almost the 5%
of the total hits were improved between the two deadlines, which
shows the variability of HFC (and of spectral-based methods in
general). Such a variability might constitute an issue in certain
real-time applications. Indeed an error of more than 12 ms, as
found for some hits on conga, may be critical when attempting to
analyze in real-time the corresponding sound and classify it against
other hits detected with no delay. The achieved average improve-
ment due to the longer deadline was less than 0.5 ms compared
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Algorithm 1: Pseudocode of the fusion policy of the involved TBM and HFC onset detection techniques in the developed HRTOD.
Input: Input signal, deadline, TBM_estimated_error, HFC_window_time
Output: Time of the detected onset reported when the deadline is elapsed

1 TBM_detected � TBM(input_signal)
2 HFC_detected � HFC(input_signal)
3 if HFC_detected == true && TBM_detected == false then
4 HFC_onset_time � get_time(HFC_detected)
5 for the next 30 ms ignore any TBM_detected == true
6 sleep(deadline - HFC_window_time)
7 onset_time � set_time(HFC_onset_time - HFC_window_time)
8 return onset_time
9 else

10 if HFC_detected == false && TBM_detected == true then
11 TBM_onset_time � get_time(TBM_detected)
12 sleep(HFC_window_time - TBM_estimated_error)
13 if HFC_detected == true then
14 HFC_onset_time � get_time(HFC_detected)
15 sleep(deadline - HFC_window_time
16 onset_time � set_time(HFC_onset_time - HFC_window_time)
17 return onset_time
18 else
19 sleep(deadline - HFC_window_time + TBM_estimated_error)
20 if HFC_detected == true then
21 onset_time � set_time(TBM_onset_time - TBM_estimated_error)
22 return onset_time

Table 1: Values of parameters of TBM and HFC utilized for each instrument. Legend: HP = high-pass, LP = low-pass, fc = cutoff
frequency.

TBM HFC
HP fc LP 1 fc LP 2 fc a b � � � threshold window hop
(Hz) (Hz) (Hz) (samples) (samples) (samples) (samples)

Conga 4000 25 25 62 2 6e-09 0.8 0.8 0.2 256 64
Djembe 7500 25 25 62 2 7e-09 0.8 0.8 0.2 256 64
Cajón 7500 25 25 62 2 2e-09 0.8 0.8 0.2 256 64
Bongo 7500 25 25 62 2 2e-08 0.8 0.8 0.2 256 64

to the shorter one, but the maximum improvement was found to
be more than 7 ms. The instrument that was mostly affected by
such increment in the duration of the deadline was the cajón, while
bongo was basically unaffected. This shows that for certain instru-
ments a short deadline may be sufficient in capturing reliably the
physical onset time of almost all hits.

Despite these encouraging results, it should be noticed that
there are still margins for improvement as the method is affected
by errors: as shown in the last two columns of Table 2, about the
75% of the hits would have needed a larger value for the TBM
error estimate parameter. According to the analysis on the 400
annotated hits, the average error is below 2 ms but the maximum
one could amount to about 11 ms. On a different vein, it is also
worth noticing that the proposed method is context-dependent as it
was built and tested by exploiting knowledge on the input signals
investigated.

Although the algorithm has been conceived for real-time pur-
poses, it can be applied to offline contexts as well. Offline algo-
rithms have a number of advantages compared to real-time meth-
ods that might be exploited to refine the HRTOD here proposed.

For instance, one could consider portions of the signal in the fu-
ture, apply normalizations, use post-processing techniques, or uti-
lize buffers larger than those here involved. A more timely accu-
rate onset detector might have important implications not only for
the design of musical instruments such as the smart ones [20], but
also for automatic music transcription tasks [1], including those
operating in real-time (see e.g., [11, 12]). Moreover, another ap-
plication domain of the temporal accuracy improvements produced
by the proposed method may be that of computational auditory
scene analysis [33]. Although the sounds involved in this study
belonged to the category of percussive non-pitched instruments,
the method is expected to work well on several other categories
of sounds (including the non musical ones as for instance foot-
step sounds, which have clearly discernible temporal characteris-
tics like the sounds of percussive instruments [34]).

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a real-time method to improve the tempo-
ral accuracy of state-of-the-art onset detectors. The study focused
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Table 2: Results of the analysis conducted on 100 annotated onsets for each instrument to determine the value of TBM estimated error, the
expected average and maximum error of HRTOD.

mean±std err min max 1st quartile TBM estimated max error on HRTOD mean HRTOD max
(ms) (ms) (ms) (ms) error (ms) 1st quartile (ms) error (ms) error (ms)

Conga 2.03±0.13 0.5 7 1 1 0.5 1.03 6
Djembe 1.7±0.14 0.5 7 1 1 0.5 0.7 6
Cajón 3.45±0.2 0.5 13 2 1.5 1 1.95 11.05
Bongo 2.98±0.09 1 6 2 2 1 1.98 4

Table 3: Results of the proposed HRTOD involving the two deadlines and their differences.

deadline instrument # hits # improved % improved mean improvement max improvement
(ms) ± standard error (ms) (ms)

11.6 Conga 916 292 31.87 2.78±0.06 4.94
Djembe 485 183 37.73 2.7±0.06 4.94
Cajón 1094 532 48.62 3.7±0.05 4.94
Bongo 965 643 66.63 2.02±0.04 4.94
Total 3460 1650 47.68 2.77±0.03 4.94

18 Conga 916 325 35.48 3.33±0.11 12.2
Djembe 485 200 41.23 3.1±0.11 10.75
Cajón 1094 646 59.04 4.26±0.06 9.83
Bongo 965 644 66.73 2.03±0.04 4.94
Total 3460 1815 52.45 3.17±0.04 12.2

Difference Conga 0 33 3.61 0.55 7.26
Djembe 0 17 3.5 0.4 5.81
Cajón 0 114 10.42 0.56 4.89
Bongo 0 1 0.1 0.01 0
Total 0 165 4.77 0.38±0.12 7.26

on percussive non-pitched sounds and for this purpose the spec-
tral technique based on the high frequency content [28] was em-
ployed, which was reported in the literature to work the best for
this type of sounds [13]. Experimental validation showed that the
proposed approach was effective in better retrieving the physical
onset time of about 50% of the hits in a dataset of four percussive
non-pitched instruments compared to the performance of the onset
detector based on high frequency content. The proposed method
was inspired to hard real-time operating systems, which aim to
guarantee that a task is accomplished at certain deadline. Our re-
sults revealed that the use of a longer deadline may capture better
the variability of the spectral method (but at the cost of a bigger
latency). Indeed, about 5% of the hits of the whole dataset could
not be improved by involving a shorter deadline, although not all
instruments were affected equally by a longer deadline.

The proposed method is expected to extend to sounds from
other musical instruments as well as to non-musical sounds. Sev-
eral directions for future work can be explored. Firstly, we plan
to involve the proposed HRTOD in the development of percussive
smart instruments such as the smart cajón reported in [19]. Sec-
ondly, future work will include experimenting with other types of
data, in particular sounds from pitched instruments. An open ques-
tion is whether the method would work for polyphonic pitched
percussive instruments, where there can be one or more onsets
roughly produced at the same time. Another future direction con-
sists in exploring the performance of the proposed onset detector
in noisy or multi-source environments, where for instance pitched
onsets might be present. Finally, concerning context-awareness, it
would be interesting to investigate whether the concepts presented
in this study can be generalized to a more “blind” scenario.

The dataset involved in this study, the corresponding annota-
tions, and the Pure Data source code are available online7.
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ABSTRACT

We present MusikVerb, a novel digital reverberation capable of
adapting its output to the harmonic context of a live music perfor-
mance. The proposed reverberation is aware of the harmonic con-
tent of an audio input signal and ‘tunes’ the reverberation output to
its harmonic content using a spectral filtering technique. The dy-
namic behavior of MusikVerb avoids the sonic clutter of traditional
reverberation, and most importantly, fosters creative endeavor by
providing new expressive and musically-aware uses of reverbera-
tion. Despite its applicability to any input audio signal, the pro-
posed effect has been designed primarily as a guitar pedal effect
and a standalone software application.

1. INTRODUCTION

Adaptive digital audio effects (ADAFx) are a class of audio effects,
whose control parameters are mapped to attributes of the audio in-
put signal to be transformed [1]. This level of symbiotic informa-
tion exchange between an input signal and control parameters of
the transformation effect has attracted the attention of academia
and industry over the last decade as a new strategy for music cre-
ation [2].

The mappings between audio input attributes and effect pa-
rameters are central to ADAFx [3]. In this context, we can un-
derstand the emergence of ADAFx in light of the breakthroughs in
audio-content processing for audio signals description, which have
been proposed by the signal processing and music information re-
trieval communities.

Within the academic literature several ADAFx studies and pro-
totype applications have been proposed [1, 4, 5]. These contribu-
tions focus mostly on mapping strategies between signal attributes
and effect parameters [1]. Within industry and for the specific case
of the guitar, the target instrument of our study, the following three
commercial ADAFx have been recently identified in [3]: ‘TE-2
Tera Echo’, ‘MO-2 Multi Overtone’ and ‘DA-2 Adaptive Distor-
tion’ [6, 7, 8].

In this paper, we extend existing guitar ADAFx by propos-
ing a harmonically adaptive audio reverberation as a guitar pedal
effect and a standalone software application. To the best of our
knowledge, the sole existing application that implements such an
ADAFx is Zynaptiq’s Adaptiverb [9], for which no technical de-
scriptions is known to be available.

In contrast to traditional digital reverberation, which models
the physical phenomena of sound waves reflecting on enclosed
space surfaces [4], MusikVerb aims at controlling the tonal clar-
ity (understood as levels of consonance/dissonance) and harmonic
richness of a reverberation tail. To this end, MusikVerb transforms
the output of a traditional audio reverberation by filtering its output
according to a ranked list of pitch classes (i.e., the twelve notes of

the chromatic scale) computed from the perceptual-inspired Tonal
Interval Space space [10]. Given this ranked list of pitch classes,
the user can then ‘tune’ the reverberated signal to the harmonic
context of an audio input signal.

The remainder of this paper is organized as follows. Section 2
presents the architecture of the MusikVerb system and the infor-
mation flow between its component modules. Section 3 presents
the extraction of harmonic attributes from an audio input signal
to create a ranked list of pitch classes according to their percep-
tual distance to an input audio signal. Section 4 details how a
ranked pitch class list is mapped to a frequency-domain represen-
tation (i.e., spectrum). Section 5 describes an algorithm which
filters an audio reverberation tail to ‘fit’ the harmonic context of a
performance. Section 6 provides an overview of the user control
parameters of MusikVerb in both hardware and software instanti-
ations of the system. Section 7 details the creative applicability
of MusikVerb as highlighted by expert musicians when interacting
with the system. Finally, Section 8 states the conclusions of our
work and future directions.

2. MUSIKVERB ARCHITECTURE

Fig. 1 shows the architecture of MusikVerb, which follows the
threefold typical ADAFx structure: 1) extraction of audio at-
tributes from an input signal; 2) mappings between audio attributes
and effect parameters; and 3) the processing of the effect transfor-
mation [3].

1) Pitch Class 
Ranking

3) Audio 
Reverberation

3) Spectral 
Filtering

User 
Control 2) Mappings

Figure 1: MusikVerb architecture. The audio signal flux flows from
left to right between the (squared) component modules.

The harmonic content of an audio input signal is 1) analyzed
to extract a ranked list of pitch classes according to a perceptual
distance measure. 2) Then, a mapping between the ranked pitch
class list and a frequency-domain audio representation is created
to 3) draw a filtering shape to be applied to a reverberated audio
input signal. While the choice of digital reverberation is critical to
the sounding result of MusikVerb, the model can incorporate any
algorithm of this class, while preserving its main characteristics.
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3. PERCEPTUAL PITCH CLASS RANKING

We adopt the Tonal Interval Space [10] in MusikVerb to com-
pute the perceptual distance between two given sonorities driven
from both symbolic music representation and musical audio. Ulti-
mately, these perceptual distances support the creation of a ranked
list of pitch classes from an audio input signal. The choice of such
a perceptually-guided space over other related tonal pitch spaces
(e.g., Spiral Array [11] and Tonal Pitch Space [12]) is due to its
possibility: i) to process both symbolic music representations and
audio input signals without the need for a error-prone audio-to-
score transcription; ii) to represent the most common pitch levels,
i.e., pitch, chord, and key, in a single space; and iii) to efficiently
compute the perceptual distance between tonal pitch.

The Tonal Interval Space uses the fast Fourier transform to
convert a given sonority, represented as the L1 normalized Har-
monic Pitch Class Profile (HPCP) vector [13], c(n), expressing the
energy of the 12 pitch classes, into a Tonal Interval Vector (TIV),
T (k), expressing musical interval periodicities, such that:

T (k) = wa(k)
N�1�

n=0

c̄(n)e
�j2�kn

N , k � Z , (1)

where N = 12 is the dimension of the chroma vector. wa(k) =
{3, 8, 11.5, 11.5, 15, 14.5, 7.5} are weights derived from empiri-
cal ratings of dyads consonance used to adjust the contribution of
each interval, k, thus making the space perceptually relevant [14].
We set k to 1 � k � 6 for T (k) since the remaining coefficients
are symmetric. T (k) uses c̄(n) which is c(n) normalized by the
DC component T (0) =

�N�1
n=0 c(n) to allow the representation

and comparison of music at different hierarchical levels of tonal
pitch [10].

The resulting spatial location of TIVs, T (k), ensures that tonal
pitch understood as perceptually related within the Western music
context correspond to small Euclidean distances. For example, at
the pitch class level, it places intervals that play an important role
in the tonal system (e.g., octaves, fifths, and thirds) at smaller dis-
tances. At the key level, the Tonal Interval Space represents our
expectancy of proximity between the 24 major and minor keys by
placing the dominant, subdominant and their relative minor keys
at close distances as well as the diatonic pitch class and chord sets
of a particular key in its neighborhood [10]. Mathematically, the
Euclidean distance between two given TIVs, Ti(k) and Tj(k), is
given by:

Pi,j =

����
M�

k=1

|Ti(k) � Tj(k)|2 , (2)

where M = 12 is the dimension of a TIV, T (k).
By interpreting Ti(k) and Tj(k) in Eq. (2) as an audio input

TIV and a pitch class TIV, respectively, and repeating the operation
for the 12 pitch classes (i.e., 0-11), we compute the distances of
an input TIV from the 12 pitch classes, which we then concatenate
into a single list. Finally, the list values are reordered by increasing
distance and a list with ranked pitch class indexes is created. Fig. 2
shows the various steps involved in the creation of a ranked list of
pitch classes from an audio input TIV of the C major chord (i.e.,
the pitch class set {0,4,7}).

To control the output rate of the ranked pitch class vectors, we
compute mean values per TIV bin from a user-defined number of
Ws = 4096 sample window TIVs with 50% overlap. This adap-
tation parameter, A, is further detailed in Section 7 and has been

Euclidean	distances	of	12	pitch	classes	from	an	audio	input	TIV	(Eq.2)	
pc	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

P	 7.1	 12.2	 11.4	 11.8	 8	 11.7	 12.6	 7.2	 11.8	 11	 11.9	 11.3	

Ranked	pitch	class	list	by	increasing	distance	from	an	audio	input	TIV	
0	 7	 4	 9	 11	 2	 5	 8	 3	 10	 1	 6	

Convert	to	TIVs	(Eq.1)	

Figure 2: Illustration of the main algorithmic steps involved in the
creation of a ranked list od pitch class distances from an audio
input TIV of the C major chord.

shown to have a critical importance in the applicability scenarios
of MusikVerb by expert musicians.

4. MAPPINGS

The mappings module is responsible for translating the ranked
pitch class distance list into a spectral representation, which is then
used to control the amplitude of frequency bins in a spectral filter-
ing algorithm.

From the 12-element ranked list of pitch classes, a set of Npc

user-defined pitch classes are retrieved sequentially from the first
element. Npc is an integer value ranging from Npc = 1, the first
element of the list, to Npc = 12, the entire list. The greater the
Npc value, the more perceptually distant notes to the input audio
signal are introduced. The trimmed pitch class list, m[k], is then
mapped to an array of 0.5 · Ws elements, representing the entire
pitch range given by Eq.(3), where fref is the tuning reference (e.g
fref = 440Hz)

x[k] = fref · 2
m[k]
12 , 0 � k < Npc , (3)

where x[k] is a vector containing the frequency corresponding to
the first octave of the notes that should be on the output. For each
pitch class in Eq. (3), a user-defined number of harmonics, Nh,
is added, to regulate the harmonic richness of the re-synthesized
signal. We empirically defined the number of harmonics Nh to be
an integer value between 1 and 20, which we compute as:

yk[n] =
�

n · x[k], 1 � n < Nh, 0 � k < Npc . (4)

After obtaining the vectors yk, containing the frequencies that
correspond to the selected Npc and Nh we map them to elements
of the 0.5 · Ws window-sized filtering shape, Hf , using Eq. (5)
where fres corresponds to the FFT frequency resolution.

Hf [p] = 1, p =
yk[n]
fres

(5)
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5. SPECTRAL FILTERING

MusikVerb resynthesises the input signal processed by a digital
reverberation using a spectral filtering algorithm, similar to the
one of the phase vocoder [15]. By multiplying the equal-sized
frequency-domain representations of both the reverberated signal
and the spectral filter shape resulting from Eq. 4, we then regulate
the amplitude of each frequency bin.

6. USER CONTROL

MusikVerb has a dual implementation as a guitar pedal and a stan-
dalone software application. The Pure Data [16] software envi-
ronment was initially adopted to prototype the effect due to its
the flexibility in running as a standalone application, a VST plug-
in [17] and in embedded DSP systems, such as the low-latency
audio processing BELA1 [18].

Both hardware (guitar pedal) and software (standalone appli-
cation) instantiations of MusikVerb have two main groups of con-
trol parameters. The first group includes the digital reverberation
parameters, such as room size, reverberation time, and spread, to
cite a few. These parameters depend on the adopted digital rever-
beration algorithm, and thus can change accordingly. The digi-
tal reverberation adopted in the current version of our system in-
cludes several well-known digital reverberations implemented in
Pure Data by Tom Erbe [19].

The second group includes the control parameters specific to
MusikVerb: adaptation, harmonicity, and richness. Adaptation
regulates the rate at which the ranked list of pitch classes is com-
puted, which the user can control using a potentiometer in the
guitar pedal and a slider in the software application (see Fig. 3).
The harmonicity and richness parameters regulate the number of
(ranked) pitch classes which are present in the output reverberated
signal and the number of harmonics assigned to each note, respec-
tively. These two latter parameters are controlled simultaneously
with a single control in both hardware and software implementa-
tion of MusikVerb. In the hardware implementation, an expression
pedal is scaled logarithmically to both parameters simultaneously.
The choice of a logarithmic scale allows a finer degree of control
over the initial range of the scale, where the effect more signif-
icantly alters a traditional digital reverberation. In the software
implementation, the control of these two parameters are done via
a 2-dimensional panel, whose x and y axis are assigned to each
parameter (see Fig. 3).

7. APPLICATION

We have conducted several informal sessions with expert gui-
tarists acquainted with different musical styles to infer recurrent
applicability scenarios of MusikVerb and their creative potential.
Three typical parameter combinations have caught the attention
of the participants. These three parameter combinations explore
MusikVerb in a wide range of creative applicability scenarios from
a clutter-free reverberation with control over the reverberation har-
monic quality to effects which are rather situated in the accompa-
niment systems domain.

The first two cases adopt low degrees of harmonicity and (har-
monic) richness (e.g., Npc = 3 and Nh = 5) and focus on the
manipulation of the adaptation and reverberation time parameters.

1https://bela.io/

Figure 3: MusikVerb software application interface.

Adopting a low adaptation (e.g., A = 6) and a reverberation time
typical of concert venues (e.g., around two seconds of decay time),
MusikVerb significantly reduces the typical clutter of traditional
reverberations, which result from the superposition of inharmonic
frequencies around the frequency range of the source (as shown in
Fig. 4. While this parametrization mode preserves most attributes
of a reverberation without obscuring the source, it does not model
the acoustic reflections of a room, as such an harmonically-tuned
space does not exist.

Figure 4: Three sonogram representations of an (original) audio
soundfile (top), and two processed renditions of the soundfile after
being processed by Mooer reverberation (middle) and MusikVerb
using the Mooer reveberation (bottom).

The second case retains the low degrees of harmonicity and
richness and opposes the first scenario by adopting high adapta-
tion and reverberation time values (e.g., A = 15 and reverberation
times around 5-10 seconds of decay time). This parameter com-
bination creates an accompaniment close to drones or pedal tones
which are predominant in the harmonic context of large sections
of the input signal. Harmonicity in the context of this parameter
combination can alter the density of pitch classes in the accompa-
niment which can range from a monophonic pedal tone to chords
changes over time with variable number of notes. High adaptation
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values impose a certain shift in time between the input signal and
the (filtered) reverberation response to a level which no physical
space can create or its digital reverberation models. This scenario
provides ambient artists, film composers and sound designers with
exciting new creative options for making evolving drones, organic
pads, lush ambient and soundscapes.

Finally, the third parameter combination fixes the adaptation
and reverberation time to average values across their range (e.g.,
A = 10 and a 1 second reverberation tail) and explore the dynamic
manipulation of the linked harmonicity and richness parameters
across the musical time. In manipulating these linked dimensions
via the guitar pedal, for example, we can change the harmonic
quality of the reverberation output in real-time in light of the har-
monic content of the input. Manipulating the degree of harmonic
proximity to the input signal, has a clear perceptual correlate with
consonance (lower values) and dissonance (higher values), which
can be dynamically manipulated irrespective of the performance
audio content, thus promoting new strategies for creation.

The MusikVerb application, some sound examples demon-
strating the three aforementioned applicability scenarios, and a
demonstration video of a session with a guitarist performing
with MusikVerb can be found online at: https://bit.ly/
2Jw3OoP.

8. CONCLUSIONS AND FUTURE WORK

We presented MusikVerb, a system which promotes a novel adap-
tive reverberation audio effect, which results from technical and
artistic contributions. The system is effective in reducing the
sonic clutter, commonly introduced by traditional reverberation
effects, while promoting the exploration of new creative spaces,
notably those close to an automatic accompaniment system, by
leveraging a constant symbiosis between engineering and creativ-
ity. MusikVerb was developed as a embedded guitar pedal system
using the BELA platform and as a software standalone application
in the Pure Data programming language.

To further extend MusikVerb, it would be interesting to adapt
it and test it with different input sources, either instruments, ambi-
ent sounds or any other sonic input. Adapting the weights, wa(k)
of the Tonal Interval Space, to privilege intervals other than oc-
taves, fifths and thirds, can extend the creative potential of the tool
beyond the perceptually-inspired syntax of the Western tonal har-
mony. Finally, we aim to compare our system with Zynaptiq’s
Adaptiverb [9] to unveil their sonic and usability differences.
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ABSTRACT

A virtual tube delay effect based on the real-time simulation of
acoustic wave propagation in a garden hose is presented. The pa-
per describes the acoustic measurements conducted and the anal-
ysis of the sound propagation in long narrow tubes. The obtained
impulse responses are used to design delay lines and digital fil-
ters, which simulate the propagation delay, losses, and reflections
from the end of the tube which may be open, closed, or acousti-
cally attenuated. A study on the reflection caused by a finite-length
tube is described. The resulting system consists of a digital waveg-
uide model and produces delay effects having a realistic low-pass
filtering. A stereo delay effect plugin in PURE DATA1 has been
implemented and it is described here.

1. INTRODUCTION

Analog and digital delays are at the basis of several audio effects,
including vibrato, flanger, chorus, echo, as well as spatial effects
such as reverberation [1]. This paper investigates in particular the
delay effects produced by a long narrow tube and presents a digi-
tal model of sound propagation in such a medium, including time
delay, propagation losses, and end-reflections.

The first analog audio effect based on a narrow long tube was
proposed in 1960 [2]. Olson and Bleazey presented a synthetic
reverberator built with a tube, a loudspeaker, transducers, and a
microphone delay unit in combination with a feedback system.
A horn-loudspeaker coupled to a tube with three microphones lo-
cated at different distances realized three different delays that, in
conjunction with a positive feedback system, provided time spaced
components.

In 1971, Bill Putman and Duane H. Cooper designed a garden-
hose-based mechanical delay2. The echo-free acoustic delay de-
vice, called the Cooper Time Cube, sends audio through long
coiled tubing with mic capsules, used as speakers and pickups,
to create a time delay. In addition, a series of tooled aluminum
blocks tune the delay to a relatively flat response.

Examples of simulated analog delay system are the Echoplex
Tape Delay [3], and the Bucket Brigade Device [4]. The Echoplex
is a tape delay device with fixed playback and erase heads, a mov-
able record head, and a tape loop. A simulation using a circu-
lar buffer and pointers moving along it was presented in [3]. The
bucket-brigade device instead realizes a time delay with an analog
circuit. The input signal is sampled in time and passed into a series
of capacitors and MOS transistor switches. The device is modeled

� J. Liski’s work was supported by the Aalto ELEC Doctoral School.
1http://puredata.info.
2https://www.uaudio.com/blog/cooper-time-cube-

power/.

with low-order digital infinite impulse-response (IIR) filters based
on the resistance and capacitance values of the filters [4].

Other delay-based system examples are the spring [5, 6, 7] and
plate reverbs [8, 9]. Spring reverberation is an electromechanical
effect based on metal springs [10]. A first simulation by measuring
the response of a real spring reverberation unit and by using digital
waveguide methods was proposed in [5]. Two other methods in-
volving a finite difference scheme [6], and by using delay-network
reverberation techniques [7] were later presented. Instead, plate
reverberation uses steel plates under tension [11], and it can be
simulated with finite difference methods [8] and by using a hybrid
structure consisting of a short convolution section and a feedback
delay network [9].

The reverberation and coloration caused by a long tube has
also been shown to be a robust cue for the distance perception
of a sound source [12]. In a recent study, a digital-waveguide-
mesh model of a small tubular shape has been used to simulate
distance in a virtual environment [13]. The virtual tube delay effect
presented in this paper can also be employed for this application.

Digital waveguide modeling for wave propagation in cylindri-
cal and conical instruments is often used [14, 15, 16]. A technique
for estimating a waveguide model of wind instrument from acous-
tic tube measurements was also presented in [17].

The rest of the paper is organized as follows. An overview of
the performed measurements is given in Sec. 2, while their analy-
sis is presented in Sec. 3. Sections 4 and 5 describe the approach
used to design the digital propagation and reflections filters, which
are then compared to the measurements in Sec. 6 in order to pro-
vide an objective evaluation of the results. Section 7 presents and
discusses the implementation of a real-time plugin in the PURE
DATA environment. Finally, Sec. 8 concludes this paper.

Supplementary materials including the plugin, the externals
for MAC OS X and LINUX, the source C++ file, and some dry
sounds are available for download at https://github.com
/RiccardoVib/VIRTUAL_TUBE_DELAY-EFFECT-.

2. ACOUSTIC TUBE DELAY MEASUREMENT

Three different tubes were used with an internal diameter of 1.2,
1.9 and 2.5 cm, respectively. The first tube was 8.8 m long and
the other ones 25 m. The tube responses were measured with a
logarithmic sine sweep that was played back to the tube with a full
range loudspeaker. Figure 1 shows the equipment and the setup of
the measurements.

The measurements were conducted in an anechoic chamber
and in two modalities: closed end and open end. The goal of the
first modality was to obtain a clean impulse response caused by
propagation and losses without any reflections. Polyurethane and
a metal plate were used to absorb and block reflections from the
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(a) Microphone inside the tube
with gray moldable plastic to
attach it to the hole.

(b) Loudspeaker attached to the
end of the tube with a conical
adaptor.

(c) Short narrow tube (length
8.8 m, inner diameter 1.2 cm).

(d) Long medium-sized tube
(25 m, 1.9 cm).

Figure 1: Measurement setup in the anechoic chamber.

tube end. The measurements with the open end were performed
by using the acoustic pulse reflectometry technique [18] and re-
quired further analysis of the reflection behavior, as the impulse
responses contained clearly observable repeating reflections. The
polyurethane and the metal plate were chosen based on initial ex-
periments to minimize the reflections from the end.

Ten holes were drilled 1 m apart along the length of the tube
starting 2.5 cm from the loudspeaker end of the tube. Multiple
measurements were made, recording the response of one hole at a
time with a miniature microphone while blocking the others with
moldable plastic material in order to avoid a “flute finger-hole ef-
fect” in the recordings. In addition, in order to record the cleanest
possible impulse responses, the measurements were taken from
hole positions drilled up to 10 m from the loudspeaker end of the
tube to ensure at least 15 m of length to the opposite end (and a
round-trip travel distance of 30 m before returning to the micro-
phone). An exception was made with the 1.2 cm diameter tube,
since it was only 8.8 m long.

The impulse response of the system was computed using Fa-
rina’s method, convolving the recorded signal with the time-inverted
logarithmic sweep [19]. The input signal was 3 s long and with an
amplitude of �41 dB, chosen after several experiments in order to
find a trade-off between the signal-to-noise ratio and the harmonic
distortion. The average SNR in the measurements ranged from
50 dB (for the narrowest tube) up to 40 dB (in the largest one).
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Figure 2: Impulse responses measured in the 1.9-cm tube in the
open end case, at the distance of 4.25 m (top) and 9.25 m (bottom).

Finally, the measurements were performed with a sample rate of
44.1 kHz.

3. TUBE DELAY ANALYSIS

Figure 2 shows two example impulse responses collected in the
open-end mode. The main spike of the impulse response followed
by some ripple, identified with circles, and reflections can be seen.
The ripple is due to the holes along the tube. The holes could
not be filled completely, and the resulting cavities created small
reflections.

Due to the finite length of the tube, the microphone record-
ings contain reflections from both ends. The waves propagating
through the tube are reflected at the open end and, coming back,
they are reflected again from the loudspeaker. Reflections appear
in pairs repeated in time and progressively attenuated along the
response. The location of the impulses can also be seen to dif-
fer between the two measurements in Fig. 2 due to the increased
distance of the microphone from the loudspeaker.

3.1. Impulse Response Analysis

The measured responses were windowed in time to remove har-
monic distortion components and unwanted reflections. A pro-
cessed impulse response is presented in Fig. 3. The frequency re-
sponse exhibits losses in the high end of the spectrum caused by
propagation losses through the tube. There are also some losses in
the low frequencies caused by the windowing. Significant attenu-
ations of 20 dB or more appear above about 300 Hz.

As expected, spectral analysis of the windowed responses ex-
hibits highly attenuated behavior at very high frequencies, as seen
in the example in Fig. 3. This can be caused in part by the effect
of non-planar wave propagation above the cutoff of planar waves.
The behavior of the spectrum in the extreme high end is very noisy
and, thus, unreliable.

The group delay was also computed. It showed an approxi-
mately flat response, indicating no time delay between the various
sinusoidal components of the signal. This suggests that a delay
line is suitable for simulating the propagation delay.

Figure 4 (left) shows the impulse responses recorded at three
different holes. The time delay and the propagation loss can be

DAFX-2

DAFx-362
DAFx-362



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

0 10 20 30 40 50 60
Time (ms)

-0.1

0

0.1

0.2

Am
pl

itu
de

30 100 300 1k 3k 10k
Frequency (Hz)

-100

-80

-60

-40

M
ag

ni
tu

de
 (d

B)

Figure 3: Example of windowed impulse response (top) obtained
from the 2.5-cm tube and its magnitude spectrum (bottom).
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Figure 4: Impulse response measured (left) and corresponding
magnitude responses (right) in the 1.9-cm garden hose at the dis-
tance of 2.5 cm (top), 3.25 m (middle), and 9.25 m (bottom) from
the loudspeaker.

observed here. Their corresponding frequency contents are shown
in Fig. 4 (right), and they reveal an increase of the attenuation with
the increasing distance traveled and more significant losses at high
frequencies when compared to low frequencies.

In addition, our measurements show that energy losses at high
frequencies depend on the diameter of the tube. This behavior can
be observed in Fig. 5, where the windowed responses captured at
4.25 m from the beginning of the tube, together with their corre-
sponding frequency spectra, are shown for the three different tube
diameters 1.2, 1.9, and 2.5 cm. The attenuation is seen to increase
with decreasing diameter, showing more losses especially at high
frequencies.
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Figure 5: Impulse response measured (left) and corresponding
magnitude responses (right) at the distance of 4.25 m in the 1.2-cm
(top), 1.9-cm (middle), and 2.5-cm (bottom) tube.

3.2. Reflection Analysis

Figure 2 shows the behavior of the reflections at the closest and
the farthest hole to the loudspeaker. The negative reflection and
the positive one can be clearly seen. The gap between reflections
depends on the position of the microphone which recorded them.
The farthest hole is 9.25 m from the loudspeaker and 15.75 m from
the open end, which means a longer distance for the reflections to
meet the microphone.

The reflections were windowed as well. The analysis shows
that energy exhibits losses in the high end of the spectrum and, in-
stead, it is concentrated in the low frequencies. Figure 6 shows the
windowed reflection result at the tube end together with its spec-
trum. From 300 Hz up to 1.5 kHz the spectrum exhibits a steep
slope and above that extreme low energy values. The inverted pres-
sure pulse due the open end can also be noticed.

4. VIRTUAL TUBE MODEL

The spectra of all the windowed signals were analyzed collectively.
More specifically, in order to analyze the spectral changes associ-
ated with each meter traveled through the tube, the differences in
the spectra of the respective signals were computed with the fol-
lowing equation:

Hi
dB(f) � Hj

dB(f)

dij
�i, j , (1)

where HdB(f) is the spectrum magnitude of the signal in decibels,
smoothed with a third-octave filter, and dij the distance in meters
between the i-th and j-th holes, where the signals were recorded.
These differences were computed for each tube. Then, the arith-
metic mean of the results obtained was computed for each tube. In
this way, an average behavior for a 1 m segment of each tube was
obtained. The results are shown together in Fig. 7.

It can be noticed that the attenuation increases towards the
high end of the spectrum and that it depends on the tube diameter.
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Figure 6: A windowed reflection (top) and its magnitude spectrum
(bottom) recorded with the 1.9-cm tube.
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Figure 7: Average “difference filters” for a 1-m segment (see
Eq. (1)) of a 1.2-cm (dotted line), a 1.9-cm (dash-dot line), and
a 2.5-cm (dashed line) tube.

Increasing diameters result in a steeper shape, but with smaller at-
tenuation. The responses below 300 Hz, despite some oscillations,
are very similar to each other near 0 dB. Attenuation is noticeable
above 300 Hz and becomes more significant around 1 kHz.

Since the first modes of the tubes are at 8054 Hz, 10598, and
16780, the results above these frequencies are unreliable. For this
reason, the responses above these frequencies were not considered,
and a continuous slope for the frequencies larger than 10 kHz in
the design of the filters was taken.

Based on the above considerations, the spectrum can be as-
sumed to have a low-pass shape. Increasing the tube diameter de-
creases the spectral slope and increases the cutoff frequency.

4.1. Reflections from the End of the Tube

In order to understand the effect of the open end on the responses,
a different approach was chosen. Using the acquired information,
the impulse response measured at the farthest hole from the loud-
speaker was filtered with the filter approximating an appropriate
power of the 1 m segment shape of Fig. 7. The filter design proce-
dure will be described in Sec. 5. The aim here was to simulate the
losses of the same distance that the reflected pulse had traveled.
This simulation could be compared with the reflection, separat-
ing the reflection effect of the open end. The distance traveled by
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Figure 8: Comparison between the spectrum of the reflection cap-
tured by the microphone (dash-dot line), and the simulated spec-
trum as it should be without the open end effect (solid line): 1.2-cm
(top) , 1.9-cm (middle) and 2.5-cm (bottom) diameter tubes.

the reflection was computed and used to build the filter, account-
ing for the approximation error which becomes significant for long
distances.

Figure 8 shows the spectrum of the reflection captured by the
microphone and the simulated spectrum as it should be without the
open-end effect. A slight attenuation can be seen below 100 Hz,
and a stronger one up to 1 kHz. Since the impulse travels along the
whole tube before reaching the open end, it has very low energy
above 3 kHz and the recorded reflection is superimposed by the
noise. When the impulse crosses the boundary at open end, the
pressure wave hits the outside air, at atmospheric pressure, creating
a compression wave heading back down the tube with some energy
left.

Using the filter designed for the tube model, the effect of the
reflection R due the open end was obtained:

R =
Hi

ref(f)

Hi
sim(f)

, (2)

where Hsim(f) is the spectrum of the response without the open
end effect simulated with the approach described above using the
same distance traveled by the corresponding windowed reflection
Href(f). This allows for the estimation of how the reflection affects
the spectrum. Equation (2) was estimated for each measure where
the reflections were isolated enough and could be windowed. Fi-
nally, the average for each tube size was computed. The shapes
shown in Fig. 9 summarize the results.

The results show that the attenuation depends on the diameter
of the tube, starting with a low value increasing above 100 Hz. The
attenuation becomes smaller at higher frequencies because of the
noise level.

5. FILTER DESIGN

This section describes the design of the filters simulating the sound
propagation through the tube and the reflection effect by the open
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Figure 9: Average filters estimating the open end effect (see
Eq. (2)) of a 1.2-cm (dotted line), 1.9-cm (dash-dot line), and 2.5-
cm (dashed line) tube.

end. For each of these effects, the average filters previously com-
puted and summarized in Figs. 7 and 9 were used as target shapes
to be approximated with low-order filters. Then, a unique form to
interpolate between the different diameters values was found.

5.1. Propagation Filter

Given the simple shapes of these filters (see Fig. 7), attempts were
made to find a low-order filter simulating their behavior. Keeping
the three averages as targets, three parametric filters were com-
puted, approximating the shape in order to minimize audible er-
rors.

A cascade of two high-shelving filters and one low-pass fil-
ter was built, resulting in a 5th-order parametric filter. The high-
shelving filters were used to approximate the shape from 300 Hz
to 3 kHz, while the low-pass filter was needed to cut the high end
of the spectrum.

Since the three target shapes behave very similarly at low fre-
quencies, the filters have the same behavior until 300 Hz with a
slight attenuation depending on the diameter of the tube. The sig-
nificant variations are in the range above 1 kHz, where different
attenuations and cut-offs can be seen. The cut-off frequencies for
the three target shapes are 4062, 5950, and 7015 Hz, respectively.

Figure 10 shows the different filters designed for the three di-
ameter tubes to be compared with those in Fig. 7. With these low-
order filters, a tube with arbitrary length can be simulated. More-
over, interpolating between the three filters allows to simulate dif-
ferent diameters sizes.

Since a cascade is an inefficient approach to produce tubes
longer than 1 m, an approximation was found. Starting from the
filter computed for the 1.2 cm tube, all the parameters of the three
basic filters composing it were gradually varied in a linear way
to achieve an approximated filter for longer lengths. A cascade
of two 1st-order low-pass filter replaced the simple 1st-order one,
resulting in a 6th-order parametric filter. A good approximation up
to 30 m (which is sufficient for the purpose of the audio effect)
was obtained with an error smaller than 0.6 dB. In addition, with
this method a better accuracy creating the tube can be achieved.
Instead of 1 m as the incremental step, a finer control, like 1 cm,
can be implemented. Figure 11 shows the approximation for 30 m.
The designed filter follows accurately the general shape except for
a critical range between 300 Hz and 1 kHz. In the case of 30 m
tube, the maximum error is 0.57 dB.

After obtaining an accurate approximation of frequency atten-
uations due to propagation in the tube, the final filter was obtained
by using a delay line that simulates the propagation delay and is
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Figure 10: Low-order approximations of the average “difference
filters” for a 1-m segment (see Eq. (1)): 1.2-cm (solid line), 1.9-cm
(dash-dot line), and 2.5-cm (dotted line) diameter tubes.
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Figure 11: Example of a parametric filter designed to approxi-
mate 30 m long tube: target filter (dotted line), and approximation
(dash-dot line).

Figure 12: Modeling the sound propagation using a delay line and
three filters.

connected in series with the previously discussed filter.
Figure 12 shows the three parametric filters in cascade and the

delay line composing the system. The system can be described
mathematically as follows:

Htube(z) = gz�MHHS1(z)HHS2(z)HLP(z), (3)

where g is a gain factor, z�M is the delay line of M samples,
HHS1(z) and HHS2(z) are 2nd-order IIR high-shelving filters, and
HLP(z) is a 1st-order IIR low-pass filter.

The coefficients of the high-shelving and low-pass filters were
computed with the usual formulas of the 1st- and 2nd-order fil-
ters [20]. Three different IIR filters were designed, one for each
tube diameter (1.2, 1.9, 2.5 cm), giving the possibility to approxi-
mate the different behaviors by controlling the shape with the cut-
off frequencies of the designed IIR digital filter.

In order to control the filter behavior as a function of the diam-
eter of the simulated tube, the cut-off frequencies of all the filters
and the gain factor g are linearly varied while the gains (dB) and
the quality factors of the two high-shelving filters are kept fixed.
Table 1 reports these latter values while Table 2 summarizes the
filter cut-off frequencies and the gain factor for each tube diame-
ter. Starting from these values, an interpolation was made with a
granularity of 1 mm.
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Table 1: Propagation filter: gain and quality factor values for the
two high-shelving filters.

Type of filter G[dB] Q
HS1 �1 0.65
HS2 �0.9 0.5

Table 2: Propagation filter: cut-off frequencies of low-pass and
high-shelving filters and overall gain for the three tube diameters.

Type of filter fHS1 [Hz] fHS2 [Hz] fLP [Hz] g
1.2 cm 1200 1500 9500 0.85
1.9 cm 900 7000 10200 0.87
2.5 cm 900 7000 11000 0.90

Figure 13: Block diagram of the reflection simulation.

5.2. Reflections

The block scheme in Fig. 13 shows the approach used to simu-
late the reflection. The delayed input is first filtered with the filter
Href(z) that approximates the losses given by the open end reflec-
tion, and the output is fed to the filter Htube(z) that simulates the
losses caused by sound propagation in the tube. The computed
reflection is finally added to the delayed sound resulting from un-
perturbed propagation in the tube.

The measured reflections have extremely low values in the
high end of the spectrum (above 3 kHz) because of the long dis-
tance traveled. The simulation produces lower values in the high
frequency region than the measured values. The extremely low
values superimposed by noise produce unreliable results in this re-
gion of the spectrum. Since a steeper shape in the high frequency
side due to high frequencies losses were expected, an approxima-
tion of the differences found with a continuous slope was done.

In order to approximate Href(z), a cascade of a 2nd-order high-
shelving filter and a 1st-order low-pass was chosen. Similarly to
the propagation filter, by controlling the quality factors, the gains,
and the cut-off frequencies, we were able to perform a linear inter-
polation between different diameters. An additional gain factor gref
was introduced to control the scale for the different sizes. Table 3
summarizes the parameters values of the different filters.

6. COMPARISON

In this section, a comparison between the designed filters and the
measurements is performed. The accuracy of the design is dis-
cussed, presenting the maximum approximation error in the fre-
quency range of interest. Considering that the frequencies above
10 kHz are unreliable, as discussed in Sec. 4, the comparison refers
the range between 20 Hz and 10 kHz.

Table 3: Reflection filter: parameters of the low-pass and high-
shelving filter and overall gain for the three tube diameters.

Type of filter 1.2 cm 1.9 cm 2.5 cm
fLP [Hz] 100 250 600
fHS [Hz] 500 225 160
GHS [dB] �14 �14 �10

QHS 0.35 0.4 0.60
gref 0.4225 0.5180 0.9
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Figure 14: Filters designed (solid line) and their corresponding
targets (dash-dot line) for the 1.2-cm (top), 1.9-cm (middle) and
2.5-cm (bottom) tube.

6.1. Propagation Filter

Figure 14 shows the three designed propagation filters compared
with the results obtained from the measurements. The filter ap-
proximating the 1.2-cm tube has a maximum error of 0.97 dB,
which is mainly due to the shelf filter having a flat magnitude re-
sponse at low frequencies instead of the declining slope of the mea-
sured response as shown in the top of Fig. 14. This way, a good
approximation at high frequencies is obtained, which is considered
to be more important that the response below 100 Hz.

The 1.9-cm filter presents a maximum error of 0.5 dB in the
lowest part of the frequency range. The fit becomes very accurate
at higher frequencies as seen in Fig. 14 (middle). The error is
0.31 dB at 60 Hz and decreases close to zero at frequencies above
100 Hz.

The third filter is shown in Fig. 14 (bottom) that, with the ex-
ception of an anomaly at about 1900 Hz, also fits the target shape
with good accuracy. It has a maximum error of 0.5 dB at 6184 Hz,
and an error smaller than 0.3 dB in the rest of the frequency range.

6.2. Reflection Filter

Figure 15 shows the difference between the three designed reflec-
tion filters and the simulation results. In this case, the range be-
tween 20 and 500 Hz is significant for the comparison as discussed
in Sec. 4.1.

The filter for the 1.2-cm diameter tube, shown in the top of
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Figure 15: Filters designed for the reflection (solid line) and their
corresponding targets (dash-dot line) of the 1.2-cm (top), 1.9-cm
(middle) and 2.5-cm (bottom) size tube.

Fig. 14, presents the same initial behavior of the one compared in
the previous section. Because of the high variability in the magni-
tude target, it is difficult to approximate accurately the shape, and
the maximum error is 4.57 dB. The error becomes smaller than
1 dB after 60 Hz except for a deviation at 330 Hz where the error
is 3.57 dB. Also in this design, a better approximation for frequen-
cies higher than 60 Hz at the expense of the frequencies below was
done.

The reflection filter for the 1.9-cm tube can be seen in the mid-
dle of Fig. 15. In the beginning of the spectrum, it has a maximum
error of 1.26 dB. The error becomes smaller than 1.2 dB above
30 Hz, thus providing a good fit in the remaining range.

The third filter, as seen in Fig. 15 (bottom), is the most accu-
rate with a maximum error of 0.52 dB at 40 Hz and close to zero
above 100 Hz.

7. IMPLEMENTATION

The implementation was written in C++ as an external library for
PURE DATA, an open-source real-time environment for audio pro-
cessing. The stereo plugin, working at sample rate 44.1 kHz, sim-
ulates the wave propagation in a narrow tube and produces associ-
ated audio effects. It creates two virtual tubes, one for each chan-
nel. The diameter of the two tubes is always the same. The length
of each tube can be set by the user and determines the desired de-
lay in milliseconds. The speed of sound is assumed to be 345 m/s
corresponding to a temperature of 23�C.

In addition, it is possible to control the volume of the delayed
sound and the ratio of the dry and the wet signals in the output.
The filter simulates the tube length for each 1 cm added. How-
ever, the size parameter gives the possibility to change the virtual
tube diameter with a granularity of 1 mm by changing the filter
parameters.

To enrich the system, the possibility of summing a reflection
in the output was also implemented. This option simulates the
wave reflection due the open end of the tube. A reflection, whose
frequency content depends on the distance chosen for the “virtual

Figure 16: Block scheme for the audio flow in the plugin.

open end,” can be created for each virtual tube. This way, the
length of the virtual tube becomes the sum of the length chosen
for the delay effect and the length chosen in the reflection options.
The sound is captured at a virtual microphone at the distance se-
lected by combining the delayed part of the sound and the reflec-
tion coming from the end of the tube. Since the reflection captured
this way is too soft to be clearly audible, a gain control was added.

Including the reflection option, the system computes three fil-
ters: the filter simulating the length desired for the main delay, the
filter simulating the open end, and the one simulating the residual
length traveled by the sound to reach the end of the tube and come
back to meet the virtual microphone. The block scheme shown
in Fig. 16 summarizes the system. The residual length is repre-
sented by Gtube(z) and is twice the length chosen in the reflection
options. In order to decrease the complexity of the computation,
the different coefficients of the reflection filters were pre-computed
and stored.

The plugin offers the possibility to create virtual tubes up to
30 m long in default mode, and 40 m long tubes in the reflection
mode. These maximums correspond to a delay of 87 ms and a
reflection coming after 29 ms. Figure 17 shows a screenshot of the
plugin implemented in PURE DATA.

8. CONCLUSION

A simulation of a tube delay effect was proposed in this paper.
Acoustic wave propagation in garden hoses of three different di-
ameter was measured and analyzed. Studying and elaborating the
recorded tube responses, a virtual tube model was developed and
a digital IIR filter controlling the length and the diameter of the
virtual tube was designed with a negligible error. From the analy-
sis of the measurements, a parametric filter was designed in which
the tube diameter and length can be continuously varied. Because
of the simplicity of the magnitude response shapes, a cascade of
two high shelving filters and a low-pass filter was sufficient for
approximating the behavior correctly. In addition, an analysis on
the reflection due to the open end of the tube was conducted, and
a filter approximating it was added in the model. Finally, a stereo
delay effect plugin in PURE DATA was presented describing the
design specifications.
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ABSTRACT

Timbre spaces have been used in music perception to study the per-
ceptual relationships between instruments based on dissimilarity
ratings. However, these spaces do not generalize to novel exam-
ples and do not provide an invertible mapping, preventing audio
synthesis. In parallel, generative models have aimed to provide
methods for synthesizing novel timbres. However, these systems
do not provide an understanding of their inner workings and are
usually not related to any perceptually relevant information.
Here, we show that Variational Auto-Encoders (VAE) can alleviate
all of these limitations by constructing generative timbre spaces.
To do so, we adapt VAEs to learn an audio latent space, while using
perceptual ratings from timbre studies to regularize the organiza-
tion of this space. The resulting space allows us to analyze novel
instruments, while being able to synthesize audio from any point
of this space. We introduce a specific regularization allowing to
enforce any given similarity distances onto these spaces. We show
that the resulting space provide almost similar distance relation-
ships as timbre spaces. We evaluate several spectral transforms and
show that the Non-Stationary Gabor Transform (NSGT) provides
the highest correlation to timbre spaces and the best quality of syn-
thesis. Furthermore, we show that these spaces can generalize to
novel instruments and can generate any path between instruments
to understand their timbre relationships. As these spaces are con-
tinuous, we study how audio descriptors behave along the latent
dimensions. We show that even though descriptors have an overall
non-linear topology, they follow a locally smooth evolution. Based
on this, we introduce a method for descriptor-based synthesis and
show that we can control the descriptors of an instrument while
keeping its timbre structure.

1. INTRODUCTION

For the past decades, music perception research has tried to un-
derstand the perception of instrumental timbre. Timbre is the set
of properties that distinguishes two instruments that play the same
note at the same intensity. To do so, several studies [1] collected
human dissimilarity ratings between pairs of audio samples inside
a set of instruments. These ratings are organized by applying Mul-
tiDimensional Scaling (MDS), leading to timbre spaces, which ex-
hibit the perceptual similarities between different instruments. By
analyzing the dimensions of resulting spaces, the studies tried to
correlate audio descriptors to the perception of timbre [2]. Al-
though these spaces provided interesting avenues of analysis, they

� This work was supported by project MAKIMOno 17-CE38-0015-01
funded by the French ANR and Canadian NSERC (STPG 507004-17) and
the ACTOR Partnership funded by the Canadian SSHRC (895-2018-1023).

are inherently limited by the fact that ordination techniques (e.g.
MDS) produce a fixed space, which has to be recomputed entirely
for any new sample. Therefore, these spaces do not generalize to
novel examples and do not provide an invertible mapping, preclud-
ing audio synthesis to understand their perceptual topology.

In parallel, recent developments in audio synthesis using gen-
erative models has seen great improvements with the introduction
of approaches such as the WaveNet [3] and SampleRNN [4] archi-
tectures. These allow to generate novel high-quality audio match-
ing the properties of the corpus they have been trained on. How-
ever, these models give little cue and control over the output or the
features it results from. More recently, NSynth [5] has been pro-
posed to synthesize audio by allowing to morph between specific
instruments. However, these models still require very large num-
ber of parameters, long training times and a large number of ex-
amples. Amongst recent generative models, another key proposal
is the Variational Auto-Encoder (VAE) [6]. In these, a latent space
is learned that allows both to encode data for analysis, but also to
sample from it in order to generate novel content. VAEs address
the limitations of control and analysis through this latent space,
while remaining simple and fast to learn with a small set of ex-
amples. Furthermore, VAEs seem able to disentangle underlying
variation factors by learning independent latent variables account-
ing for distinct generative processes [7]. However, these latent
dimensions are learned in an unsupervised way. Therefore, they
are not related to perceptual properties, which might hamper their
understandability or their use for audio analysis and synthesis.

Here, we show that we can bridge timbre perception analy-
sis and perceptually-relevant audio synthesis by regularizing the
learning of VAE latent spaces so that they match the perceptual dis-
tances collected from timbre studies. Our overall approach is de-
picted in Figure 1. First, we adapt the VAE to analyze musical au-
dio content, by comparing the use of different spectral transforms
as input to the learning. We show that, amongst the Short-Term
Fourier Transform (STFT), Discrete Cosine Transform (DCT) and
the Non-Stationary Gabor Transform (NSGT) [8], the NSGT pro-
vides the best reconstruction abilities and regularization perfor-
mances. By training this model on a small database of spectral
frames, it already provides a generative model with an interesting
latent space, able to synthesize novel instrumental timbres. Then,
we introduce a regularization to the learning objective inspired by
the t-Stochastic Neighbors Embedding (t-SNE) [9], aiming to en-
force that the latent space exhibits the same distances between in-
struments as those found in timbre studies. To do so, we build a
model of perceptual relationships by analyzing dissimilarity rat-
ings from five independent timbre studies [10, 11, 12, 13, 14].
We show that perceptually-regularized latent spaces are simultane-
ously coherent with perceptual ratings, while being able to synthe-
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Figure 1: (Left) VAEs can model a spectral frame x of an au-
dio sample by learning an encoder q�(z | x) which maps them
to a Gaussian N (µ(x), �(x)) inside a latent space z. The de-
coder p�(x | z) samples from this Gaussian to generate a recon-
struction x̃ of the spectral frame. (Right) Perception studies use
similarity ratings to construct timbre spaces exhibiting perceptual
distances between instruments. Here, we develop a regularization
R(z, T ) enforcing that the variational model finds a topology of
latent space z that matches the topology of the timbre space T .

size high-quality audio distributions. Hence, we drive the learning
of latent spaces to match the topology of given target spaces.

We demonstrate that these spaces can be used for generating
novel audio content, by analyzing their reconstruction quality on
a test dataset. Furthermore, we show that paths in the latent space
(where each point corresponds to a single spectral frame) provide
sound synthesis with continuous evolutions of timbre. We also
show that these spaces generalize to novel samples, by encoding a
set of instruments that were not part of the training set. Therefore,
the spaces could be used to predict the perceptual similarities of
novel instruments. Finally, we study how traditional audio descrip-
tors are organized along the latent dimensions. We show that even
though descriptors behave in a non-linear way across space, they
still follow a locally smooth evolution. Based on this smoothness
property, we introduce a method for descriptor-based path synthe-
sis. We show that we can modify an instrumental distribution so
that it matches a given target evolution of audio descriptors, while
remaining perceptually smooth. The source code, audio examples
and animations are available on a supporting repository1.

2. STATE-OF-ART

2.1. Variational auto-encoders

Generative models are a flourishing class of learning approaches,
which aim to find the underlying probability distribution of the

1https://github.com/acids-ircam/
variational-timbre

data p(x) [15]. Formally, based on a set of examples in a high-
dimensional space x � Rdx , we assume that these follow an un-
known distribution p (x). Furthermore, we consider a set of latent
variables defined in a lower-dimensional space z � Rdz (dz �
dx). These latent variables help govern the generation of the data
and enhance the expressivity of the model. Thus, the complete
model is defined by the joint probability distribution p(x, z) =
p(x | z)p(z). We could find p(x) through its relation to the pos-
terior distribution p(z | x) given by Bayes’ theorem. However, for
complex non-linear models (such as those that we will consider in
this paper), this posterior can not be found in closed form.

For decades, the dominant paradigm for approximating p(x)
has been sampling methods [16]. However, the quality of this ap-
proximation depends on the number of sampling operations, which
might be extremely large before we have an accurate estimate. Re-
cently, variational inference (VI) [15] has been proposed to solve
this problem through optimization rather than sampling. VI as-
sumes that if the distribution is too complex to find, we could
find a simpler approximate distribution that still models the data,
while trying to minimize its difference to the real distribution. For-
mally, VI specifies a family Q of approximate densities, where
each member q(z | x) � Q is a candidate approximation to the
exact p (z | x). Hence, the inference problem can be transformed
into an optimization problem by minimizing the Kullback-Leibler
(KL) divergence between the approximation and original density

q�(z | x) = arg min
q(z | x)�Q

DKL

�
q (z | x) � p (z | x)

�
(1)

The complexity of the family Q will both determine the quality
of the approximation, but also the complexity of this optimization.
Hence, the major issue of VI is to choose Q to be flexible enough
to closely approximate p (z | x), while being simple enough to al-
low efficient optimization. Now, if we expand the KL divergence
that we need to minimize and rely on Bayes’ rule to replace p(z|x),
we obtain the following expression

DKL

�
q(z | x) � p(z | x)

�
= Eq(z)

�
log q(z | x) � log p(x | z)

� log p(z) + log p(x)
�

(2)

Noting that the expectation is over q(z|x) and that p(x) does not
depend on it, we can get this term out of the expectation and then
observe that the remaining equation can be rewritten as another
KL divergence leading to

log p(x) � DKL

�
q(z | x) � p(z | x)

�
=

Ez

�
log p(x | z)

�
� DKL

�
q(z | x) � p(z)

�
(3)

This formulation describes the logarithm of the quantity that we
want to maximize log p(x) minus the error we make by using an
approximate q instead of p. Therefore, we can optimize this alter-
native objective, called the evidence lower bound (ELBO) as

log p(x) = DKL

�
q(z | x) � p(z | x)

�
+ ELBO(q). (4)

and the KL is non-negative, so log p(x) � ELBO(q), �q(z).
Now, to optimize this objective, we will rely on parametric dis-
tributions q�(z | x) and p�(x | z). Therefore, optimizing our gen-
erative model will amount to optimize these parameters

�
�, �

�

L(�, �) = Eq�(z)

�
log p�(x|z)

�
� DKL

�
q�(z|x) � p�(z)

�
(5)
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We can see that this equation involves q�(z | x) which encodes
the data x into the latent representation z and a decoder p(x | z),
which generates a data x given a latent configuration z. Hence,
this whole structure defines the Variational Auto-Encoder (VAE),
which is depicted in Figure 1 (Left).

The VAE objective can be interpreted intuitively. The first
term increases the likelihood of the data generated given a configu-
ration of the latent, which amounts to minimize the reconstruction
error. The second term represents the error made by using a sim-
pler distribution q�(z | x) rather than the true distribution p�(z).
Therefore, this regularizes the choice of approximation q so that

L�,� = Eq�(z)

�
log p�(x|z)

�
� �� �

reconstruction

�� · DKL

�
q�(z|x) � p�(z)

�
� �� �

regularization

(6)

The first term can be optimized through a usual maximum likeli-
hood estimation, while the second term requires that we define the
prior p(z). While the easiest choice is to choose p(z) � N (0, I),
it also adds the benefit that this term has a simple closed solution
for computing the optimization, as detailed in [6]. Here we intro-
duced a weight � to the KL divergence, which leads to the �-VAE
formulation [7]. This has been shown to improve the capacity of
the model to disentangle factors of variations in the data. How-
ever, it has later been shown that an appropriate way to handle this
parameter was to perform warm-up [17], where the � parameter is
linearly increased in the first epochs of training.

Finally, we need to select a family of variational densities
Q. One of the most widespread choice is the mean-field varia-
tional family where latent variables are independent and are each
parametrized by a distinct variational parameter

q(z) =
m�

j=1

qj(zj) (7)

Therefore, each dimension of the latent space will be governed
by an independent Gaussian distribution with its own mean and
variance depending on the input data qj(zj) = N (µj(x), �j(x)).

VAEs are powerful representation learning frameworks, while
remaining simple and fast to learn without requiring large sets of
examples [17]. Their potential for audio applications have been
only scarcely investigated yet and mostly in topics related to speech
processing such as blind source separation [18] and speech trans-
formation [19]. However, to the best of our knowledge, the use of
VAE and their latent spaces to perform musical audio analysis and
generation has yet to be investigated.

2.2. Timbre spaces and auditory perception

For several decades, music perception research has tried to under-
stand the mechanisms leading to the perception of timbre. Sev-
eral studies have shown that timbre could be partially described
by computing various audio descriptors [13]. To do so, most stud-
ies relied on the concept of timbre spaces [2], a model that orga-
nize audio samples based on perceptual dissimilarity ratings. In
these studies, pairs of sounds are presented to subjects that are
asked to rate their perceptual dissimilarities inside a given set of
instruments. Then, these ratings are compiled into a set of dissim-
ilarity matrices that are analyzed with Multi-Dimensional Scaling
(MDS). The MDS algorithm provides a timbre space that exhibits
the underlying perceptual distances between different instruments
(Figure 1 (Right)). Here, we briefly detail corresponding studies

and redirect interested readers to the full articles for more details.
In his seminal paper, Grey [10] performed a study with 16 instru-
mental sound samples. Each of the 22 subjects had to rate the dis-
similarity between all pairs of sounds on a continuous scale from
0 (most similar) to 1 (most dissimilar). This lead to the first con-
struction of a timbre space for instrumental sounds. They further
exhibit that the dimensions explaining these dissimilarities could
be correlated to the spectral centroid, spectral flux and attack cen-
troid. Several studies followed this research by using the same
experimental paradigm. Krumhansl [11] used 21 instruments with
9 subjects on a discrete scale from 1 to 9, Iverson et al. [12] with
16 samples and 10 subjects on a continuous scale from 0 to 1,
McAdams et al. [13] with 18 orchestral instruments and 24 sub-
jects on a discrete scale from 1 to 16 and, finally, Lakatos [14]
with 17 subjects on 22 harmonic and percussive samples on a con-
tinuous scale from 0 to 1. Each of these studies shed light on
different aspects of audio perception, depending on the aspect be-
ing scrutinized and the interpretation of the space by the exper-
imenters. However, all studies have led to different spaces with
different dimensions. The fact that different studies correlate to
different audio descriptors prevents a generalization of the acous-
tic cues that might correspond to timbre dimensions. Furthermore,
timbre spaces have been explored based on MDS to organize per-
ceptual ratings and correlate spectral descriptors [13]. Therefore,
these studies are inherently limited by the fact that

• ordination techniques (such as MDS) produce fixed spaces
that must be recomputed for any new data point

• these spaces do not generalize nor synthesize audio between
instruments as they do not provide an invertible mapping

• interpretation is bounded to the a posteriori linear correla-
tion of audio descriptors to the dimensions rather than ana-
lyzing the topology of the space itself

As noted by McAdams et al. [1], critical problems in these
approaches are the lack of an objective distance model based on
perception and general dimensions for the interpretation of tim-
bral transformation and source identification. Here, we show that
relying on VAE models to learn unsupervised spaces, while regu-
larizing the topology of these spaces to fit given perceptual ratings
can allow to alleviate all of these limitations.

3. REGULARIZING LATENT SPACE TOPOLOGY

In this paper, we aim to construct a latent space that could both
analyze and synthesize audio content, while providing the under-
lying perceptual relationships between audio samples. To do so,
we show that we can influence the organization of the VAE latent
space z so that it follows the topology of a given target space T .
Here, we will rely on the MDS space constructed from perceptual
ratings as a target space T . However, it should be noted that this
idea can be applied to any given target space that provides a set of
distances between the elements used for learning the VAE space.

To further specify our problem, we consider a set of audio
samples, where each xi can be encoded in the latent space as zi

and have an equivalent in the target space Ti. In order to relate the
elements of the audio dataset to the perceptual space, we consider
that each sample is labeled with its instrumental class Ci, that has
an equivalent in the timbre space. Therefore, we will match the
properties of the classes between the latent and target spaces (note
that we could use element-wise properties for finer control).
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Here, we propose to regularize the learning by introducing the
perceptual similarities through an additive term R (z, T ). This
penalty imposes that the properties of the latent space z are similar
to that of the target space T . The optimization objective becomes

E
�
log p�(x|z)

�
� �DKL

�
q�(z|x) � p�(z)

�
+ �R

�
z, T

�
(8)

where � is an hyper-parameter that allows us to control the influ-
ence of the regularization. Hence, amongst two otherwise equal
solutions, the model is pushed to select the one that comply with
the penalty. In our case, we want the distances between instru-
ments to follow perceptual timbre distances. Therefore, we need
to minimize the differences between the set of distances in the
latent space Dz

i,j = D(zi, zj) and the distances in target space
DT

i,j = D(Ti, Tj). Therefore, the regularization criterion will try
to minimize the overall differences between these sets of distances.
To compute these sets, we take inspiration from the t-Stochastic
Neighbor Embedding (t-SNE) algorithm [9]. Indeed, as their goal
is to map the distances from one (high-dimensional) space into a
target (low-dimensional) space, it is highly correlated to our task.
However, we can not simply apply the t-SNE algorithm on the la-
tent space as this would lead to a non-invertible mapping. Instead,
we aim to steer the learning in a similar way. Hence, we com-
pute the relationships in the latent space z by using the conditional
Gaussian density that i would choose j as its neighbor

Dz
i,j =

exp
�

� �zi � zj�2 /2�2
i

�
�

k �=i exp
�

� �zi � zk�2 /2�2
i

� (9)

where �i is the variance of the Gaussian centered on zi, defined as
�i = 1/

�
2. Then, to relate the points in the timbre space T , we

use a Student-t distribution to define the distances in this space as

DT
i,j =

�
1 + �Ti � Tj�2 ��1

�
k �=l

�
1 + �Tk � Tl�2 ��1 (10)

Finally, we rely on the sum of KL divergences between the two
distributions of distances in different spaces to define our complete
regularization criterion

R
�
z, T

�
=

�

i

DKL

�
Dz

i � DT
i

�
=

�

i

�

j

Dz
i,j log

Dz
i,j

DT
i,j

Hence, instead of applying a distance minimization a posteri-
ori, we steer the learning to find a configuration of the latent space
z that displays the same distance properties as the space T , while
providing an invertible mapping.

4. EXPERIMENTS

4.1. Datasets

Timbre studies. We rely on the perceptual ratings collected across
five independent timbre studies [10, 11, 12, 13, 14]. As discussed
earlier, even though all studies follow the same experimental pro-
tocol, there are some discrepancies in the choice of instruments,
rating scales and sound stimuli. However, here we aim to obtain
a consistent set of properties to define a common timbre space.
Therefore, we computed the maximal set of instruments for which
we had ratings for all pairs. To do so, we collated the list of instru-
ments from all studies and counted their co-occurences, leading
to a set of 12 instruments (Piano, Cello, Violin, Flute, Clarinet,
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Figure 2: Multi-dimensional scaling (MDS) of the combined and
normalized set of perceptual ratings from different studies.

Trombone, French Horn, English Horn, Oboe, Saxophone, Trum-
pet, Tuba) with pairwise ratings. Then, we normalized the raw
dissimilarity data (keeping all instruments of that study) so that it
maps to a common scale from 0 to 1. Finally, we extracted the set
of ratings that corresponds to our selected instruments. This leads
to a total of 1217 subject ratings for all instruments, amounting
to 11845 pairwise ratings. Based on this set of ratings, we com-
pute an MDS space to ensure the consistency of our normalized
perceptual space on the selected set. The results of this analysis
are displayed in Figure 2. We can see that even though the ratings
come from different studies, the resulting space remains very co-
herent, with the distances between instruments remaining coherent
with the original perceptual studies.

Audio datasets. In order to learn the distribution of instrumen-
tal sounds directly from the audio signal, we rely on the Studio On
Line (SOL) database [20]. We selected 2,200 samples to repre-
sent the 11 instruments for which we extracted perceptual ratings.
We normalized the range of notes used by taking the whole tes-
situra and dynamics available (to remove effects from the pitch
and loudness). All recordings were resampled to 22050 Hz for the
experiments. Then, as we intend to evaluate the effect of different
spectral distributions as input to our proposed model, we computed
several invertible transforms for each audio sample. First, we com-
pute the Short-Term Fourier Transform (STFT) with a Hamming
window of 40ms and a hop size of 10ms. Then, we compute the
Discrete Cosine Transform (DCT) with the same set of parameters.
Finally, we compute the Non-Stationary Gabor Transform (NSGT)
[8] mapped either on a Constant-Q scale of 48 bins per octave and
a Mel scale or ERB scale of 400 bins, all from 30 to 11000 Hz.
For all transforms, we only keep the magnitude of the distribution
to train our models. We perform a corpus-wide normalization to
preserve the relative intensities of the samples (normalizing all dis-
tributions by the maximal value found across samples). Then, we
extract a single temporal frame from the sustained part of the rep-
resentation (200 ms after the beginning of the sample) to represent
a given audio sample. Finally, the dataset is randomly split across
notes to obtain a training (90%) and test (10%) set.

Audio reconstruction. To perform audio synthesis, we con-
sider paths inside the latent space, where each point corresponds
to a single spectral frame. We sample along a given path and con-
catenate the spectral frames to obtain the magnitude distribution.
Then, we apply the Griffin-Lim algorithm in order to recover the
phase distribution and synthesize the corresponding waveform.
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4.2. Models

Here, we rely on a simple VAE architecture to show the efficiency
of the proposed method. The encoder is defined as a 3-layer feed-
forward neural network with Rectified Linear Units (ReLU) acti-
vation functions and 2000 units per layer. The last layer maps to a
given dimensionality d of the latent space. In our experiments, we
analyzed the effect of relying on different latent spaces and em-
pirically selected latent spaces with 64 dimensions. The decoder
is defined in a symmetrical way, with the same architecture and
units, mapping back to the dimensionality of the input transform.
For learning the model, we use a value of � = 2, which is linearly
increased from 0 to its final value during the first 100 epochs (fol-
lowing the warmup procedure [17]). In order to train the model,
we rely on the ADAM [21] optimizer with an initial learning rate
of 0.0001. In a first stage, we train the model without perceptual
regularization (� = 0) for a total of 5000 epochs. Then, we intro-
duce the perceptual regularization (� = 0.1) and train for another
1000 epochs. This allows the model to first focus on the quality
of the reconstruction, and then to converge towards a solution with
perceptual space properties. We found in our experiments that this
two-step procedure is critical to the success of the regularization.

5. RESULTS

5.1. Latent spaces properties

In order to visualize the 64d latent spaces, we apply a simple Prin-
cipal Component Analysis (PCA) to obtain a 3d representation.
Using a PCA ensures that the visualization is a linear transform
of the original space. Therefore, this preserves the real distances
inside the latent space. Furthermore, this will allow to recover an
exploitable representation when we will use this space to gener-
ate novel audio content. The results of learning regularized latent
spaces for different spectral transforms are displayed in Figure 3.

As we can see, in VAEs without regularization (small space),
the relationships between instruments do not match perceptual rat-
ings. Furthermore, the variance of distributions show that the model
rather tries to spread the information across the latent space to help
the reconstruction. However, the NSGT provides a better unregu-
larized space with different instrumental distributions already well
separated. Now, if we compare to the regularized spaces, we can
clearly see the effect of the criterion, which provides a larger sep-
aration of distribution. This effect and final result is particularly
striking for the NSGT (c), which provides the highest correlation
to the distances in our combined timbre space (Figure 2). Inter-
estingly, the instrumental distributions might be shuffled around
space in order to comply with the reconstruction objective. How-
ever, the pairwise distances reflecting perceptual relations are well
matched as indicated by the KL divergence. By looking at the
test set reconstructions, we can see that enforcing the perceptual
topology on the latent spaces do not impact the quality of audio
reconstruction for the NSGT, where the reconstruction provides
an almost perfectly matching distribution. In the case of the STFT,
we can see that the model is impacted by the regularization and
mostly match the overall density of the distribution rather than its
exact peak information. Finally, it seems that the DCT model di-
verged in terms of reconstruction, being unable to reconstruct the
distributions. However, we can see that the KL fit to timbre dis-
tances is better than the STFT, indicating an overfit of the learning
towards the regularization criterion. This generative evaluation is
quantified and confirmed in the next section.

Method log p(x) �x � x̃�2

Unregularized
(NSGT)

PCA - 2.2570
AE -1.2008 1.6223

VAE -2.3443 0.1593

Regularized
(VAE)

STFT -1.9237 0.2412
DCT 4.3415 2.2629

NSGT-CQT -2.8723 0.1610
NSGT-MEL -2.9184 0.1602
NSGT-ERB -2.9212 0.1511

Table 1: Generative capabilities evaluated by the log likelihood
and mean quality of reconstructed representations on the test set.

5.2. Generative capabilities

We quantify the generative capabilities from the latent spaces by
computing the log likelihood and mean difference between the
original and reconstructed spectral representations on the test set.
We compare these results for different transforms and without reg-
ularization, which are presented in Table 1.

As we can see, the unregularized VAE trained on the NSGT
distribution provides a very good reconstruction capacity, and still
generalizes very well. This can be seen in its ability to gener-
ate spectral distributions from the test set almost perfectly. Inter-
estingly, regularizing the latent space does not seem to affect the
quality of the reconstruction at all. It even seems that the gener-
alization increases with the regularized latent space. This could
however be explained by the fact that the regularized models are
trained for twice as much epochs based on our two-fold procedure.

It clearly seems that NSGTs provide both better generalization
and reconstruction abilities, while the DCT seems to provide only
a divergent model. This can be explained by the fact that NSGT
frequency axis is organized on a logarithmic scale. Furthermore,
their distribution are well spread across this axis, whereas STFT
and DCT tends to have most of their informative dimensions in the
bottom half of the spectrum. Therefore, NSGTs provide a more
informative input. Finally, there only seems to be a marginal dif-
ference between the results of different NSGT scales. However,
for all remaining experiments, we select the NSGT-ERB as it is
more coherent with our perceptual endeavor.

Thanks to the decoder and its generative capabilities, we can
now directly synthesize the audio corresponding to any point in-
side the latent space, but also any paths between two given in-
struments. This allows us to turn our analytical spaces into audio
synthesizers. Furthermore, as shown in Figure 5 (Bottom right),
synthesizing audio along these spaces lead to smooth evolution
of spectral distributions and perceptually continuous synthesis (as
discussed extensively in the next section). In order to perform sub-
jective evaluation of the audio reconstruction, generated samples
from the latent space are available on the supporting repository.

5.3. Generalizing perception, audio synthesis of timbre paths

Given that the encoder of our latent space is trained directly on
spectral distributions, it is able to analyze samples belonging to
new instruments that were not part of the original perceptual stud-
ies. Furthermore, as the learning is regularized by perceptual rat-
ings, we could hope that the resulting position would predict the
perceptual relationships of this new instrument to the existing in-
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Figure 4: (Top) Projecting new instruments inside the regularized
latent space allow to see their perceptual relations to others. (Bot-
tom right) We can generate any path between instruments in the
space and synthesize the corresponding perceptually-smooth audio
evolution. (Bottom, left) We define 6 equally-spaced projection
planes across the x axis and sample points on a 50x50 grid. We
reconstruct their audio distribution to compute their spectral cen-
troid and bandwidth. We compare the resulting descriptor space
topology for unregularized (left) and regularized (right) spaces.

struments. This could potentially feed further perceptual studies,
to refine timbre understanding. To evaluate this hypothesis, we ex-
tracted a set of Piccolo audio samples to evaluate their behavior in
latent space. We perform the same processing as for the training
dataset (Section 4.1) and encode these new samples in the latent
space to study the out-of-domain generalization capabilities of our
model. The results of this analysis are presented in Figure 5 (Top).

Here, we can see that new samples (represented by their cen-
troid for clarity) are encoded in a coherent position in the latent
space, as they group with their families, even though they were
never presented to the model during learning. However, obtain-
ing a definitive answer on the perceptual inference capabilities of
these spaces would require a complete perception experiment, that
we leave to future work. Now, as argued previously, one of the
key property of the latent spaces is that they provide an invertible
non-linear mapping. Therefore, we could thrive on this property
to truly understand what are the perceptual relations between in-
struments based on the behavior of spectral distributions between
the points in the timbre space. To exhibit this capability, we en-
code the position in the latent space of a Piccolo sample playing
an E5-f. Then, based on the position of a French Horn playing
an A4-ff, we perform an interpolation between these latent points
to obtain the path between these two instruments in latent space.
We then sample and decode the spectral distributions at 6 equally
spaced positions along the path, which are displayed in Figure 5
(Right). As we can see, the resulting audio distributions demon-
strate a smooth evolution between timbral structures of both in-
struments. Furthermore, the resulting interpolation is clearly more
complex than a linear change between one structure to the other.
Hence, this approach could be used to understand more deeply
the timbre relationships between instruments. Also, this provides
a model able to perform perceptually-relevant synthesis of novel
timbres, while sharing the properties of multiple instruments.

5.4. Topology of audio descriptors

Here, we analyze the topology of signal descriptors across the la-
tent space. As the space is continuous, we do so by sampling
uniformly the PCA space and then using the decoder to gener-
ate audio samples at a given point. Then, we compute the au-
dio descriptors of this sample. In order to provide a visualiza-
tion, we select 6 equally-distant planes across the x dimension, at
{�.75, �.45, �.15, .15, .45, .75}, which define an uniform 50x50
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grid between [�1, 1] on other dimensions. We compare the re-
sults between unregularized or regularized NSGT latent spaces in
Figure 5 (Bottom left) for the spectral centroid and spectral band-
width. Animations of continuous traversals of the latent space are
available on the supporting repository. As we can see, the audio
descriptors behave following overall non-linear patterns for both
unregularized and regularized latent spaces. However, they still
exhibit locally smooth properties. This shows that our model is
able to organize audio variations. In the case of unregularized
spaces, the organization of descriptors is spread out in a more even
fashion. The addition of perceptual ratings to regularize the learn-
ing seems to require that this space is organized with a more com-
plex topology. This could be explained by the fact that, in the
unregularized case, the VAE only needs to find a configuration of
the distributions that maximizes their reconstruction. Oppositely,
the regularization requires that instrumental distances follow the
perceptual dissimilarity ratings, prompting the need for a more
complex relationship between descriptors. This might underline
the fact that linear correlations between MDS dimensions and au-
dio descriptors is insufficient to truly understand the dimensions
related to timbre perception. However, the audio descriptors topol-
ogy overall still provide locally smooth evolutions. Finally, a very
interesting observation comes from the topology of the centroid.
Indeed, all perceptual studies underline its correlation to timbre
perception, which is partly confirmed by our model (by projecting
on the y axis). This tends to confirm the perceptual relevance of
our regularized latent spaces. However, this also shows that the
relation between centroid and timbre might not be linear.

5.5. Descriptor-based synthesis

As shown in the previous section, the audio descriptors are or-
ganized in a smooth locally linear way across the space. Further-
more, as discussed in Section 5.1, we have seen that the instrumen-
tal distributions are grouped across spaces depending on percep-
tual relations. Based on these two findings, we hypothesize that we
can find paths inside these spaces that modify a given audio distri-
bution to follow a target descriptor, while remaining perceptually
smooth. Hence, we propose a simple method for perceptually-
relevant descriptor-based path synthesis presented in Algorithm 1.

Based on the latent space z (with corresponding encoder q and
decoder p) and a given origin spectrum x0, the goal of this algo-
rithm is to find the succession of spectral distributions that match
a given target evolution t � RN for a descriptor d. First, we find
the position of the origin distribution in latent space z0 and eval-
uate its descriptor value d0 (lines 1-4). Then for each point i, we
compute the descriptor values Di in the neighborhood of the cur-
rent latent point (lines 6-10) by decoding their audio distributions.
Note that the the neighborhood is defined as the set of close latent
points, and its size directly defines the complexity of the optimiza-
tion. Then, we select the neighboring latent point zi that provides
the evolution of descriptor closest to the target evolution t[i] (lines
11-14). Finally, we obtain the spectral distribution S[i] by decod-
ing the latent position zi. The results of applying this algorithm to
a given instrumental distribution is presented in Figure 5.

Here, we start from the NSGT distribution of a Clarinet-Bb
playing a G#4 in fortissimo. We apply our algorithm twice from
the same origin point, either on a descending target shape for the
spectral centroid (top), or an ascending log shape for the spec-
tral bandwidth (bottom). In both cases, we plot the synthesized
NSGT distributions at different points of the optimized path, and

Algorithm 1: Descriptor-based path synthesis
Data: space z, encoder q�(z|x), decoder p�(x|z)
Data: origin spectrum x0, target series t1..N , descriptor d
Result: spectral distrib. S � RN�F

1 // Find origin position in latent space
2 z0 = q�(x0)
3 // Evaluate origin descriptor
4 d0 = evaluate(x0, d)
5 for i � [1, N ] do
6 // Latent 3-d neighborhood of current point
7 Ni = neighborhood(zi�1)
8 // Sample and evaluate descriptors
9 Xi = q�(Ni)

10 Di = evaluate(Xi, d)
11 // Compute difference to target
12 �i = �(Di � di�1) � (t[i] � t[i � 1])�2

13 // Find next latent point
14 zi = argmin(�i)
15 // Decode distribution
16 S[i] = p�(zi)
17 end

the neighboring descriptor space. As we can see, the resulting de-
scriptor evolution closely match the input target in both cases. Fur-
thermore, we can see by visual inspection of the spectrum evolu-
tion, that the corresponding distributions are indeed sharply mod-
ified to match the desired descriptors. Interestingly, the optimiza-
tion of different target shapes on different descriptors lead to widely
different paths in the latent space. However, the overall timbre
structure of the original instrument still seems to follow a smooth
evolution. Here, we note that the algorithm is quite rudimentary,
and could benefit from more global neighborhood information, as
witnessed from the slightly erratic local selection of latent points.

6. CONCLUSION

Here, we have shown that regularizing VAEs with perceptual rat-
ings provides timbre spaces that allow for high-level analysis and
audio synthesis directly from these spaces. The organization of
these perceptually-regularized latent spaces prove the flexibility of
these systems, and provides a latent space from which generation
of novel audio content is straightforward. These spaces allow to
extrapolate perceptual results on new sounds and instruments with-
out the need to collect new measurements. Finally, by analyzing
the behavior of audio descriptors across the latent space, we have
shown that even though they follow a non-linear evolution, they
still exhibit some locally smooth properties. Based on these, we
introduced a method for descriptor-based path synthesis that allow
to synthesize audio that match a target descriptor shape, while re-
taining the timbre structure of instruments. Future work on these
latent spaces would be to perform perceptual experiments to con-
firm their perceptual topology.
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